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Christophe Duhamel a,n, Andréa Cynthia Santos b, Lucas Moreira Guedes c

a ICD-LOSI, STMR (UMR CNRS 6279), Université de Technologie de Troyes, France
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a b s t r a c t

Workover rigs are used in onshore basins but they are often in limited number and they may not attend

all the maintenance requests. We consider here the problem of scheduling the rigs over a time horizon

in order to minimize the total oil loss due to the idle production states. Three mixed integer linear

models are proposed. The first one improves an existing scheduling-based formulation. The second one

uses an open vehicle routing approach and the third one is an extended model for which a column

generation strategy is developed. Several improvements are presented as well as two heuristics coupled

with column generation. To our knowledge, the first optimal values for medium-size instances of the

problem are presented in this paper. The results show the potential of the column generation and its

interest in a practical context.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Oil is currently the main source of world energy (oil 32.8%, coal
27.2% and gas 20.9% in 2009, see www.iea.org). It is also used for
a large number of industrial products, such as plastics and
pharmaceuticals drugs. The oil production, essentially by drilling
and extracting, is a very hazardous activity which can have huge
impacts on the environment. The growing demand leads to an
intense extraction process, mostly done by using sophisticated
and complex equipments such as pumpjacks for onshore wells.
Thus, a regular maintenance is required in order to keep the
system working. However, this does not prevent the occurrence of
dysfunctions and the production has sometimes to be stopped. In
this work, several mathematical formulations for the onshore
wells maintenance problems are investigated.

Usually, the onshore wells maintenance is done using a work-
over rig, see Fig. 1. As this equipment is expensive, it is usually
available in a limited number. Moreover, the requests following a
failure spread out over the time. Consequently, there is often
more requests to consider than the workover rigs can handle and
one has to select which requests will be considered during the
time horizon. The workover rigs can be different (heterogeneous)
or similar (homogeneous). Since several types of maintenance
have to be performed (cleaning, stimulation, reinstatement, etc.),
service levels should be considered whenever these equipments
ll rights reserved.

uhamel),
are heterogeneous. Furthermore, the workover rigs are trans-
ported by dedicated trucks which are submitted to specific transit
rules, according to the country. The vehicle fleet can also be
homogeneous or heterogeneous.

We consider the problem of scheduling the workover rigs over
the set of failing wells. It consists in both assigning the workover
rigs to the wells and in finding optimal routes to perform the
scheduled requests. For the sake of simplicity, this problem is
referred here as the Workover Rig Problem (WRP). The objective
is to minimize the total loss of petrol in a specified time horizon.
Thus, deciding which workover rig performs a service (if so) on
each well may take into account the well production, the rigs
location, the road network and the service levels. Some strategies
to solve this problem can be found in the literature: a scheduling-
based formulation and a VNS heuristic are presented in [1]. The
proposed heuristic is tested on realistic instances with up to 199
wells and with up to 11 workover rigs. The authors do not provide
computational experiments on the model yet, since the suggested
formulation does not seem to be the main focus. A GRASP with
path relinking has been developed by [2]. Recently, a simulated
annealing has been proposed on a variation of the WRP where the
travel time is not considered [3]. Good results are reported on
instances with up to 125 wells.

In this paper, we focus on mathematical formulations for the WRP.
Providing optimal solutions for the WRP is an important issue from
both an environmental and a financial point of view. The latest
accidents on onshore and on offshore wells push forward the need for
performing regular maintenance services. Moreover, according to [1],
the traditional way of scheduling the workover rigs (without optimi-
zation techniques) in a medium-sized oil field in Brazil lead to oil
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Fig. 1. An example of a workover rig.
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losses of about 2 millions dollars. Thus, there is room for substantial
savings by applying operations research techniques.

