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Abstract. The Mobile Oil Recovery (MOR) unit is a truck able to pump
marginal wells in a petrol field. The goal of the MOR optimization Pro-
blem (MORP) is to optimize both the oil extraction and the travel costs.
We describe several formulations for the MORP using a single vehicle
or a fleet of vehicles. We have also strengthened them by improving the
subtour elimination constraints. Optimality is proved for instances close
to reality with up to 200 nodes.
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1 Introduction

Much effort has been made to increase the oil production in Brazil though the
use of new technologies. As a consequence, the Brazilian oil production has met
the country’s need in 2006 and the country is globally self sufficient. The Rio
Grande do Norte basin has been exploited for the last 30 years and about 98%
of the oil wells are pumped using artificial lift systems. One such system is the
Mobile Oil Recovery (MOR) unit. It consists of a truck equipped with a pumping
system. The unit starts its tour at the depot, then it pumps several wells before
returning to the depot at the end of the day. Whenever the unit’s tank is full, an
auxiliary vehicle is used to transfer the oil from the MOR unit to its own tank
and to carry it to the depot. Thus, the MOR unit capacity can be considered
unlimited.

The MOR optimization Problem (MORP) is a multiobjective problem which
consists in finding a set of wells to be pumped in a working day to maximize the
oil extraction and to minimize the travel time. The two objectives are opposite,
one pushing to increase profit and the other to reduce costs. With one MOR
unit, the problem is close to the Selective Traveling Salesman Problem which is
also called Orienteering Problem or Maximum Collection Problem [8]. With a
fleet of vehicles, the problem becomes a Vehicle Routing Problem (VRP) close
to the Prize-Collecting VRP [2]. For further investigation on routing problems,
readers are referred to the following works: the state of the art on exact and
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approximated methods for the VRP and its variants are found in [14] and an
overview covering about 500 papers on classical routing problems are found in
[9]. For multiobjective solutions strategies on routing problems, see [3,7].

A mathematical formulation for the MORP is proposed in [13] for a single
MOR unit. Heuristics applications of the MORP are presented in [1,13]. We
propose several formulations for the MORP with a single vehicle or a fleet of ve-
hicles. They are strengthened by improving the subtour elimination constraints.
Instances with up to 200 nodes, close to reality, are solved.

The paper is organized as follows: the problem definition and formulations
for one unit are presented in Section 2. Sections 3 and 4 are devoted to the
MORP with several units. Computational results are shown in Section 5 and
final remarks are made in Section 6.

2 Formulations Using One Vehicle

The geographical data (roads, wells and depot) are modeled as an undirected
graph G = (N, E). G is preprocessed to build a complete digraph G′ = (V, A)
where V is the set of wells and the depot v0. Let dij be the shortest distance
from i to j, ∀(i, j) ∈ A, and let s be the MOR unit average speed. Thus, for
every arc of G′, the travel time tij is computed as tij = dij/s.

Let t′i be the total operation time at well i (time to connect the unit, to
pump, and to disconnect the unit) and let pi be its oil production. Let P and
T be respectively the total oil production and the total working time of a MOR
unit. Moreover, T is the maximal time an MOR unit can work in a day. Wells
can be exploited only once a day as in the previous works [1,13].

Given K, the total number of MOR units, the MORP consists in defining one
circuit τ = {v0, vσ1, vσ2, ..., vσk, v0} for each MOR unit, where σ is the position
of wells in the circuit to be exploited in a day, such that P is maximized and T
is minimized. The time limit T ≤ T has to be satisfied.

As far as we know, only one formulation has been proposed in the literature
for the MORP [13]. It considers one vehicle and the optimization is done in two
phases: first, the maximal amount of oil is computed, and second, the shortest
route to extract this amount is computed. In this section, our contributions
improve the formulation proposed in [13] as follows: (i) remove the constraint
ensuring the MOR unit returns to the depot because it is redundant, (ii) simplify
the flow conservation constraints, (iii) test different strategies to eliminate invalid
subtours, and (iv) strengthen the subtour elimination constraints.

