
Solving Diameter Constrained Minimum
Spanning Tree Problems in Dense Graphs

Andréa C. dos Santos1, Ab́ılio Lucena2, and Celso C. Ribeiro3

1 Department of Computer Science, Catholic University of Rio de Janeiro, Rua
Marquês de São Vicente 225, Rio de Janeiro, RJ 22453-900, Brazil.

cynthia@inf.puc-rio.br
2 Federal University of Rio de Janeiro, Departamento de Administração, Av. Pasteur

250, Rio de Janeiro, RJ 22290-240, Brazil.
lucena@facc.ufrj.br

3 Department of Computer Science, Universidade Federal Fluminense, Rua Passo da
Pátria 156, Niterói, RJ 24210-240, Brazil.

celso@inf.puc-rio.br

Abstract. In this study, a lifting procedure is applied to some exist-
ing formulations of the Diameter Constrained Minimum Spanning Tree
Problem. This problem typically models network design applications
where all vertices must communicate with each other at minimum cost,
while meeting or surpassing a given quality requirement. An alternative
formulation is also proposed for instances of the problem where the di-
ameter of feasible spanning trees can not exceed given odd numbers. This
formulation dominated their counterparts in this study, in terms of the
computation time required to obtain proven optimal solutions. First ever
computational results are presented here for complete graph instances of
the problem. Sparse graph instances as large as those found in the liter-
ature were solved to proven optimality for the case where diameters can
not exceed given odd numbers. For these applications, the corresponding
computation times are competitive with those found in the literature.

1 Introduction

Let G = (V, E) be a finite undirected connected graph with a set V of vertices
and a set E of edges. Assume that a cost cij is associated with every edge
[i, j] ∈ E, with i < j. Denote by T = (V, E′) a spanning tree of G, with E′ ⊆ E.
For every pair of distinct vertices i, j ∈ V , there exists a unique path Pij in T
linking i and j. Denote by dij the number of edges in Pij and by d = max{dij :
i, j ∈ V } the diameter of T . Given a positive integer 2 ≤ D ≤ |V | − 1, the
Diameter Constrained Minimum Spanning Tree Problem (DCMST) is to find a
minimum cost spanning tree T with d ≤ D.

DCMST has been shown to be NP -hard when D ≥ 4 [6]. The problem typ-
ically models network design applications where all vertices must communicate
with each other at minimum cost, while meeting or surpassing a given quality
requirement [7]. Additional applications are found in data compression [3] and
distributed mutual exclusion in parallel computing [4,11].

C.C. Ribeiro and S.L. Martins (Eds.): WEA 2004, LNCS 3059, pp. 458–467, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [595.276 841.889] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 3600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: AbbrechenEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Error /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

Solving Diameter Constrained Minimum Spanning Tree Problems 459

DCMST formulations in the literature implicitly use a property of feasible
diameter constrained spanning trees, pointed out by Handler [8]. Consider first
the case where D is even. Handler noted that a central vertex i ∈ V must exist
in a feasible tree T , such that no other vertex of T is more than D/2 edges
away from i. Conversely, if D is odd, a central edge e = [i, j] ∈ E must exist
in T , such that no vertex of T is more than (D − 1)/2 edges away from the
closest extremity of (i, j). Another feature shared by these formulations is that,
in addition to the use of natural space variables (i.e. variables associated with
the edges of G, for this application), the central vertex (resp. edge) property of
T is enforced through the use of an auxiliary network flow structure. In doing
so, connectivity of T is naturally enforced by these structures.

The formulation proposed in [1,2] for even D relies on an artificial vertex
to model central spanning tree vertices. For odd D, however, the corresponding
formulation in [1,2] do not use either artificial vertices or edges. Similarly, for-
mulations in [7], irrespective of D being odd or even, do not rely on artificial
vertices or edges. Another distinction between formulations in [1,2] and those in
[7] is that the former contains multicommodity network flow structures, while
the latter contains single commodity network flow ones. As a result, tighter linear
programming relaxations are obtained in [7], albeit at a much larger computer
memory requirement.