The formulation suggested in [1] determines the absolute
order each maintenance service is done. We first adapt it to allow
wells to be left unattended which is a more realistic hypothesis.
A second improvement consists in reducing the number of
variables and constraints. Then, a lifting procedure is developed
which significantly strengthens the formulation. Furthermore, a
formulation combining the features of both the open vehicle
routing problem (OVRP) and the team orienteering problem
(TOP) is proposed. The idea is to focus on the sequence of wells
attended by each workover rig rather than on the well order.
Finally, we develop a model based on column generation together
with some heuristics to compute sub-optimal solutions.

To our knowledge, this is the first work dedicated on designing
and comparing both compact and extended formulations for the
WRP. We have modeled the WRP by taking into account its main
characteristics and sometimes in a more realistic way than in [1]
(as by allowing unattended wells). The financial impacts and
the fact that regions are practically managed by using clusters
(dealing with medium size WRP problems) motivate the devel-
opment and analysis on models and exact methods. Moreover, the
time required to compute exact solutions (for some practical-size
WRP problems belonging to clusters) is not significant compared
to the horizon time planning. Finally, the models suggested in this
work can also be used as a basis to develop hybrid methods.

The paper is organized as follows: basic notations, the problem
definition and a bibliographical review are introduced in Section
2. The scheduling-based formulation and the proposed improve-
ments are given in Section 3. Sections 4 and 5 are respectively
devoted to the OVRP-based formulations and to the set covering-
based formulation. Computational results are shown in Section 6
and final remarks are made in Section 7.
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Fig. 2. Example where (0, C, B) dominates (0, A, B, C).
2. The WRP definition

The wells and the roads are represented by a digraph G¼(V, A),
where V is the set of n¼ 9V9 wells requiring a maintenance service
and A is the set of arcs representing the shortest path between
each pair of wells. The travel time tij is known for each arc ði,jÞAA.
The daily oil production pi and the maintenance service duration
di are associated to each well iAV . No depot is considered: once a
service is done, the workover rig travels directly to the next well
to perform a maintenance service. There are w workover rigs,
each one being initially located at the last well on which it did a
maintenance operation. Let eij be the travel time of rig i from its
initial position to the well j.

In practice, the workover rigs and the vehicle fleet can be
heterogeneous or homogeneous. The proposed formulations are
designed to address the homogeneous case. The VRP and the
scheduling based formulations can be easily adapted to work with
a heterogeneous vehicle fleet. More modifications are required in
the case of column generation because the columns must be
indexed by route and vehicle type. Thus, a different subproblem is
defined for each type of vehicle. Moreover, there is typically more
requests than the workover rigs can handle. Thus some requests
will be left unattended in the time horizon [0; T], where T is the
time by which all operations have to be done.

The WRP consists in minimizing the total oil loss due to
production interruption while satisfying several constraints such
as each attended request has to be addressed within a specified
time horizon by at most one workover rig, and each workover rig
has to be given a time-feasible schedule. It is worth mentioning
that the objective is to minimize the total oil loss or, conversely,
to maximize the total oil production. Thus, some wells might be
left unattended even if they all can be visited in the time horizon.
Such a situation is illustrated in Fig. 2 where three wells, A, B and
C, have emitted a maintenance request. The travel time tij and the
maintenance duration di are reported on the graph. The time
horizon is T¼10 and the production rates are pA ¼ pB ¼ 5 and pC¼20.
They all can be repaired by a rig initially located at node 0.

A first schedule (0, A, B, C) addresses all the maintenance requests
and leads to a total oil production of P0ABC ¼ 35þ20þ20¼ 75. The
second schedule (0, C, B) discards well A and it leads to a total oil
production P0CB ¼ 100þ10¼ 110. All the other feasible schedules
lead to a smaller oil production. This happens since well C has the
highest production rate. Performing its maintenance operation at the
beginning of the time horizon leads to a large total oil production and
it consumes half the available time. The remaining time is sufficient
to attend well B and this leads to the highest possible total oil
production. Thus (0, C, B) is optimal.

