
Constraint Programming for the Diameter
Constrained Minimum Spanning Tree Problem

Thiago F. Noronha, Andréa C. Santos

Department of Computer Science, Catholic University of Rio de Janeiro
Rua Marquês de São Vicente 225, Rio de Janeiro, RJ 22453-900, Brazil

Celso C. Ribeiro

Department of Computer Science, Universidade Federal Fluminense
Rua Passo da Pátria 156, Niterói, RJ 24210-240, Brazil

{tfn,cynthia,celso}@inf.puc-rio.br

Abstract

We propose a new formulation for the Diameter Constrained Minimum Spanning
Tree Problem using constraint programming. Computational results have shown
that this formulation combined with an appropriate search procedure solves larger
instances and is faster than the other approaches in the literature.

1 Introduction

Given an undirected connected graph G = (V, E) with a set V of vertices, a
set E of edges, and costs cij associated to every edge [i, j] ∈ E, with i < j,
the Diameter Minimum Spanning Tree Problem (DCMST) consists in finding
a minimum spanning tree T = (V, E ′), with E ′ ⊆ E, where the diameter
required does not exceed a given positive integer value D, where 2 ≤ D ≤
|V | − 1. The diameter of a tree T is equal to the number of edges in the

Electronic Notes in Discrete Mathematics 30 (2008) 93–98

1571-0653/$ – see front matter © 2008 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/endm

doi:10.1016/j.endm.2008.01.017

http://www.elsevier.com/locate/endm

longest path between any two nodes i, j ∈ V in T . This problem is NP -
hard when D ≥ 4. DCMST applications appear in telecommunications, data
compression and distributed mutual exclusion in parallel computing.

Some mixed integer programming (MIP) formulations for DCMST implic-
itly use a property [5] that ensures that a central vertex c ∈ V exists in any
feasible tree T when D is even, such that no vertex is more than D/2 edges
away from c. If D is odd, a central edge e = [a, b] ∈ E exists in T , such that
no vertex is more than (D − 1)/2 edges away from the closest extremity of e.

The first DCMST formulations, using single commodity flows, were pre-
sented in [2]. Improved formulations with valid inequalities and a lifting pro-
cedure are found in [1,6]. An alternative formulation for the odd D case was
also proposed in [6]. Multicommodity flow formulations with tighter linear
programming relaxations are presented in [3]. However, they require more
memory and computation time to solve the linear relaxation. Formulations
strengthened with valid inequalities were proposed in [4]. A comparison with
other formulations appears in [4]. The computational results showed that
no approach dominates any other. The formulations using single commodity
flow produce weak linear programming relaxations, especially for small diam-
eters. On the other hand, the multicommodity flow formulations give tighter
lower bounds, but require much more memory and time to solve the linear
relaxation, because of their large number of variables and constraints.

Constraint Programming (CP) is a programming paradigm for formulating
and solving combinatorial problems. Instead of using only the linear relaxation
for pruning the search tree, it uses a variety of bounding techniques based
on constraint propagation, which consists in operating with the constraints
to generate new constraints that reduce the domain of some variables and,
consequently, the size of the search space.

In the next section, we propose a new approach based on constraint pro-
gramming for solving DCMST. It is capable to handle both the odd and even
diameter cases in the same formulation, contrary to most approaches in the
literature. Computational experiments are reported in Section 3. Concluding
remarks are drawn in Section 4.

2 Constraint programming formulation

We propose a new approach to DCMST based on constraint programming
that tackles both the odd and even D cases. It was motivated by the fact that
some MIP formulations have weak lower bounds, while others require a huge
amount of memory because of the large number of variables and constraints.

T.F. Noronha et al. / Electronic Notes in Discrete Mathematics 30 (2008) 93–9894

CP reduces these drawbacks by allowing concise formulations with a small
number of variables and by using constraint propagation for pruning the search
space, instead of the linear relaxation. Since it is based on a backtracking
procedure, CP requires less memory than branch-and-bound algorithms.

The directed graph G′ = (V ′, A′) is obtained from the original undirected
graph G = (V, E) as follows. Let r be an artificial vertex and V ′ = V ∪ {r}.
For every edge [i, j] ∈ E, with i < j, there exist two arcs (i, j) and (j, i) ∈ A
with costs cij = cji. Then, A′ = A∪{(r, 1), . . . , (r, |V |)}, with costs cri = 0 for
every i ∈ V . For any i ∈ V , we define backwardStar[i] as the set of all vertices
j ∈ V ′ such that (j, i) ∈ A′ and forwardStar[i] as the set of all vertices j ∈ V
such that (i, j) ∈ A′. Let L = bD/2c. The number of edges in the path from
the artificial vertex r to i ∈ V is said to be the height of vertex i.

