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Abstract

The diameter-constrained minimum spanning tree problem consists in finding a minimum spanning tree of
a given graph, subject to the constraint that the maximum number of edges between any two vertices in the
tree is bounded from above by a given constant. This problem typically models network design applications
where all vertices communicate with each other at a minimum cost, subject to a given quality requirement.
We propose alternative formulations using constraint programming that circumvent weak lower bounds
yielded by most mixed-integer programming formulations. Computational results show that the proposed
formulation, combined with an appropriate search procedure, solves larger instances and is faster than
other approaches in the literature.

Keywords: Spanning trees; diameter constrained spanning trees; bounded-diameter; constraint programming

1. Introduction

Given an undirected connected graph G5 (V,E) with a set V of vertices, a set E of edges, and
costs cij associated to every edge [i, j]AE, with ioj, the diameter-constrained minimum spanning
tree problem (DCMST) consists in finding a minimum spanning tree T5 (V,E0) of G, with
E0 � E, whose diameter does not exceed a given positive integer value D, with 24D4|V|� 1. The
diameter of a tree is equal to the number of edges in the longest path between any pair of its
nodes. This problem is NP-hard for 44Do|V|� 1. DCMST applications appear in
telecommunications, data compression, and distributed mutual exclusion in parallel computing
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(see, e.g., Bookstein and Klein, 2001; Deo and Abdalla, 2000; Raymond, 1989; Wang and Lang,
1994).
The first DCMST formulations, using single commodity flows, were presented in Achuthan

et al. (1992). Improved formulations with valid inequalities and a lifting procedure are found in
Achuthan et al. (1994) and Santos et al. (2004). An alternative formulation for the odd D case was
also proposed in Santos et al. (2004). Multicommodity flow formulations with tighter linear
programming (LP) relaxations are presented in Gouveia and Magnanti (2000, 2003). However,
they require more memory and computation time to solve the linear relaxation. Formulations
strengthened with valid inequalities were proposed in Gruber and Raidl (2005), where they are
compared with other formulations. The computational results showed that no approach
dominates any other. The formulations using single commodity flow produce weak LP
relaxations, especially for small diameters. Multicommodity flow formulations yield tighter
lower bounds, but require much more memory and time to solve the linear relaxation, because of
their large number of variables and constraints. Recently, Gouveia et al. (2009) modeled DCMST
as a Steiner tree problem on a layered graph.
Constraint programming is a paradigm for formulating and solving combinatorial problems,

whose fundamentals can be found, e.g., in Walsh et al. (2006) and Hooker (2007). A successful
application to round-robin tournament scheduling appeared in Trick (2003). Constraint
programming formulations allow high-level constraints involving variable multiplications, logic
implications, and indexation of arrays with variables, besides the linear constraints that can be
found in mixed-integer programming (MIP) formulations. Instead of using only the linear
relaxation for pruning the search tree, it uses a variety of bounding techniques based on constraint
propagation. This strategy consists in operating with constraints to generate new constraints in
order to reduce the domain of some variables and, consequently, the size of the search space. The
new constraints are further propagated to reduce the domain of other variables. The procedure is
repeated until no further constraint can be generated. Each value eliminated from the domain of a
variable corresponds to a branch of the search tree that is pruned.
In this paper, we propose a new approach based on constraint programming for solving the

DCMST. Some MIP formulations for DCMST are presented in Section 2. The constraint
programming algorithm is proposed in Section 3. Computational experiments illustrating the
comparison of the two approaches are reported in Section 4. Concluding remarks are drawn in
Section 5.