The WRP problem is closely related to some problems in the
literature. For instance, the OVRP [4,5] consists in designing a set
of routes for a fleet of vehicles in order to attend all customers
demands, where the vehicles do not return to the depot. The
vehicles travel from a starting point and end its tour at the last
customers they visited. This feature is required in the WRP as
well. However, there are some differences between the WRP and
the OVRP. First, the vehicle capacity does not need to be taken
into account in the WRP. Second, each client is not necessarily
visited. Moreover, time is an important feature of the WRP since
the oil production depends on the time by which the wells
production can be reactivated.

The second problem related with the WRP is the TOP [6,7]
which is a generalization of the orienteering problem (OP) [8]. The
OP consists in finding a path for an agent from an origin to a
destination. Each node is associated with a reward and the
objective is to maximize the total collected rewards in a given
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time horizon. In the TOP, the collection is done by a set of agents
instead of a single one. Thus, a set of paths have to be found from
an origin to a destination. The TOP differs from the WRP as the
rewards are not time-dependent.

The time-dependent rewards for an OP are addressed in [9].
The work in [10] considers the problem of defining a schedule for
a set of technicians within a given time horizon to perform
maintenance services. Thus, each technician is assigned to a set
of customers to be attended. The difference with the WRP is that
each tour must begin and end at the depot.

Here, we use informations from both the OVRP, the TOP and
the OP with time-dependent rewards to propose new formula-
tions for the WRP. Some suggested improvements for the pro-
posed formulations are inspired from [11].
rig i k jeik tkj
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Fig. 3. Lifting for the lower bound constraints.
3. Schedule-based formulation

The schedule-based model (S1) for the WRP consists in
explicitly defining the order of maintenance of each well. Let
yk

ijAf0;1g be the decision variables determining whenever well j is
the k-th attended by rig i. Moreover, variables xiZ0 specify the
time the maintenance begins at well i. This model is based on the
assumption that rig i of type qi can attend any well j of service
level ljrqi. The schedule-based formulation presented in [1] is as
follows:

min
Xn

j ¼ 1

pjðxjþdjÞ s:t: ð1Þ
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The objective function (1) aims at minimizing the total oil loss
over the time horizon. Eq. (2) guarantee that each stopped well is
fixed by at most one workover rig. Constraints (3) state that each
rig attends at most one well at each position in the sequence.
Inequalities (4) specify that the wells are addressed consecutively
by each rig. Inequalities (5) ensure a rig only attends compatible
wells. Restrictions (6) determine the service start time which
depends on the previous well in the sequence. Constraints (7)
set the service start time of the first well in each schedule.
Inequalities (8) do not belong to the original formulation in [1].
They ensure an unattended well cannot be operational before the
end of the time horizon, for the objective function to remain
consistent. Variables are defined in (9) and (10). This formulation
contains Oðn3wÞ constraints and Oðn2wÞ decision variables.
3.1. Improving the S1 formulation

The first improvement we suggest to the S1 formulation
(1)–(9) is to reduce the number of variables and constraints. As
both the maintenance service level required by each well and the
type of each rig are known beforehand, the set of workover rigs
which can attend some kind of maintenance services is known.
Thus, by only considering compatible assignments, many vari-
ables y can be eliminated and inequalities (5) are not necessary
anymore.

Moreover, adjusting the M constant in constraints (6) can
significantly strengthen the S1 formulation. We propose to set M

to the time horizon T. Another improvement consists in lifting
inequalities (7). Those constraints set a lower bound on the time
well j is visited, whenever j is the first well of a schedule. Suppose
that rig i starts its schedule by visiting well k then well j, see
Fig. 3. Then, the time to start attending well j is at least the time to
travel from the initial position to node k, to treat well k and to
travel from k to j. This procedure is referred here as ‘‘two-hop-lift’’
and the corresponding new inequalities are given in (11).