Achuthan et al. [1,2] do not present computational results for their DCMST
formulation. Gouvea and Magnanti [7] used the Mixed Integer Programming
(MIP) solver CPLEX 5.0 to test their formulation uniquely on fairly sparse
graphs.

In this paper, we introduce an alternative form of enforcing the central edge
property for the odd D case of DCMST. The proposed model is based on the
use of an artificial vertex. We also apply a lifting procedure to strengthen the
formulations in [1,2]. Original formulations and lifted versions of them were
tested, under the MIP solver CPLEX 9.0, on complete graph instances as well
as on sparse graph ones. For the computational results obtained, lifted versions of
the formulations invariably required significantly less computation time to prove
optimality than their unlifted counterparts. That feature was further enhanced
for the odd D case, with the use of the artificial vertex model.

In Section 2, a summary of the main results for formulations in [1,2] is
presented. In Section 3, the artificial vertex DCMST formulation for odd D
is described. Strengthened (i.e. lifted) versions of the formulations in [1,2] are
presented in Section 4. Computational experiments for dense and sparse graph
instances are reported in Section 5. In these experiments, denser instances than
previously attempted in the literature were solved to proven optimality. Con-
cluding remarks are made in Section 6.

2 Formulations

Formulations in this study make use of a directed graph G′ = (V, A). Graph G′

is obtained from the original undirected graph G = (V, E), as follows. For every

460 A.C. dos Santos, A. Lucena, and C.C. Ribeiro

edge e = [i, j] ∈ E, with i < j, there exist two arcs (i, j) and (j, i) ∈ A, with
costs cij = cji. Let L = D/2 if D is even and L = (D − 1)/2, otherwise.

The very first formulations for DCMST were proposed by Achuttan et al. [1,
2]. Distinct formulations are presented by the authors for even D and odd D
cases of the problem. Consider first the case where D is even and introduce an
artificial vertex, denoted by r, into G′. Let G′′ = (V ′, A′) be the resulting graph
with V ′ = V ∪{r} and A′ = A∪{(r, 1), . . . , (r, |V |)}. Associate a binary variable
xij with every arc (i, j) ∈ A′ and a non-negative variable ui with every vertex
i ∈ V ′. Binary variables xij are used to identify a spanning tree, while variable
ui denotes the number of arcs in a path from r to i ∈ V . For even D, DCMST
is formulated as follows:

min
∑

(i,j)∈A

cijxij (1)

∑

j∈V

xrj = 1 (2)

∑

(i,j)∈A′
xij = 1 ∀j ∈ V (3)

ui − uj + (L + 1)xij ≤ L ∀(i, j) ∈ A′ (4)

xij ∈ {0, 1} ∀(i, j) ∈ A′ (5)

0 ≤ ui ≤ L + 1 ∀i ∈ V ′. (6)

Equation (2) ensures that the artificial vertex r is connected to exactly one
vertex in V , i.e. the central spanning tree vertex. Constraints (3) establish that
exactly one arc must be incident to each vertex of V . Constraints (4) and (6)
ensure that paths from the artificial vertex r to each vertex i ∈ V have at most
L+1 arcs. Constraints (5) are the integrality requirements. Edges [i, j] ∈ E such
that xij = 1 or xji = 1 in a feasible solution to (2)-(6) define a spanning tree T
of G with diameter less than or equal to D.

We now consider the odd D case of DCMST. Let zij be a binary variable
associated with each edge [i, j] ∈ E, with i < j. Whenever zij = 1, edge [i, j]
is selected as the central spanning tree edge. Otherwise, zij = 0. For D odd,
DCMST is formulated as follows:

min
∑

(i,j)∈A

cijxij +
∑

[i,j]∈E

cijzij (7)

∑

[i,j]∈E

zij = 1 (8)

Solving Diameter Constrained Minimum Spanning Tree Problems 461

∑

(i,j)∈A

xij +
∑

[i,j]∈E

zij +
∑

[j,i]∈E

zji = 1 ∀j ∈ V (9)

ui − uj + (L + 1)xij ≤ L ∀(i, j) ∈ A (10)

xij ∈ {0, 1} ∀(i, j) ∈ A (11)

zij ∈ {0, 1} ∀[i, j] ∈ E (12)