2. MIP formulations

This section presents two of the strongest MIP formulations for DCMST in the literature. The
results obtained by the branch-and-cut algorithms based on these formulations are later compared
with the constraint programming algorithm proposed in the next section.
The MIP formulations in Santos et al. (2004) implicitly use a property proposed in Handler

(1978) to ensure that a central vertex vAV exists in any feasible tree T when D is even, such that no
vertex is more than D/2 edges away from v. If D is odd, a central edge e5 [a, b]AE exists in T, such
that no vertex is more than (D� 1)/2 edges away from the closest extremity of edge e. These
formulations rely on an artificial vertex r to model the central vertex of the spanning tree if D is
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even or the central edge of the spanning tree if D is odd. The artificial vertex is connected to
exactly one vertex (the central vertex) in any integer solution when D is even. In the odd D case,
the artificial vertex is connected to exactly two vertices (the extremities of the central edge).
The following formulations make use of a directed graph G05 (V0,A0) obtained from the

original undirected graph G5 (V,E) as follows. For every edge e5 [i, j]AE, with ioj, there are
two arcs (i, j)AA and ( j, i)AA, with costs cij 5 cji. Then, V05V [ frg and
A05A [ fr, 1g, . . ., (r, |V|)g, where r is an artificial root. Furthermore, cri 5 0 for every iAV.
We also define a constant L5 (D/2).
Let the parent of a vertex iAV be the first node jAV found in the path from i to the root r and let

the height of a vertex i be the number of edges in the path from the artificial vertex r to iAV. The
binary variable xij is associated to each arc (i, j)AA0 such that xij 5 1 if vertex i is the parent of
vertex j in the minimum spanning tree; xij 5 0 otherwise. The integer variable ui, 8iAV, denotes
the height of vertex i. The resulting MIP formulation is

min
X

ði;jÞ2A
cijxij ; ð1Þ

X

j2V
xrj ¼ 1; ð2Þ

X

ði;jÞ2A0
xij ¼ 1; 8j 2 V ; ð3Þ

ui � uj þ ðLþ 1ÞxijpL; 8ði; jÞ 2 A0; ð4Þ

0puipLþ 1; 8i 2 V 0; ð5Þ

xij 2 f0; 1g; 8ði; jÞ 2 A0: ð6Þ
The objective function is stated in (1). Constraint (2) ensures that the artificial vertex r is

connected to exactly one vertex in V (the central vertex). Constraints (3) establish that exactly one
arc is incident to each vertex in V. Constraints (4) ensure that the paths in a feasible spanning tree
from the artificial vertex r to each vertex iAV have at most L11 arcs. Constraints (5) and (6)
express the lower and upper bounds on variables u and the integrality requirements on variables x,
respectively. The edges [i, j]AE such that xij 5 1 or xji 5 1 in a feasible solution to (2)–(6) define a
spanning tree T of G with diameter less than or equal to D.
We now consider the odd D case formulation. Let zij be a binary variable associated with each

edge [i,j]AE, with ioj: zij 5 1, if edge [i, j] is selected as the central spanning tree edge; zij 5 0
otherwise. The MIP formulation for the odd D case is

min
X

ði;jÞ2A
cijxij þ

X

½i;j�2E
cijzij; ð7Þ

X

j2V
xrj ¼ 2; ð8Þ
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X

ði;jÞ2A0
xij ¼ 1; 8j 2 V ; ð9Þ

X

½i;j�2E
zij ¼ 1; ð10Þ

zijXxri þ xrj � 1; 8½i; j� 2 E; ð11Þ
zijpxri; 8½i; j� 2 E; ð12Þ
zijpxrj; 8½i; j� 2 E; ð13Þ
ui � uj þ ðLþ 1ÞxijpL; 8ði; jÞ 2 A0; ð14Þ
0puipLþ 1; 8i 2 V 0; ð15Þ
xij 2 f0; 1g; 8ði; jÞ 2 A0; ð16Þ
zij 2 f0; 1g; 8½i; j� 2 E: ð17Þ