The first part of inequalities (11) corresponds to the original
lower bound given in constraints (7). The second sum defines the
lower bound if well j is visited in the second position. The term ai

is defined in Eq. (12). It corresponds to the minimum time to
attend well j whenever it is in the second position
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i ¼ 1
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2
ij 8j¼ 1 . . .n ð11Þ

ai ¼min
ka j
feikþdkþtkjg 8j¼ 1 . . .n ð12Þ

This idea can be extended to any positions in the tour. Thus,
we also define the ‘‘three-hop-lift’’ in inequalities (13) and (14).
However, the farther the position in the sequence, the higher the
time to compute the constants (ai, bi and so on) and the smaller
the benefit on the lower bounds. We noticed the use of ‘‘two-hop-
lift’’ and ‘‘three-hop-lift’’ is a good trade-off between the quality
of the lower bounds and the required computational effort
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Constraints (11) and (13) can be coupled with constraints (8)
since the right hand sides are mutually exclusive, leading to the
following aggregated constraints:
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4. Formulation based on the open vehicle routing problem

The OVRP-based formulation (R) for the WRP relies on the
sequence wells that are attended (relative order). Thus, variables
yk

ij specify whenever well j is treated just after well i using the
workover rig k. Hence, the R formulation is more closely con-
nected to the underlying transportation network. As before,
variable xi is the time the maintenance service starts at well i.
Nodes 0 and nþ1 denote respectively the artificial starting and
the artificial ending nodes. The R formulation is as follows:
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The objective function (17) aims at minimizing the total oil
loss over the time horizon. For each workover rig, Eq. (18) specify
each tour starts at well 0. Constraints (19) ensure the rig flow
conservation at each node. Inequalities (20) ensure that each well
is visited at most once. Constraints (21) determine that each node
is treated by only one workover rig. Inequalities (22) and (23)
determine the starting service time at each well. They are adapted
from the classic Miller–Tucker–Zemlin constraints [12] and also
ensure the subtour elimination. Constraints (24) state unattended
wells cannot be operational before the end of the time horizon.
Variables xi and yij

k are respectively defined in (25) and (26). This
formulation contains Oðn3wÞ variables and Oðn2Þ constraints.

We have improved this formulation by lifting inequalities (23)
as in [11,13]. The lifted constraints are given in constraints (27)

xi�xjþðTþdiþtijÞ
Xw

k ¼ 1

yk
ijþðT�dj�tijÞ

Xw

k ¼ 1

yk
jirT 8i¼ 1 . . .n,

8j¼ 1 . . .nþ1,ja i ð27Þ

Moreover, we have also developed generalized bounds which
are given in constraints (28) and (29). Constraints (28) extend
inequalities (22) by also taking into account the fact that node j

can be visited after some node ia0. In such a case, a lower bound
is introduced. It corresponds to the time required to arrive at the
previous node, to repair it, and to travel from it to node j

xjZ
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k
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Xn
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k
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The generalized upper bounds given in inequalities (29)
consider the case when a well i is visited after well j. Thus, the
time to treat wells j and i, and to travel from j to i is subtracted
from the horizon time

xjrM�dj�
Xw

k ¼ 1

Xn

i ¼ 1

ðdiþtjiÞy
k
ji 8j¼ 1 . . .n ð29Þ

5. Set-covering based formulation

The set-covering formulation (C) suggested for the WRP is an
extended formulation resulting from a Dantzig–Wolfe decompo-
sition of the previous model. Many VRPs have already been refor-
mulated as set-covering problems, see for instance [7,14–17]. This
formulation can be seen as selecting the best set of routes among
all feasible routes. Since the number of feasible routes is poten-
tially exponential, the set of routes cannot be explicitly enumer-
ated. Thus, a specific strategy called column generation is applied
to the linear relaxation. This column generation is then embedded
within a branch-and-bound (branch-and-price) to find the opti-
mal integer solution. In this section, we first present the basic
version of a column generation strategy. Then we introduce
several improvements (heuristics, a local search and a metaheur-
istic) to generate initial columns as well as improving columns.