0 ≤ ui ≤ L ∀i ∈ V. (13)

Equation (8) ensures that there must be exactly one central edge. Constraints
(9) establish that for any vertex i ∈ V either there is an arc incident to it
or else vertex i must be one of the extremities of the central spanning tree
edge. Constraints (10) and (13) ensure that spanning tree paths from the closest
extremity of the central edge to every other vertex i ∈ V have at most L arcs.
Constraints (11) and (12) are the integrality requirements. In a feasible solution
to (8)–(13), the central edge together with those edges [i, j] ∈ E such that xij = 1
or xji = 1 define a spanning tree T of G with diameter less than or equal to D.

3 An Alternative Formulation for the Odd D Case

The formulation in [1,2] for D odd selects one edge in E to be central and si-
multaneously builds an auxiliary network flow problem around that edge. Flow
emanating from the central edge is then controlled to enforce the diameter con-
straint. Figure 1 (a) illustrates a solution obtained for D = 3. Notice that edge
[p, q] plays the central edge role and that any spanning tree leaf is no more than
L = (D − 1)/2 = 1 edges away from edge [p, q].

An alternative formulation which uses an artificial vertex r, as for the even
D case, is also possible here. Recall that, for D even, the artificial vertex r is
connected to exactly one vertex of V , i.e. the central spanning tree vertex. Now,
the artificial vertex r will be connected to exactly two vertices. Namely those
two vertices incident on the central edge. This situation is modeled by implicitly
enforcing selection of a central edge [p, q] ∈ E by explicitly forcing artificial edges
[p, r] and [q, r] to appear in the solution. An illustration of this scheme appears
in Figure 1 (b). A feasible spanning tree T of G is obtained by eliminating the
two edges incident on r and connecting their extremities through the central
edge [p, q].

The motivation behind our formulation for D odd is to highlight a structure
that has already been well studied from a polyhedral viewpoint. In doing so, we
expect to strengthen the overall DCMST formulation through the use of facet
defining inequalities for that structure.

462 A.C. dos Santos, A. Lucena, and C.C. Ribeiro

Fig. 1. Solutions to DCMST in the odd case with D = 3.

Consider the same notation and variables introduced in Section 2 for D odd.
Additional variables xri, for every i ∈ V , are introduced to represent the edges
associated with artificial vertex r. An edge [i, j] ∈ E is selected as the central
spanning tree edge if and only if edges [r, i] and [r, j] are also selected. This
condition is enforced through the nonlinear equation zij = xri ·xrj or convenient
linearizations of it. A valid formulation for DCMST when D is odd is given by:

min
∑

(i,j)∈A

cijxij +
∑

[i,j]∈E

cijzij (14)

∑

j∈V

xrj = 2 (15)

∑

(i,j)∈A′
xij = 1 ∀j ∈ V (16)

∑

[i,j]∈E

zij = 1 (17)

zij ≥ xri + xrj − 1 ∀[i, j] ∈ E (18)

zij ≤ xri ∀[i, j] ∈ E (19)

zij ≤ xrj ∀[i, j] ∈ E (20)

ui − uj + (L + 1)xij ≤ L ∀(i, j) ∈ A′ (21)

0 ≤ ui ≤ L + 1 ∀i ∈ V (22)

Solving Diameter Constrained Minimum Spanning Tree Problems 463

xij ∈ {0, 1} ∀(i, j) ∈ A′ (23)

zij ∈ {0, 1} ∀[i, j] ∈ E. (24)

Equation (15) establishes that the artificial central vertex r is connected to
exactly two vertices of V . Constraints (16) establish that there is exactly one
arc incident to each vertex of V . Constraints (17) to (20) give a linearization of
zij = xri · xrj for every edge [i, j] ∈ E. Finally, constraints (21) and (22) ensure
that the paths from the artificial vertex r to each vertex i ∈ V have at most
L + 1 arcs. Constraints (23) and (24) are the integrality requirements.