The objective function is stated in (7). Constraint (8) establishes that the artificial vertex r is
connected to exactly two vertices in V. Constraints (9) establish that there is exactly one arc
incident to each vertex in V. Constraints (10)–(13) ensure that zij 5 1 only if edge [i, j] is selected as
the central spanning tree edge. Constraints (14) ensure that the path from the artificial vertex r to
any vertex iAV in a feasible spanning tree has at most L11 arcs. Constraints (15)–(17) express the
lower and upper bounds on variables u and the integrality requirements on variables x and z.
Valid inequalities and lifting procedures that improve the efficiency of both formulations were

proposed in Santos et al. (2004). First, the Miller–Tucker–Zemlin (Miller et al., 1960) inequalities
(constraints (4) and (14)) were lifted according to Desrochers and Laporte (1991), resulting in

ui � uj þ ðLþ 1Þxij þ ðL� 1ÞxjipL; 8ði; jÞ 2 A0: ð18Þ
Next, generalized upper bounds for variables ui were proposed. Constraints (19) state that if

iAV is the central vertex then ui 5 1, while constraints (20) ensure that if iAV is not a leaf of the
spanning tree, then ui4L:

uipðLþ 1Þ � Lxri; 8i 2 V ; ð19Þ
uipðLþ 1Þ � xij; 8ði; jÞ 2 A: ð20Þ

Finally, generalized lower bounds for the variables ui were applied. Constraints (21) state that if
iAV is the central vertex (xri 5 1), then uiX1; else uiX2:

uiXxri þ 2
X

j2V
xji; 8i 2 V : ð21Þ

Gruber and Raidl (2005) proposed two MIP formulations for the even and odd cases, also
based on a central vertex (in the even D case) or in a central edge (in the odd D case). However,
they do not introduce an artificial vertex. In their formulations, the height of a vertex i is the
number of edges in the path from the central vertex v to vertex iAV when D is even (respectively
the extremities of the central edge e5 [a, b] to vertex i when D is odd). The height of the central
vertex (even case) and the height of the extremities of the central edge (odd case) are equal to one
in a feasible tree T. Their formulations make use of a directed graph G005 (V,A), where V is the
set of vertices and A is the set of bidirectional arcs described above. The same binary variables xij
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are associated with every arc (i, j)AA: xij 5 1, if the vertex i is the parent of the vertex j in the
minimum spanning tree; xij 5 0 otherwise. Furthermore, hi‘5 1 if the height of vertex i is equal to
‘, for all iAV and ‘A1, . . .,L11. The MIP formulation for the even D case is given below:

min
X

ði;jÞ2A
cijxij ; ð22Þ

X

i2V
hi1 ¼ 1; ð23Þ

XLþ1

‘¼1
hi‘ ¼ 1; 8i 2 V ; ð24Þ

X

ði;jÞ2A
xij ¼ 1� hj1; 8j 2 V ; ð25Þ

xijp1� hj‘ þ hi;‘�1; 8ði; jÞ 2 A; ‘ 2 f2; . . . ;Lþ 1g; ð26Þ

hi‘ 2 f0; 1g; 8i 2 V ; ‘ 2 f1; . . . ;Lþ 1g; ð27Þ

xij 2 f0; 1g; 8ði; jÞ 2 A: ð28Þ
The objective function is stated in (22). Constraint (23) establishes that there is exactly one

central vertex. Constraints (24) guarantee that each node has exactly a single height. Constraints
(25) ensure that exactly one arc is incident to each vertex in V, with the exception of the central
vertex. Constraints (26) guarantee that the height of every vertex iAV in the tree is equal to one
plus the height of its parent. Constraints (27) and (28) express the integrality requirements on
variables h and x, respectively. The edges [i, j]AE such that xij 5 1 or xji 5 1 in a feasible solution
to (23)–(28) define a spanning tree T of G with diameter less than or equal to D.
We now consider the odd D case formulation. Let zij be a binary variable associated to each

edge [i, j]AE, with ioj: zij 5 1, if edge [i, j] is selected as the central spanning tree edge; zij 5 0
otherwise. The MIP formulation for the odd D case is