Let fij ∈ {0, 1} be the decision variable on the choice of arc (i, j) and let
xi be the binary variables which specify if well i is exploited or not. The first
optimization phase for the MORP is given as follows:

max P =
∑

i∈V \{v0}
pi · xi s.t. (1)

∑

i∈V \{v0}
t′i · xi +

∑

(i,j)∈A

tij · fij ≤ T (2)
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∑

j:(j,i)∈A

fji −
∑

j:(i,j)∈A

fij = 0 ∀i ∈ V \{v0} (3)

∑

j:(j,i)∈A

fji = xi ∀i ∈ V \{v0} (4)

∑

j∈V

f0j = 1 (5)

(subtour eliminations constraints) (6)

xi ∈ {0, 1} ∀i ∈ V (7)

fij ∈ {0, 1} ∀(i, j) ∈ A (8)

The objective function (1) aims at minimizing the oil extraction. Inequality (2)
limits the working time (travel and operation time) to T . The flow conservation
constraints are (3) and (4). Restriction (5) guarantees the tour starts at the
depot. Variables xi and fij are respectively defined in Constraints (7) and (8).
We discuss in Section 2.1 the use of several subtour elimination constraints:
those of Miller and Tucker and Zemlin (MTZ) [5,11], and those of Gavish and
Graves using either aggregated (GGA) or disaggregated flow (GGD) [6]. GGA
constraints are used in [13].

The objective of the second optimization phase is to minimize the working
time (9) subject to Constraints (3)–(8) and (10). Constraint (10) restricts the
total production to be equal to the total optimal prize P ∗ obtained in the first
phase.

min T =
∑

i∈V \{v0}
t′i · xi +

∑

(i,j)∈A

tij · fij s.t. (9)

∑

i∈V \{v0}
pi · xi = P ∗ (10)

Constraints (3)–(8).

2.1 Subtour Eliminations Constraints

A subtour is defined by any ordered subset of vertices. For the MORP, only
subtours starting and ending at the depot v0 are valid. Subtour constraints have
been evaluated in the literature for the TSP problem, see e.g. [15]. MTZ, GGA
and GGD subtour elimination constraints for the MORP, and some improve-
ments are described below.

An upper bound on the number M of wells that can be exploited in a working
day can be computed. Considering the working time of the MOR unit, a simple
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procedure consists in computing M by sorting the wells in increasing order of
operation time t′i [13]. Thus, M is such that:

M∑

i=1

t′i ≤ T ≤
M+1∑

i=1

t′i. (11)

We propose to strengthen the value of M by using also the minimum travel
time to arrive at each node. Moreover, the vehicle must return to the depot and
the minimal time to return to the depot is also considered. M is given as:

M∑

i=1

(
t′i + min

j∈V
{tji}

)
≤ T − min

j∈V
{tj0} ≤

M+1∑

i=1

(
t′i + min

j∈V
{tji}

)
(12)

Lifted Miller and Tucker and Zemlin Constraints. The Miller, Tucker
and Zemlin constraints define a topological order to eliminate invalid subtours.
Variables ui state the order well i appears in the tour. However, for the MORP,
the depot appears twice (at the beginning and at the end). Thus, one can du-
plicate the depot and work on a support graph. We consider instead the depot
only at the beginning of the topological design. This can be done since the flow
structure defined by variables fij and xi, and Constraints (3)–(5) guarantees the
return to the depot. The corresponding MTZ constraints for the MORP is given
in Equations (13)–(14).

ui − uj + M · fij ≤ M − 1 ∀(i, j) ∈ A, j �= {v0} (13)

0 ≤ ui ≤ M ∀i ∈ V (14)

There is O(|V |2) of such constraints, improved by M . They can be lifted using
the same ideas as Desrochers and Laporte [5]. It consists in adding a valid non-
negative term αjifji to the Inequalities (13): ui−uj +M ·fij +αji ·fji ≤ M −1. If
fji = 0, then αji may take any value. Suppose now fji = 1. Then, the MOR unit
exploits well j �= v0 before well i, ui = uj + 1. Thus, fji = 1 implies fij = 0 due
to Constraints (3) and (4). By substitution, we obtain αji ≤ M − 2. The larger
αji, the stronger is the lift. Thus, αji = M − 2. A lifted version of Constraints
(13) is given in Inequalities (15).

ui − uj + M · fij + (M − 2) · fji ≤ M − 1 ∀(i, j) ∈ A, j �= v0 (15)

Gavish and Graves Constraints. The Gavish and Graves [6] approach re-
moves invalid subtours by building a network flow. A flow is sent to the nodes of
the tour. Each node consumes one unit. In disaggregated flow, a specific flow is
sent from the source to each node [4,10]. Otherwise, if the flow is not specified,
it is an aggregated flow.