Let O¼ fr1, . . . ,r9O9g be the set of feasible routes for a workover
rig. A route rk is an ordered set of visited wells. Let pk be the oil
production associated with route rk and aki specify whether well i

is visited by route rk or not (the order needs not being specified).
A decision variable ykAf0;1g is associated with route rk. It states
whether rk is selected or not. The C formulation, as opposed to the
formulations suggested above, is set to maximize the total oil
production (instead of minimizing the total oil loss). Both objec-
tives functions are equivalent and the formulation is as follows:

max
X9O9

k ¼ 1

Pkyk s:t: ð30Þ

X9O9

k ¼ 1

akjykr1 8j¼ 1 . . .n ð31Þ

X9O9

k ¼ 1

ykrw ð32Þ

ykAf0;1g k¼ 1 . . . 9O9 ð33Þ

The objective function (30) maximizes the total oil production
using the selected routes. Constraints (31) ensure that each well is
visited at most once. Restriction (32) states that at most w

workover rigs are used. Variables yk are defined in (33). This
formulation contains an exponential number of variables and O(n)
constraints. It is known for having a better linear relaxation than
the compact models.

As O cannot be explicitly handled, the column generation
strategy works in the following way: the problem is first relaxed
(linear master problem (LMP)) and at each iteration t a subset
OtDO is considered, giving the linear restricted master problem
(LRMP). LRMP is then solved to optimality and dual variables are
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used to check if there exists some variable yk, kAO\Ot (i.e. route
rk) with a positive reduced cost. This is done by solving a
subproblem (SP). If such a route rk exists, the corresponding
variable yk is inserted, Otþ1

¼Ot
[ fkg and the algorithm iterates.

The procedure stops otherwise and the LRMP solution is also the
optimal solution of LMP. Fig. 4 illustrates the basic column-
generation algorithm.
5.1. The subproblem for the column generation strategy

At iteration t, LRMP is solved to optimality and provides a pair
of optimal primal and dual solutions. Let mZ0 be the dual
variable associated to constraint (32) and let ljZ0 be the dual
variable associated to restrictions (31) for well j. SP is used to
identify a column (route) ykAO\Ot with a positive reduced cost
pk

pk ¼ pk�
Xn

j ¼ 1

akjlj�mZ0 ð34Þ

SP corresponds to a variation of the elementary shortest path,
namely the elementary shortest path problem with resource
constraints (ESPPRC) and it maximizes (34). It can also be viewed
as an orienteering problem with time-dependent rewards. If the
computed route rk is such that pk40, the associated column yk is
an improving variable for LRMP. Otherwise no route can improve
the current value of LRMP and its optimal solution is also optimal
for LMP.

The main restrictions in SP are the total time and the number
of visits at each well (at most one). The route travel time and the
maintenance duration at the visited wells must fit within the time
horizon T. Moreover, each well is visited at most once (hence the
elementary path). For each well i, the gain si depends on its
production. It is also modified by the dual variable li, see Eq. (35)

si ¼ ðT�di�xiÞpi�li ð35Þ

The decision variable yijAf0;1g determines if well j is visited
after well i and ziAf0;1g states whether a well is visited or not.
After reformulating the path cost (34) as a node-based function,
the subproblem SP can be formulated as

max
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The objective function (36) aims at maximizing the reduced
cost. Constraints (37)–(39) ensure the elementary path. Con-
straint (40) sets the time limit. Inequalities (41) are the lifted
Miller–Tucker–Zemlin constraints for the maintenance starting
time. Constraint (42) ensures that an unvisited well does not
produce any oil. Constraints (43) and (44) are, respectively, the
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lifted lower and upper bounds on the maintenance starting time.
Variables are defined in (45)–(47). This formulation contains
Oðn2Þ constraints and Oðn2Þ decision variables.