min
X

ði;jÞ2A
cijxij þ

X

½i;j�2E
cijrij; ð29Þ

X

i2V
hi1 ¼ 2; ð30Þ

X

½i;j�2E
zij þ

X

½j;i�2E
zji ¼ hi1; 8i 2 V ; ð31Þ

XLþ1

‘¼1
hi‘ ¼ 1; 8i 2 V ; ð32Þ

X

ði;jÞ2A
xij ¼ 1� hj1; 8j 2 V ; ð33Þ

xijp1� hj‘ þ hi;‘�1; 8ði; jÞ 2 A; ‘ 2 f2; . . . ;Lþ 1g; ð34Þ
hi‘ 2 f0; 1g; 8i 2 V ; ‘ 2 f1; . . . ;Lþ 1g; ð35Þ
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xij 2 f0; 1g; 8ði; jÞ 2 A; ð36Þ
zij 2 f0; 1g; 8½i; j� 2 E: ð37Þ

The objective function is stated in (29). Constraint (30) establishes that the endnodes of the
central edge are the only two nodes whose height is equal to one. Constraints (31) ensure that if
the heights of nodes i, jAV are equal to one, then zij 5 1. Constraints (32)–(34) are similar to (24)–
(26) in the previous formulation. Constraints (35)–(37) are the integrality requirements on
variables h, x, and z.
Constraints (30) and (31) imply
X

½i;j�2E
zij ¼ 1: ð38Þ

Although the latter does not strengthen the LP relaxation, computational experiments in Gruber
and Raidl (2005) showed that it speeds up the integer optimization.
Gouveia and Magnanti (2003) pointed out that whenever D is odd, the vertices whose

heights are equal to two are always connected to the nearest extremity of the central edge. For
every (i, j)AA, let K(i, j) be the set of potential central edges e5 [i, p] such that
Kði; jÞ ¼ f½i; p� 2 E : i < p and j 6¼ p and cijpcpjg. Constraints (39) ensure that if hj1 5 1, then
xij may only be set to one if the central edge is in K(i, j):

xijp1� hj1 þ
X

e2Kði;jÞ
ze; 8ði; jÞ 2 A: ð39Þ

The LP relaxation of the above formulations can be strengthened by constraints

hj1p1� xij; 8ði; jÞ 2 A; ð40Þ

hi;Lþ1p1� xij ; 8ði; jÞ 2 A: ð41Þ

These constraints state, respectively, that a vertex with height equal to one has no parent and that
vertices with height equal to L11 are not parents of any other vertices.
Achuthan et al. (1994) strengthened the LP relaxation by adding cycle elimination constraints,

because there are no cycles in a tree. Let C be any subset of edges from E defining a cycle. Then,
the corresponding cycle elimination constraint can be formulated as

X

½i;j�2C
ðxij þ xji þ zijÞpjCj � 1 ð42Þ

in the odd D case, or as
X

½i;j�2C
ðxij þ xjiÞpjCj � 1 ð43Þ

in the even D case.
Gruber and Raidl (2005) strengthened the LP relaxation by adding connection constraints,

because all vertices in the tree are connected. For any non-empty set S � V of vertices, the
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corresponding connection constraint can be formulated as
X

ði;jÞ:i2S;j2VnS
ðxij þ zijÞX1 ð44Þ

in the odd D case, or as
X

ði;jÞ:i2S;j2VnS
xijX1 ð45Þ

in the even D case.
Two branch-and-cut algorithms have been developed in Gruber and Raidl (2005). The first

progressively adds violated cycle elimination cuts (42)–(43) and violated connection cuts (44)–(45)
to the formulation of Santos et al. (2004) defined by (7)–(21) for the odd D case and by (1)–(6),
(18)–(21) for the even D case. The second algorithm adds the same violated cuts to the
formulation of Gruber and Raidl (2005) defined by (29)–(41) for the odd D case and by (22)–(28),
(39)–(41) for the even D case.
Four versions of each branch-and-cut algorithm have been evaluated in the computational

experiments performed in Gruber and Raidl (2005): (i) without any cuts, (ii) using only
connection cuts, (iii) using only cycle elimination cuts, and (iv) using both types of cuts. No
approach dominated the others in the computational experiments. However, the algorithms based
on the formulation of Gruber and Raidl (2005) performed better for most of the instances with
small values of D, while the algorithm based on the formulation of Santos et al. (2004) performed
better for most of the instances with large values of D.