Let yij be the flow variable on arc (i, j). Thus, GGA constraints for the MORP
are given in Equations (16)–(18). Constraints (16) are the flow conservation
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constraints. Inequalities (17) state a flow uses the arc (i, j) if it is selected. These
constraints are strengthened by using M . In this strategy, there are O(|V |2)
constraints and variables.

∑

j:(j,i)∈A

yji −
∑

j:(i,j)∈A

yij = xi ∀i ∈ V \{v0} (16)

yij ≤ M · fij ∀(i, j) ∈ A, (17)

yij ≥ 0 ∀(i, j) ∈ A (18)

The GGD version is given in Constraints (19)–(22). Let yk
ij be the variable

specifying if flow for node k traverses arc (i, j) or not. Constraints (19) are
the flow conservation constraints. Equations (20) state that a flow unit is sent
from the source to each node k. Restrictions (21) specify that flow for node
k traverses arc (i, j) if and only if it is used. This strategy implies O(|V |3)
constraints and variables. Usually, it produces a better linear relaxation than
using the aggregated flow.

∑

j:(i,j)∈A

yk
ij −

∑

j:(j,i)∈A

yk
ji = 0 ∀k ∈ V \{v0}, ∀i ∈ V \{v0, k} (19)

∑

j:(0,j)∈A

yk
0j = xk ∀k ∈ V \{v0} (20)

yk
ij ≤ fij ∀k ∈ V \{v0}, ∀(i, j) ∈ A (21)

yk
ij ≥ 0 ∀k ∈ V \{v0}, ∀(i, j) ∈ A (22)

3 A Three-Indexed Formulation Using Several Vehicles

Let xk
i be a decision variable that specifies if well i is exploited by the vehicle k

or not. Variables fk
ij ∈ {0, 1} state if vehicle k exploits well j after well i or not.

P (K) is the total profit collected using the K MOR units. All other terms are
defined in Section 2. The three-indexed formulation is as follows:

max P (K) =
∑

i∈V \{v0}
pi ·

K∑

k=1

xk
i s.t. (23)

∑

i∈V \{v0}
t′i · xk

i +
∑

(i,j)∈A

tij · fk
ij ≤ T ∀k = 1, ..., K (24)

∑

j:(j,i)∈A

fk
ji −

∑

j:(i,j)∈A

fk
ij = 0 ∀k = 1, ..., K, ∀i ∈ V \{v0, k} (25)
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∑

j:(0,j)∈A

fk
0j ≤ 1 ∀k = 1, ..., K (26)

∑

j:(j,i)∈A

fk
ji = xk

i ∀k = 1, ..., K, ∀i ∈ V \{v0} (27)

K∑

k=1

xk
i ≤ 1 ∀i ∈ V \{v0} (28)

∑

j:(j,i)∈A

yji −
∑

j:(i,j)∈A

yij =
K∑

k=1

xk
i ∀i ∈ V \{v0} (29)

yij ≤ M ·
K∑

k=1

fk
ij ∀(i, j) ∈ A, j �= v0 (30)

yij ≥ 0 ∀(i, j) ∈ A (31)

xk
i ∈ {0, 1} ∀k = 1, ..., K, ∀i ∈ V \{v0} (32)

fk
ij ∈ {0, 1} ∀k = 1, ..., K, ∀(i, j) ∈ A (33)

Restrictions (24) limit the units work in a day. The flow conservation cons-
traints are defined in (25) and (26). Constraints (27) ensure that unit k pass
though an arc (i, j) only if it exploits well j. Inequalities (28) specify that at most
one unit visits a well in a day. Constraints (29) and (30) are the GGA subtour
elimination constraints. Constraints (31)–(33) are the variables definition. This
formulation contains O(|V 3|) variables and constraints. The GGA constraints
are chosen according to the computational results for one vehicle (Section 5).
Obviously, other strategies could be used as well.