The bounds on the maintenance starting time (43) and (44)
force an unvisited well to be unattractive, since its production will
be null. However, as shown in Eq. (35), the interest of a well i also
takes into account its dual variable li. Thus, i becomes worthless
in SP when its production drops below li and the following upper
bound can be defined:

xirT�di�
li

pi

zi 8i¼ 1 . . .n ð48Þ

Property 1. Constraint (48) is a valid cut.

Proof. A node with a negative gain cannot belong to the optimal
solution since removing it from the solution would lead to a
better solution. Thus, forbidding negative gains for visited wells
does not cut off the optimal solutions. &

As an example, consider a planning horizon T¼1000 and a well
i with a production rate pi¼0.1, with a maintenance service
duration di¼100 and whose dual variable is li ¼ 20. It is visited
immediately before well j such that dj¼50 and tij ¼ 20. The upper
bound, as defined by constraint (44), is 830 with an associated
gain si ¼�14:8. On the other hand, constraint (48) sets the upper
bound at 700 and the associated gain is si¼0.

SP is NP-hard, therefore only small to medium size instances
can be efficiently solved by any MILP solver. A better practical
approach is to use dynamic programming [18]. The label-correct-
ing (LC) algorithm is an extension of the Bellman–Ford algorithm
to handle shortest path problems with resource constraints
(SPPRC). A label is associated to any partial path from node 0.
Given a partial path p, its associated label l¼(c, h, f) stores its cost
c, its resource consumption h and the label f used to create it. For
the WRP, c refers to the oil production and h is the time spent so
far. Li is the list of labels corresponding to a partial path ending at
node i. The label propagation mechanism from node i to node j

consists in trying to extend all the labels in Li to node j. In the
basic version of the algorithm, a label can be propagated to j even
if it has already been visited. To ensure the partial path to be
elementary (and going from the SPPRC towards the ESPPRC), one
solution consists in defining additional resources, one for each
node. Such resource corresponds to the node availability when
performing label propagation. Thus the label resource consump-
tion h becomes a vector ðh0,h1 . . .hnÞ where h0 is the time spent
so far and h1 . . .hn are the nodes’ availabilities when propagating.
A label lALi such that hj¼0 corresponds to a partial path in which
j has already been visited and l cannot be propagated to j.
Additionally, a label for which the time consumption will exceed
the time horizon T cannot be propagated as well. Otherwise, the
label l1ALi is propagated into label l2ALj in the following way:

l2 � h0 ¼ l1 � h0þtijþdj

l2 � c¼ l1 � cþðT�l2 � h0Þ � pj

l2 � f ¼ l1

l2 � ha ¼ l1 � ha 8aa j

l2 � hj ¼ 0

8>>>>>><
>>>>>>:

The algorithm starts by creating the initial label ð0;0,1 . . .1,�1Þ
at node 0 and then propagates it to the other nodes. Propagation
is done as long as there is a node with unpropagated labels. Label
dominance is used to reduce the number of labels and therefore
to speed up the whole process. Given a node i, a label
l1 ¼ ðc

1,h1,f 1
ÞALi is said to dominate a label l2 ¼ ðc

2,h2,f 2
ÞALi if
it is associated to a higher oil production in a shorter time

l1!l2 ) ðc
1
Zc2Þ4ðh1oh2

Þ

5.2. Improvements

Even if LC performs well, it still requires a lot of time for large
instances. Thus, it is turned into a heuristic (HLC) by limiting the label
propagation. Given a node i and a label lALi, only the t best labels
obtained after propagation are kept. When t¼n, HLC corresponds to
LC and when t¼1, HLC corresponds to a greedy insertion heuristic.
HLC is used to reduce the computational effort. Basically, the
improvement consists in first calling HLC to identify improving
columns. Upon success, LC needs not be called and the new columns
are inserted into the LRMP for the next iteration. Otherwise, LC is
called as in the basic version.