3. Constraint programming formulation

In this section, we propose a new approach, based on constraint programming, to tackle DCMST
for both the odd and even D cases. It is motivated by the fact that some MIP formulations provide
weak lower bounds, while others require a huge amount of memory because of the large number
of variables and constraints. Constraint programming alleviates these drawbacks by allowing
concise formulations with a small number of variables and by using constraint propagation for
pruning the search space, instead of the linear relaxation. As it is based on a backtracking
procedure, constraint programming requires much less memory than branch-and-bound
algorithms.
The directed graph G05 (V0,A0) is obtained from the original undirected graph G5 (V,E) as

described in the previous section. In addition, we define d� (i) as the set of all vertices jAV0 such
that ( j, i)AA0 and d1(i) as the set of all vertices jAV such that (i, j)AA0.
We give below the alternative formulation of DCMST using the OPL language (Van

Hentenryck, 1999). Variables a and b denote the central vertices of the spanning tree: in the odd D
case, e5 [a, b] denotes the central edge of the spanning tree, while in the evenD case, a5 b denotes
the unique central vertex. We represent the parent of vertex iAV by variable yiAV0. Furthermore,
variable uiAf0, . . .,L11g represents the height of vertex iAV0 in the tree. Sets V, V0, d1(i), and
d� (i) are designated by nodes, nodes_p, forwardStar[i], and backwardStar[i], respectively.
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The artificial vertex is represented by r. Each cost cij is denoted by cost[i,j]. In case i5 j, then
cost[i,j] returns zero:

var nodes a;

var nodes b;

var nodes p y½nodes�;
var int u½nodes p� in 0::Lþ 1;

minimize

sumði in nodesÞ cost½i; y½i�� þ cost½a; b� ð46Þ
subject to f

forallði in nodesÞ u½i� ¼ u½y½i�� þ 1; ð47Þ
forallði in nodesÞ y½i� in backwardStar½i�; ð48Þ
sumði in nodesÞ ðy½i� ¼ rÞ ¼ 1þ ðD mod 2Þ; ð49Þ
if D mod 2 ¼ 1 then a < b else a ¼ b end if; ð50Þ
y½a� ¼ y½b� ¼ r; ð51Þ

g;

The objective function is handled by (46). Constraints (47) establish that the height of every
vertex iAV in the tree is equal to one plus the height of its parent. Constraints (48) ensure that
there is an edge eAE connecting every vertex i with its parent. Constraint (49) specifies that the
artificial vertex r is connected either to two vertices (i.e., the extremities of the central edge) when
D is odd, or to exactly one vertex (i.e., the central vertex) when D is even. If D is even, constraint
(50) determines that a5 b, otherwise it ensures that a and b are different, with a being smaller than
b to break symmetries. Constraints (51) establish that vertex r is the parent of vertices a and b.
Solving a combinatorial optimization problem by constraint programming involves two steps:

generating the set of constraints that must be satisfied and describing how to search for solutions.
The above formulation in OPL gives the set of constraints that must be satisfied, i.e., it describes
the search space.
The search procedure in Fig. 1 implicitly enumerates all solutions in the search space. It defines a

search tree, in which each node introduces a new constraint that sets a value to a variable ui or
eliminates the value from its domain. Only the values of variables ui have to be enumerated, because
the parent of each vertex iAV is the closest vertex j such that uj5ui� 1. The search tree is explored by
a depth-first search strategy. The new constraint is propagated at each node, making an attempt to
reduce the domain of other variables and, consequently, pruning nodes of the search tree. If the new
constraint leads the subproblem to infeasibility or a feasible solution, then the algorithm backtracks.
Line 2 sets the height of the artificial vertex to zero. Lines 3–4 investigate every pair of vertices a