4 A Two-Indexed Formulation Using Several Vehicles

We do not explicitly define which unit exploits well i as every unit has the
same characteristics (homogeneous fleet). A similar idea was previously used,
for example, in [12]. Variables fij and xi are defined in Section 2. Additionally,
variables di specify the date (time) well i is visited by a vehicle in a day. The
two-indexed formulation is given as follows:

max P =
∑

i∈V \{v0}
pi · xi s.t. (34)

∑

j:(j,i)∈A

fji −
∑

j:(i,j)∈A

fij = 0 ∀i ∈ V \{v0} (35)
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∑

j:(j,i)∈A

fji = xi ∀i ∈ V \{v0} (36)

∑

j∈V

f0j = K (37)

di −dj +(T + t′i + tij) ·fij +(T − t′j − tji) ·fji ≤ T ∀(i, j) ∈ A, i, j �= v0 (38)

di ≥ t0i · f0i +
∑

j �=v0

(t0j + t′j + tji) · fji ∀i ∈ V \{v0} (39)

di ≤ T − (t′i + ti0) · fi0 −
∑

j �=v0

(t′i + tij + t′j + tj0) · fij ∀i ∈ V \{v0} (40)

xi ∈ {0, 1} ∀i ∈ V (41)

fij ∈ {0, 1} ∀(i, j) ∈ A (42)

di ≥ 0 ∀i ∈ V \{v0} (43)

The flow conservation is given in Constraints (35). Restrictions (36) ensure arc
(i, j) is used if well j is exploited. Inequalities (37) state K MOR units are used.
Constraints (38) link the time node j is visited, to the time node i is visited, and
to the selection of arc (i, j). This is an adaptation of the lifted MTZ constraints
(see Section 2.1). Inequalities (39) and (40) define generalized lower and upper
bounds on the time node i is visited. Inequalities (39) link the time node i is
visited to variables fji. At most one of the arcs entering node i is used. Thus, di

is at least equal to the minimal time required to arrive at node i, either by going
from v0 to i or by going from j to i. The same idea applies to the Inequalities
(40). Variables xk

i , fk
ij and di are defined respectively by Constraints (41) to (43).

The two-indexed formulation has O(|V |2) variables and constraints. MTZ is used
since the time constraints definition is straightforward and the formulation has
still O(|V |2) variables.

5 Computational Results

The computational experiments were carried out on an Intel Core 2 Duo with
2.66 GHz clock and 4Gb of RAM memory, using CPLEX 11 under default pa-
rameters. Instances were generated using a geographical information system to
simulate real situations. Comparison among the proposed formulations are mea-
sured in terms of time to prove optimality and of linear relaxation.

In the Tables 1 and 2, each line corresponds to an instance. For each instan-
ce, the working day length (L) in minutes, the number of wells (|V |) and its
optimal production (P∗) are given. For each formulation, the linear relaxation
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value (RL∗), the time (T ) spent by the unit in the optimal solution, the time
(time(s)) required to prove optimality in seconds (rounded up), and the number
of nodes (nodes) explored in the branch-and-bound tree are presented. The sym-
bol (−) means the solver did not prove optimality because it ran out of memory.
When the optimal solution is unknown, the best integer solution found so far is
identified by “(≥ value)”.

Table 1 summarizes the results for the formulations for one vehicle using the
MTZ, GGA or GGD subtour elimination constraints. From the computational
results, GGA proves optimality faster than MTZ and GGD for 9 instances. MTZ
proves optimality faster than GGA and GGD for 7 instances. In spite of having
the worst linear relaxation, MTZ is able to prove optimality for instances with
up to 200 nodes. GGD consumes a lot of time even if it produces good linear
relaxation. An interesting result on the linear relaxation is found for L = 480
and |V | = 20: the GGA linear relaxation is better than the linear relaxation of
GGD. This happens here because the value of M is equal to the optimal amount
of wells exploited in a day.

We have also run the second optimization phase for all instances presented in
Table 1. The time T was only improved for the instance with L = 480 and |V | =
120 (T ∗ = 479.5 instead of T = 480). Thus, results of the second optimization
phase were not tested for several vehicles. Even so, it remains valuable since it
takes place in the global decision process of the problem.