We give below the formulation of DCMST using the ILOG OPL language.
Variables a and b denote the central vertices of the spanning tree. When D is
odd, [a, b] denotes the central edge of the spanning tree. In the even D case,
a = b denotes the central vertex. Variable yi ∈ V ′ denotes de parent of vertex
i ∈ V . Furthermore, variable ui ∈ {0, ..., L+1} represents the height of vertex
i ∈ V ′. Sets V and V ′ are designated by nodes and nodes p, respectively. The
costs cij are denoted by cost[i,j]. In case i = j, then cost[i,j] returns
zero:

var nodes a;
var nodes b;
var nodes p y[nodes];
var int u[nodes p] in 0..L+1;
minimize

sum(i in nodes) cost[i,y[i]] + cost[a,b](1)

subject to {
sum(i in nodes) (y[i]=r) = 1 + (D mod 2);(2)

forall(i in nodes) u[i]=u[y[i]]+1;(3)

forall(i in nodes) y[i] in backwardStar[i];(4)

if D mod 2 = 1 then a<b else a=b endif;(5)

y[a]=y[b]=r;(6)

};
The objective function is handled by (1). Constraint (2) ensures that the

artificial vertex r is connected to two vertices (i.e., the extremities of the
central edge) when D is odd, or to exactly one vertex (i.e., the central vertex)
when D is even. Constraints (3) establish that the height of every vertex i ∈ V
in the tree is equal to one plus the height of its parent. Constraints (4) ensure

T.F. Noronha et al. / Electronic Notes in Discrete Mathematics 30 (2008) 93–98 95

that there is an edge e ∈ E connecting every vertex i with its parent. If D
is even Constraint (5) establishes that a is equal b, otherwise it ensures that
a is smaller (different) than b. Constraint (6) establishes that vertex r is the
parent of vertices a and b.

Solving a combinatorial optimization problem by constraint programming
involves two steps: generating the set of constraints that must be satisfied and
describing how to search for solutions. The above formulation gives the set of
constraints that must be satisfied, i.e., it describes the search space. For sake
of conciseness, the search procedure is omitted.

3 Computational results

The computational experiments were carried out on a Pentium 4 with 3.0
GHz clock and 1Mb of RAM memory, using OPL Studio 3.7.1 as the con-
straint programming solver. We compared our results with the best over all
those obtained by any of the MIP approaches in [4,6], according with the
computation times presented in Table 1 of [4] for the same 29 instances used
in our study: 18 on complete graphs and 11 on sparse graph, with diameters
equal to 4, 5, 6, 7, 9, and 10.

Numerical results are presented on Table 1. For each instance, the first
three columns give its number of vertices, its number of edges, and its max-
imum diameter, respectively. The next three columns give statistics for the
CP formulation: the number of nodes visited in the search tree, the amount
of memory (in bytes) used by the algorithm, and the computation time in sec-
onds to prove optimality. The next two columns give the time in seconds (on
a Pentium 4 with 2.8 GHz clock and 2Mb of RAM memory, using CPLEX 8.1
as MIP solver) to prove optimality by the best MIP formulation in [4,6] and
the corresponding algorithm version. The best MIP formulations of [4] and [6]
are denoted by ILP and Santos, respectively (the symbol ‘+’ denotes the use
of connect cuts, while an ‘*’ indicates the use of cycle elimination cuts [4]).
The last column shows the ratios between the computation times to find the
optimal solution with constraint programming and the best MIP approach.

CP performed better than the best MIP approach on all but four out of
the 29 test instances. On average, the CP approach run on 45% of the time of
the best MIP variant. The computation times were particularly remarkable
for the instances with odd diameter: for these instances, the time needed by
the CP algorithm to prove optimality was only 23% of that taken by the best
MIP variant, on average. The larger is the time to prove optimality, the better
is the performance of the CP algorithm when compared with all MIP variants.

T.F. Noronha et al. / Electronic Notes in Discrete Mathematics 30 (2008) 93–9896

CP Best MIP
|V | |E| D nodes memory time (s) time (s) version CP/MIP

15 105 4 1,044 463,780 0.08 0.7 ILP 11.43%
15 105 5 2,850 463,780 0.22 3.0 ILP 7.33%
15 105 6 6,960 479,800 0.28 8.1 ILP 3.46%
15 105 7 8,240 527,860 0.38 20.0 ILP+* 1.90%
15 105 9 11,743 527,860 0.47 6.2 Santos+* 7.58%
15 105 10 11,830 511,840 0.41 1.0 Santos+ 41.00%