and b to act as the central vertices. Lines 5–7 define the order in which the nodes of the search tree
are explored. The constraints handled by lines 8–11 are redundant, but act as useful cuts to reduce
the number of nodes in the search tree. They eliminate from the domain of yj every vertex k such
that there is another vertex i which is a better parent to j than k, i.e., cijockj and ui4uk.
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There are O(2|E|) nodes to be evaluated in a search tree generated by a branch-and-bound
algorithm based on binary variables associated with the edges of the minimum spanning tree.
When solving DCMST by constraint programming, we make use of a different representation of
the search space that reduces the size of the search tree for instances with small diameters. In the
even D case, the minimum spanning tree can be represented by the central vertex and by the
heights of the other vertices, which take at most L5 (D/2) different values in the range [2,L11].
As any vertex in V may act as the central vertex, there are O(|V| �L|V|� 1) nodes to be explored.
Analogously, the minimum spanning tree can be represented in the odd D case by the two
extremities of the central edge and by the heights of the other vertices. As any of the |E| edges may
act as the central edge, there are O(|E| �L|V|� 2) nodes to be explored in the search tree in this case.
Therefore, the search space considered by constraint programming is much smaller than the

search tree generated by a branch-and-bound algorithm whenever the diameter D is small, which
makes the approach very attractive in such a situation.

4. Computational results

The computational experiments were carried out on a Pentium 4 with 3.0GHz clock and 1MB of
RAM memory, using OPL Studio 3.7.1 as the constraint programming solver. We compared our
results with the best known solutions obtained by MIP approaches in Gouveia and Magnanti
(2003), Gruber and Raidl (2005), and Santos et al. (2004).
Tables 1 (even D case) and 2 (odd D case) present numerical results using the same instances

considered in Gruber and Raidl (2005) and Santos et al. (2004). Tables 1 and 2 display results for
complete and sparse graph instances, while Table 3 shows results exclusively for sparse graph

Fig. 1. Search procedure for DCMST.
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instances. For each instance, the first three columns present its number of vertices, its number of
edges, and the value of its diameter, respectively. The three next columns summarize the results
obtained using the constraint programming approach: the number of nodes visited in the search

Table 1

Comparisons with the best among the eight formulations in Gruber and Raidl (2005) and Santos et al. (2004) for even

diameters (results extracted from table 1 of Gruber and Raidl, 2005)

|V| |E| D Constraint programming (CP) Best MIP approach

Nodes Memory Time (s) Time (s) Version CP/MIP (%)

15 105 4 1044 463,780 0.08 0.7 ILP 11.43

15 105 6 6960 479,800 0.28 8.1 ILP 3.46

15 105 10 11,830 511,840 0.41 1.0 Santos1 41.00

20 190 4 3143 607,960 0.2 2.5 ILP 8.00

20 190 6 35,383 672,040 2.03 95.0 ILP 2.14

20 190 10 151,969 672,040 6.08 29.7 Santos1� 20.47

25 300 4 28,842 800,200 1.48 12.0 ILP 12.33

25 300 6 534,222 864,280 39.14 26.4 ILP 148.26

25 300 10 1,126,130 944,380 55.47 254.8 Santos1 21.77

20 50 4 389 466,784 0.05 0.2 ILP 25.00

20 50 6 2678 498,824 0.13 0.8 Santos1 16.25

20 50 10 17,937 514,844 0.64 0.2 Santos1 320.00

40 100 4 130,480 911,340 5.44 1.9 ILP 286.32

40 100 6 91,022 943,380 4.72 13.2 ILP1 35.76

Average: 68.01

Table 2

Comparisons with the best among the eight formulations in Gruber and Raidl (2005) and Santos et al. (2004) for odd

diameters (results extracted from table 1 of Gruber and Raidl, 2005)

|V| |E| D Constraint programming (CP) Best MIP approach

Nodes Memory Time (s) Time (s) Version CP/MIP (%)