The results for the two-indexed and the three-indexed formulations are pre-
sented in Table 2. The number of vehicles used (K) and the sum of the total
time spent by all the MOR units (T ′) are given. The three-indexed formulation
produces a better linear relaxation than the two-indexed formulation. However,

Table 1. The first optimization phase for the MORP using one vehicle

MTZ GGA GGD
L |V | P∗ RL∗ T time nodes RL∗ T time nodes RL∗ T time nodes

480 20 12.60 17.21 477 2 1292 12.92 477 0 1 13.41 477 11 17
480 30 15.88 18.38 477 5 2337 17.19 477 6 979 16.61 477 841 191
480 40 15.88 18.38 477 7 2081 17.19 477 6 963 16.61 477 30137 255
480 60 15.84 18.43 467 15 3203 16.86 467 3 90 - - - -
480 80 9.97 13.80 479 83 5429 11.67 479 32 1410 - - - -
480 120 18.73 19.09 480 73 2996 19.05 480 204 1910 - - - -
480 160 19.10 19.47 480 240 2095 19.46 480 2540 3378 - - - -
480 200 19.64 19.82 480 62 3256 19.77 480 20626 2360 - - - -
960 20 24.45 32.11 952 817 915570 28.39 952 98 14807 25.65 960 452 264
960 30 31.65 35.93 950 424 228949 35.29 950 446 46898 32.43 950 5313 527
960 40 19.76 24.17 909 406 40244 23.84 909 135 10898 22.34 909 63631 2401
960 60 31.65 35.96 950 974 301668 35.18 950 377 33257 32.26 - - -
960 80 37.70 38.05 959.5 3240 57320 38.00 959.5 866 21595 - - - -
960 120 37.99 38.41 960 2764 36803 38.42 960 872 6716 - - - -
960 160 40.05 40.19 960 377 5893 40.16 960 585 877 - - - -
960 200 40.05 40.19 960 420 6672 40.16 960 789 951 - - - -
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Table 2. The first optimization phase for the MORP using several vehicles

Two-indexed formulation Three-indexed formulation
K L |V | P ∗ RL∗ T ′ time (s) nodes RL∗ T ′ time (s) nodes

2 480 10 20.97 27.74 911 2 8416 24.09 870 22 9139
2 480 20 24.45 29.55 953 74 41047 25.08 953 4 487
2 480 30 31.16 35.79 941 51 51661 33.78 941 1149 75216
2 480 40 31.16 35.79 941 646 84815 33.78 941 1315 64397
2 480 50 28.99 34.70 928 654 94922 30.93 928 7929 101935
2 480 60 30.39 35.78 946 326 57405 32.99 946 1619 60724
2 480 70 25.88 32.86 916 2 3374 30.43 916 1219 26108
2 480 80 19.35 27.03 881 78 69927 22.86 876 16426 313421
2 960 20 ≥ 46.51 55.89 - - - 52.75 - - -
2 960 30 ≥ 62.26 69.44 - - - 68.57 - - -
3 480 10 29.82 29.82 909 1 503 29.82 901 2 639
3 480 20 33.72 40.42 943 553 704266 36.73 943 27788 214856
3 480 30 45.49 52.31 943 2394 2269664 49.86 - - -
3 960 20 62.16 62.16 933 134 138791 62.16 - - -
3 960 30 ≥ 88.78 98.44 - - - 97.63 - - -

the two-indexed formulation performs better to compute the optimal solution.
In addition to the number of wells, the problem becomes more difficult when the
number of vehicles increases. Moreover, the working day limit also contributes
to the difficulty of the problem. Results suggest it is suitable to use a small
time window (480 minutes). The three-indexed formulation found sometimes a
smaller value of T ′ as shown in bold.

6 Concluding Remarks

Several formulations for the MORP are proposed in this work and the first
ever results using several vehicles are presented. Additionally, we proposed to
improve the subtour constraints by taking advantage of the time window. Thus,
instances close to reality (up to 200 wells) are solved. Among the formulations
for one vehicle, GGA performs globally better than MTZ and GGD to prove
optimality. For several vehicles, the two-indexed formulation is faster to prove
optimality in spite of weaker linear relaxations.

Computational experiments show that the time window restriction plays a
key role in computing an optimal solution: the smaller the time window, the
easier the problem to solve. Optimal solutions can be computed for medium-
sized instances with two MOR units. When using three vehicles, this does not
hold as the CPU time increases dramatically for small instances.

The larger instances used here are larger than the problems considered by the
company in the Rio Grande do Norte Basin. Consequently, the oil company is
now able to compute the optimal solution for the MORP instead of using solu-
tions given by heuristics. It could be interesting in future work to investigate
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instances characteristics to specify situations where the second optimization
phase becomes really useful. Moreover, for large time windows, we could in-
vestigate an approach to split it.

Acknowledgments. We thank Petrobras staff for providing valuable informa-
tions about the MOR unit and its usage in a petrol field.
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