We now derive valid inequalities for the formulation (14)-(24). If constraint
(15) is multiplied by variable xri, for i ∈ V ,

∑

j∈V,j �=i

xri · xrj + xri · xri = 2 · xri (25)

results. Bearing in mind that all variables in (25) are binary 0-1 and consequently
xri = xri · xri holds, it is valid to write

∑

j∈V,j �=i

xri · xrj = xri. (26)

However, since zij = xri · xrj for every edge [i, j] ∈ E and xri and xrj cannot
simultaneously be equal to 1 if an edge [i, j] does not exist in E, valid constraints
for (14)–(24) are

∑

[i,j]∈E

zij +
∑

[j,i]∈E

zji = xri ∀i ∈ V. (27)

Constraints (27) are redundant for formulation (14)–(24) but are not necessarily
so for its linear programming relaxation.

Additional valid inequalities for (14)–(24) can be found if one concentrates
on inequalities (18)–(20) and the underlying Boolean quadric polytope [10].

4 Lifting

In this section, following the work of Desrochers and Laporte [5], we lift the
Miller-Tucker-Zemlin [9] inequalities ui − uj + (L + 1)xij ≤ L, ∀(i, j) ∈ A′. In
doing so, strengthened versions of DCMST formulations presented in previous
sections are obtained. The idea of lifting consists in adding a valid nonnegative
term αjixji to the above inequalities, transforming them into

ui − uj + (L + 1)xij + αjixji ≤ L. (28)

The larger is the value of αji, the larger will be the reduction in the original
solution space. If xji = 0, then αji may take any value. Suppose now xji = 1.

464 A.C. dos Santos, A. Lucena, and C.C. Ribeiro

Then, ui = uj + 1 since the path from the central vertex in the even case (resp.
from the closest extremity of the central edge in the odd case) to vertex i ∈ V
visits j before visiting i. Moreover, xji = 1 implies xij = 0 due to constraints
(3) or (9). By substitution in (28), we obtain ui − uj + (L + 1)xij + αjixji ≤
L ⇒ 1 + uj − uj + αji ≤ L ⇒ αji ≤ L − 1. To maximize the value of αji, we
take αji = L − 1. Then,

ui − uj + (L + 1)xij + (L − 1)xji ≤ L (29)

is a valid inequality for all (i, j) ∈ A′ (resp. for all (i, j) ∈ A) for D > 2 in the
even case (resp. for D > 3 in the odd case).

We now derive improved generalized upper bounds for the variables ui, for
i ∈ V . In the even case, there is an artificial vertex r such that ur = 0. The
central vertex connected to r will necessarily be the first vertex to be visited in
any path emanating from r. Then,

ui ≤ (L + 1) − Lxri ∀i ∈ V. (30)

Moreover, ui ≤ L for any vertex i ∈ V which is not a leaf of the spanning tree.
Then,

ui ≤ (L + 1) − xij ∀(i, j) ∈ A (31)

holds.
We now consider the odd case. If an edge [i, j] ∈ E is the central one, then

zij = 1, ui = 0, and uj = 0. In consequence,

ui ≤ L − Lzij ∀[i, j] ∈ E. (32)

Analogously to the odd case, ui < L for any vertex i ∈ V which is not a leaf of
the spanning tree. Then,

ui ≤ L − xij ∀(i, j) ∈ A. (33)

Inequalities (30) and (31) define improved generalized upper bounds for the
even D case, while inequalities (32) and (33) correspond to new generalized
upper bounds for the odd S case.

We now derive improved generalized lower bounds for the variables ui, for
i ∈ V . In the even case, ui ≥ 1 ≥ xri for any vertex i ∈ V . If i is not directly
connected to the central vertex, then xri = 0 and ui ≥ 2. If these two conditions
are taken into account simultaneously, we have the first improvement in the
lower bounds:

ui ≥ xri + 2
∑

j∈V :j �=r

xji ∀i ∈ V. (34)

The above condition is simpler in the odd case, where no central vertex exists:

ui ≥
∑

j∈V,j �=i

xji ∀i ∈ V. (35)

Solving Diameter Constrained Minimum Spanning Tree Problems 465

5 Computational Results

Computational experiments were performed on a Pentium IV machine with a 2.0
GHz clock and 512 MB of RAM memory, using MIP solver CPLEX 9.0 under
default parameters. In these experiments, the alternative formulation proposed
for the odd D case of DCMST was reinforced with valid inequalities (27).