15 105 5 2850 463,780 0.22 3.0 ILP 7.33

15 105 7 8240 527,860 0.38 20.0 ILP1� 1.90

15 105 9 11,743 527,860 0.47 6.2 Santos1� 7.58

20 190 5 18,283 640,000 1.06 8.1 ILP 13.09

20 190 7 19,142 688,060 0.97 5.5 ILP� 17.64

20 190 9 119,906 752,140 5.01 66.7 ILP1� 7.51

25 300 5 37,608 864,280 2.83 64.3 ILP1� 4.40

25 300 7 812,957 979,424 56.06 770.5 ILP 7.28

25 300 9 2,655,810 1,043,504 114.14 246.0 Santos1 46.40

20 50 5 3611 466,784 0.17 1.0 ILP 17.00

20 50 7 1975 498,824 0.14 0.8 Santos1 17.50

20 50 9 13,040 495,820 0.45 0.7 Santos1 64.29

40 100 5 161,961 927,360 7.31 6.4 ILP 114.22

40 100 7 778,699 975,420 34.38 212.4 ILP 16.19

40 100 9 769,161 1,007,460 40.16 979.8 ILP� 4.10

Average: 23.10
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tree, the amount of memory (in bytes) used by the algorithm, and the computation time in seconds
required to prove the optimality of the best solution found. The two next columns present the best
results obtained with the original MIP formulations in Gruber and Raidl (2005) and Santos et al.
(2004) on a Pentium 4 with a 2.8GHz clock and 2MB of RAM memory, using CPLEX 8.1 as the
MIP solver. For each instance, we report the processing time in seconds required to prove
optimality, together with an indication of the fastest algorithm version. The best MIP
formulations of Gruber and Raidl (2005) and Santos et al. (2004) are denoted by ILP and
Santos, respectively. The symbol ‘‘1’’ denotes the use of connection cuts, while an ‘‘�’’ indicates
the use of cycle elimination cuts (Gruber and Raidl, 2005). The last column shows the ratio
between the processing times needed to find the optimal solution by constraint programming and
by the best MIP approach.
In the following discussion, we refer to our constraint programming approach simply as

constraint programming. It was able to find provably optimal solutions for all instances in Tables 1
and 2. Furthermore, constraint programming dominated the MIP approaches involved in this
study, obtaining smaller computation times. On average, constraint programming took only 23%
of the time taken by the best MIP approach for the instances with odd diameters, which are often
considered as the hardest. For the instances with even diameters, constraint programming
required, on average, about 68% of the time taken by the best MIP version. We remark that we
compare the results obtained by constraint programming with the best MIP approach for each

Table 3

Comparisons with the formulations in Gouveia and Magnanti (2003) and Gruber and Raidl (2005) (results extracted

from table 2 of Gruber and Raidl, 2005)

|V| |E| D Constraint programming (CP) MIP (Gouveia and

Magnanti, 2003)

Best MIP (Gruber

and Raidl, 2005)

Nodes Memory Time (s) Time (s) CP/MIP (%) Time (s) Version CP/MIP (%)

Random

20 100 4 157 444,976 0.09 0.5 18.00 0.9 ILP1 10.00

20 100 5 886 465,076 0.23 6.3 3.65 2.4 ILP� 9.58

20 100 6 2602 473,116 0.27 5.8 4.66 2.9 ILP 9.31

20 100 7 3875 489,196 0.38 94.0 0.40 2.6 ILP� 14.62

30 100 4 213 712,359 0.19 0.8 23.75 3.5 ILP 5.43

30 200 5 1862 753,500 0.86 58.6 1.47 283.8 ILP1 0.30

30 200 6 2189 761,540 0.47 2.9 16.21 5.7 ILP 8.25

30 200 7 1535 789,680 0.80 529.4 0.15 53.9 ILP� 1.48

Euclidean

20 100 4 667 461,056 0.11 0.1 110.00 1.1 ILP 10.00

20 100 5 2027 473,116 0.27 5.3 5.09 1.7 ILP 15.88

20 100 6 2628 485,176 0.22 3.1 7.10 7.3 ILP 3.01

20 100 7 3988 493,216 0.38 49.5 0.77 10.0 ILP 3.80

30 200 4 4556 725,360 0.50 130.8 0.38 59.5 ILP� 0.84

30 200 5 27,468 769,580 2.13 25.1 8.49 36.1 ILP 5.90

30 200 6 1,235,639 785,660 95.24 1381.9 6.89 348.0 ILP 27.37

30 200 7 1,570,520 809,780 132.67 6912.1 1.92 1014.4 ILP� 13.08

Average: 13.06 8.68
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individual instance. If the comparisons involved one specific MIP approach, it would be far more
favorable to constraint programming.
In general, the larger the time required to prove optimality, the better the performance of