20 190 4 3,143 607,960 0.2 2.5 ILP 8.00%
20 190 5 18,283 640,000 1.06 8.1 ILP 13.09%
20 190 6 35,383 672,040 2.03 95.0 ILP 2.14%
20 190 7 19,142 688,060 0.97 5.5 ILP* 17.64%
20 190 9 119,906 752,140 5.01 66.7 ILP+* 7.51%
20 190 10 151,969 672,040 6.08 29.7 Santos+* 20.47%

25 300 4 28,842 800,200 1.48 12.0 ILP 12.33%
25 300 5 37,608 864,280 2.83 64.3 ILP+* 4.40%
25 300 6 534,222 864,280 39.14 26.4 ILP 148.26%
25 300 7 812,957 979,424 56.06 770.5 ILP 7.28%
25 300 9 2,655,810 1,043,504 114.14 246.0 Santos+ 46.40%
25 300 10 1,126,130 944,380 55.47 254.8 Santos+ 21.77%

20 50 4 389 466,784 0.05 0.2 ILP 25.00%
20 50 5 3,611 466,784 0.17 1.0 ILP 17.00%
20 50 6 2,678 498,824 0.13 0.8 Santos+ 16.25%
20 50 7 1,975 498,824 0.14 0.8 Santos+ 17.50%
20 50 9 13,040 495,820 0.45 0.7 Santos+ 64.29%
20 50 10 17,937 514,844 0.64 0.2 Santos+ 320.00%

40 100 4 130,480 911,340 5.44 1.9 ILP 286.32%
40 100 5 161,961 927,360 7.31 6.4 ILP 114.22%
40 100 6 91,022 943,380 4.72 13.2 ILP+ 35.76%
40 100 7 778,699 975,420 34.38 212.4 ILP 16.19%
40 100 9 769,161 1,007,460 40.16 979.8 ILP* 4.10%

Average: 44.78 %

Table 1
Numerical results.

For dense graphs, the CP algorithm run on average in 21% of the time
of the best MIP variant: the search strategy implemented within the CP
algorithm significantly reduces the size of the search space, when the number
of nodes is much smaller then the number of edges.

The algorithms in [4] are more appropriate to small diameter instances,
while those in [6] perform better on large diameter instances. However, the
CP approach surpassed both MIP approaches on small and large diameter
instances. Furthermore, no instance required more than 1 Mbyte of RAM
memory to be solved, because the search tree is explored by a depth first
search algorithm and no node is stored to be further explored.

T.F. Noronha et al. / Electronic Notes in Discrete Mathematics 30 (2008) 93–98 97

4 Conclusions

We proposed a new approach based on constraint programming to solve the
degree constrained minimum spanning tree problem. Constraint programming
was capable to overcome the main drawbacks of MIP: first, by using more
concise formulations with a smaller number of variables; and second, by using
constraint propagation for pruning the search space, instead of the bound
provided by the linear relaxation. One single algorithm was capable to handle
both the odd and even diameter instances.

Constraint programming obtained better results (i.e., smaller computation
times to find exact optimal solutions and to prove their optimality) than all
MIP approaches for most (25 out of the 29) of the test instances. On the
average, the constraint programming computation times were only 45% of
those observed with the MIP approach. The advantage of the CP approach
was even stronger for the instances with odd diameter and for those on dense
graphs, for which the previous ratio was equal to 23% and 21%, respectively.

References

[1] Achuthan, N., L. Caccetta, P. Caccetta and J. Geelen, Computational methods
for the diameter restricted minimum weight spanning tree problem, Australasian
Journal of Combinatorics 10 (1994), pp. 51–71.

[2] Achuthan, N., L. Caccetta, P. Caccetta and J. F. Geelen, Algorithms for the
minimum weight spanning tree with bounded diameter problem, in: K. Phua,
C. Wand, W. Yeong, T. Leong, H. Loh, K. Tan and F. Chou, editors,
Optimization Techniques and Applications, World Scientific, Singapore, 1992 pp.
297–304.

[3] Gouveia, L. and T. Magnanti, Network flow models for designing diameter-
constrained minimum-spanning and Steiner trees, Networks 41 (2003), pp. 159–
173.

[4] Gruber, M. and G. Raidl, A new 0-1 ILP approach for the bounded diameter
minimum spanning tree problem, in: L. Gouveia and C. Mourao, editors,
Proceedings of the 2nd International Network Optimization Conference, Lisbon,
2005, pp. 178–185.

[5] Handler, G., Minimax location of a facility in an undirected graph,
Transportation Science 7 (1978), pp. 287–293.

[6] Santos, A., A. Lucena and C. Ribeiro, Solving diameter constrained minimum
spanning tree problem in dense graphs, Lecture Notes in Computer Science 3059
(2004), pp. 458–467.

T.F. Noronha et al. / Electronic Notes in Discrete Mathematics 30 (2008) 93–9898