Test instances were generated as follows. For a graph with a number n = |V |
of vertices, the uniform distribution was used to draw n points with integer coor-
dinates in a square of sides 100 on the Euclidean plane. Vertices were associated
to points and edge costs were taken as the truncated Euclidean distance between
corresponding pairs of points. Sparse graph instances with m = |E| edges were
generated as in [7]. The minimum cost spanning star is computed first and all
of its n − 1 edges are selected. The remaining m − n − 1 edges are taken as the
least cost edges not already contained in the minimum cost star. In all 19 odd D
instances and 18 even D instances were generated. For each of the two cases, 12
complete graph instances (with up to 25 vertices) were generated. Test instance
details are summarized in Tables 1 and 2.

Table 1 gives numerical results for odd D instances. For each instance, the
number of vertices, the number of edges, and the value of the diameter D are
given. These entries are followed by the results obtained with the original formu-
lation in [1,2] (A), the original formulation with lifting (B), and the new artificial
central vertex formulation with lifting (C). For each formulation, the CPU time
required to prove optimality is given in seconds together with the number of

Table 1. Numerical results for the odd D case.

(A) (B) (C)
|V | |E| D time (s) nodes time (s) nodes time (s) nodes
10 45 5 0.14 85 0.16 62 0.13 28
10 45 7 0.14 190 0.17 88 0.17 49
10 45 9 0.05 40 0.10 73 0.08 10
15 105 5 40.95 73331 22.27 18640 31.22 21814
15 105 7 85.13 163355 25.02 23226 19.23 16118
15 105 9 76.14 146948 10.56 9597 7.80 6174
20 190 5 1686.17 1753713 272.00 132678 216.36 95813
20 190 7 31.16 36168 8.39 3532 5.05 1519
20 190 9 884.36 982551 151.5 85204 91.33 46559
25 300 5 – – 73857.81 24309253 51551.80 17235497
25 300 7 24513.01 15083987 20160.13 6225967 16617.61 5272473
25 300 9 177024.22 66213391 9172.04 2438057 40183.44 12040315
20 50 5 39.78 93283 7.74 9386 5.58 3707
20 50 7 39.06 68843 3.16 4908 2.23 1915
20 50 9 70.12 128376 26.16 45561 40.28 57603
40 100 5 3596.34 3506756 780.74 688912 20.67 13993
40 100 7 12581.45 12272065 976.98 849861 207.64 171846
40 100 9 27735.56 23763469 4584.19 3530233 23359.05 15583400
60 150 5 – – 215161.75 116775357 11644.75 5003876

466 A.C. dos Santos, A. Lucena, and C.C. Ribeiro

Table 2. Numerical results for the even D case.

(A) (B)
|V | |E| D time (s) nodes time (s) nodes
10 45 4 0.95 1849 0.77 1300
10 45 6 0.13 55 0.08 7
10 45 10 0.06 29 0.08 17
15 105 4 65.8 73024 24.17 26711
15 105 6 53.19 66834 32.53 41882
15 105 10 38.41 61822 8.95 11790
20 190 4 7462.1 4877014 1888.02 1091803
20 190 6 1630.58 1210813 593.91 412770
20 190 10 2729.48 2285819 172.81 144382
25 300 4 – – 158836.45 64913343
25 300 6 43044.61 17498605 5194.90 2119161
25 300 10 1031.36 565737 459.88 205747
20 50 4 62.47 115144 0.64 615
20 50 6 221.31 446477 10.81 16396
20 50 10 619.52 1443014 74.15 173234
40 100 4 8957.38 8110166 54.14 51476
40 100 6 205940.95 167119305 909.95 1012212
40 100 10 – – 146019.52 155646590

nodes visited in the branch-and-bound tree. Table 2 gives the same results for
the even D case, except for the central vertex formulation which does not apply
in this case.