constraint programming relatively to all MIP versions. For example, constraint programming
required 56 s to find a provably optimal solution for the instance with |V|525, |E|5300, and D57,
while the best MIP approach required 770 s. For complete graphs, constraint programming took, on
average, 21% of the time observed with the best MIP version. The search strategy implemented
within the constraint programming solver significantly reduces the size of the search space when the
number of nodes is much smaller than the number of edges. This is most likely due to the fact that
branching in the constraint programming search tree is performed on the u variables, and not on
variables x or z. Furthermore, constraint propagation allows a reduction in the search space.
Table 3 summarizes comparative results involving sparse instances used in Gouveia and Magnanti

(2003) and Gruber and Raidl (2005): eight are randomly generated, while the other eight are
Euclidean instances as shown in Gouveia and Magnanti (2003). For each instance, the first column
indicates its type: random or Euclidean. Its number of vertices, its number of edges, and its diameter
are given next. The following three columns summarize the results obtained using the constraint
programming approach: the number of nodes visited in the search tree, the amount of memory (in
bytes) used by the solver, and the computation time in seconds needed to prove the optimality of the
best solution found. The results obtained by the formulations described in Gouveia and Magnanti
(2003) follow: the time required to prove optimality (obtained on a different machine) and the ratio
between the processing times required to find the optimal solution by constraint programming and
by the previous MIP approach, using the times reported in Gruber and Raidl (2005) as references.
The last three columns show the results obtained by the formulations described in Gruber and Raidl
(2005): the processing time in seconds required to prove optimality, together with an indication of the
fastest algorithm version (once again, the symbol ‘‘1’’ stands for the use of connection cuts, while an
‘‘�’’ denotes the use of cycle elimination cuts) and the ratio between the processing times required to
find the optimal solution by constraint programming and by the best of the previous MIP
formulations, using the times in Gruber and Raidl (2005) as references. Constraint programming
performed even better for the instances in Table 3, systematically reducing the time required to find
optimal solutions and to prove their optimality. It consumed, on average, 13% of the time taken by
the MIP formulation in Gouveia and Magnanti (2003) and only 8% of the time required by the best
MIP formulation in Gruber and Raidl (2005).
The algorithms in Gruber and Raidl (2005) are more appropriate to small-diameter instances,

while those in Santos et al. (2004) perform better on instances with large diameters. However, the
constraint programming approach outperformed both MIP approaches on small- and large-
diameter instances. Furthermore, no instance required more than 1MB of RAM memory to be
solved by constraint programming, because the search tree is explored by a depth-first search
algorithm and no node is stored to be further explored.

5. Conclusions

We proposed a new approach based on constraint programming to solve the DCMST. Constraint
programming was able to overcome the main drawbacks of MIP approaches for the instances

T. F. Noronha et al. / Intl. Trans. in Op. Res. 17 (2010) 653–665664

r 2010 The Authors.
Journal compilation r 2010 International Federation of Operational Research Societies



considered in this study: first, by using more concise formulations with a smaller number of
variables, and second, by using constraint propagation for pruning the search space, instead of
using exclusively the bound provided by the linear relaxation. The same constraint programming
algorithm is able to handle instances with odd or even diameters.
Constraint programming yielded better results (i.e., smaller computation times to find exact

optimal solutions and to prove their optimality) than all MIP approaches for 40 out of the 45 test
instances. On average, the computation times required by constraint programming amounted to
only 35% of those observed with the best MIP approach.
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