In spite of the considerable duality gaps associated with the formulations
tested here, the lifted formulations we suggest are capable of solving, to proven
optimality, sparse instances as large as those found in the literature in competi-
tive CPU times.

No results appear in the literature for complete graph DCMST instances. A
possible explanation for that is the large computer memory demands required
by the other existing DCMST formulations [1,2]. The very first computational
results for complete graph DCMST instances are thus introduced in this study.

From the computational results presented, it should also be noticed that our
alternative odd D case formulation dominates their counterparts in this study
in terms of the CPU time required to prove optimality.

6 Conclusions

In this study, DCMST formulations proposed in [1,2] were strengthened through
the use of a lifting procedure. In doing so, substantial duality gap reductions
were attained for the computational experiments carried out. Additionally, we
also propose an artificial central vertex strategy for modeling the odd D case
of the problem. For the computational tests carried out, the new formulation
dominated its odd D counterparts in in terms of total CPU time required to prove

Solving Diameter Constrained Minimum Spanning Tree Problems 467

optimality. The same idea could also be extended to other existing formulations
such as those presented in [7].

For sparse graphs instances, the strongest model proposed in this study was
capable of solving, to proven optimality, instances as large as those previously
solved in the literature [7]. It is worth mentioning here that the models suggested
by Gouvea and Magnanti typically produce very small duality gaps. However,
they are quite demanding in terms of computer memory requirements (particu-
larly the model involving variables with four indices). In consequence, they do
not appear adequate to directly tackling dense graph instances of the problem.

In spite of the considerable duality gaps observed in our computational ex-
periments, our approach was capable of solving, to proven optimality, complete
graph instances with up to 25 vertices. These are the first results ever presented
for dense graph DCMST instances.

We conclude by pointing out that the alternative odd D formulation intro-
duced here can be further strengthened with valid inequalities associated with
the Boolean quadric polytope.

References

1. N.R. Achuthan, L. Caccetta, P.A. Caccetta, and J.F. Geelen. Algorithms for the
minimum weight spanning tree with bounded diameter problem. In K.H. Phua,
C.M. Wand, W.Y. Yeong, T.Y. Leong, H.T. Loh, K.C. Tan, and F.S. Chou, edi-
tors, Optimisation Techniques and Applications, volume 1, pages 297–304. World
Scientific, 1992.

2. N.R. Achuthan, L.Caccetta, P.A. Caccetta, and J.F. Geelen. Computational meth-
ods for the diameter restricted minimum weight spanning tree problem. Aus-
tralasian Journal of Combinatorics, 10:51–71, 1994.

3. A. Bookstein and S.T. Klein. Compression of correlated bitvectors. Information
Systems, 16:110–118, 2001.

4. N. Deo and A. Abdalla. Computing a diameter-constrained minimum spanning tree
in parallel. In G. Bongiovanni, G. Gambosi, and R. Petreschi, editors, Algorithms
and Complexity, volume 1767, pages 17–31. 2000.

5. M. Desrochers and G. Laporte. Improvements and extensions to the Miller-Tucker-
Zemlin subtour elimination constraints. Operations Research Letters, 10:27–36,
1991.

6. M.R. Garey and D.S. Johnson. Computers and intractability: A guide to the theory
of NP-Completeness. W.H. Freeman, New York, 1979.

7. L. Gouveia and T.L. Magnanti. Modelling and solving the diameter-constrained
minimum spanning tree problem. Technical report, DEIO-CIO, Faculdade de
Ciências, 2000.

8. G.Y. Handler. Minimax location of a facility in an undirected graph. Transporta-
tion Science, 7:287–293, 1978.

9. C.E. Miller, A.W. Tucker, and R.A. Zemlin. Integer programming formulations
and traveling salesman problems. Journal of the ACM, 7:326 – 329, 1960.

10. M. Padberg. The boolean quadric polytope: Some characteristics and facets. Math-
ematical Programming, 45:139–172, 1988.

11. K. Raymond. A tree-based algorithm for distributed mutual exclusion. ACM
Transactions on Computers, 7:61–77, 1989.

	Introduction
	Formulations
	An Alternative Formulation for the Odd D Case
	Lifting
	Computational Results
	Conclusions