Another classic improvement consists in exploiting the fact that LC
(and HLC) usually ends with a set of Pareto-optimal solutions. Thus
one can provide LRMP with those solutions. Moreover HLC can be
used to compute the initial LRMP columns. Even if LRMP could start
with dummy columns, one can provide it with good initial columns.
Thus, setting m¼ 0, l¼ 0 and applying HLC leads to the computation
of paths whose production is the highest. This might be troublesome
since those paths might be very similar. Thus, HLC is used with a low
k value (typically k¼2) and it is called for every well set as first node
in the path. The basic paths which consist in addressing a single
repair request are inserted as well.

The next improvement results from a structural property of the
problem: in the operational context, the processing times are much
higher than the travel times. Repair times are usually measured in
days while transportation times are computed in hours. Thus a good
approximation consists in considering only the processing times and
the problem becomes a scheduling problem. Let the attractiveness
hi of a well i be defined as the ratio hi ¼ pi=di. Then the following
property holds:

Property 2. In the scheduling problem, the wells are visited in

decreasing order of their attractiveness in any optimal solution.

Proof. Consider wells i and j visited between wells k and l as in Fig. 5.

Let xk be the starting maintenance time at node k. Thus xi, xj and

xl depend on the chosen subpath, either kijl or kjil. Let Pij and Pji

respectively denote the total production when visiting i before j

or after j. Since the travel time is not considered, xl does not

depend on the order and one can only consider the oil production

of wells i and j. Then

Pij ¼ ðT�xk�dk�diÞpiþðT�xk�dk�di�djÞpj,

Pji ¼ ðT�xk�dk�djÞpjþðT�xk�dk�dj�diÞpi

(

In terms of total oil production, it is more interesting to visit i

before j if

PijZPji3djpiZdipj3pi=diZpj=dj3hiZhj
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Thus the attractiveness defines an order on the wells and this

property must hold for any path in an optimal solution. &
When dropping the travel times, it is then sufficient to
consider the graph obtained after keeping only the transportation
arcs preserving the property. By definition, this is a directed
acyclic graph (DAG), which simplifies the computation of improv-
ing columns. Let LC_DAG and HLC_DAG respectively denote the
adaptation of LC and HLC to the DAG structure. Since the travel
times are not taken into account in the computation of the
production, this subset of columns might not contain some paths
belonging to optimal solutions. Thus one still has to perform the
computation on the original graph to meet the optimality criter-
ion for the LRMP.

The last improvement consists in using a variable neighbor-
hood descent (VND) as a local search to further limit the need to
call LC. Three neighborhood structures N k, k¼ 1 . . .3 are defined.
All use the best candidate policy. The VND strategy works as
follows: let N k be the active neighborhood structure at the
current iteration and let p be the current solution. If an improving
candidate p0AN kðpÞ is found, k’1 and p’p0 for the next itera-
tion. Otherwise k’kþ1 and the method iterates. The algorithm
starts with k¼1 and it stops when both three structures have
failed to provide an improving candidate, i.e. k¼4. The first
neighborhood structure N 1 considers all the swaps between
two consecutive visited wells. The second one, N 2, looks for all
possible insertions of an unvisited well into p. The third one, N 3,
checks the exchanges of any unvisited wells with a visited one.
The VND is applied to the 50 best paths computed by HLC.
Moreover, it is also used as local search with slight modifications
in a GRASP/VND metaheuristic to compute good initial solutions.
In this context, the VND is given a fourth neighborhood structure,
N 4, which investigates all possible well exchanges between two
routes. The GRASP constructive heuristic is a randomized version
of the Clarke and Wright heuristic and 100 GRASP iterations are
performed. The paths from the solutions obtained at the end of
each GRASP iteration are then considered as initial columns for
the LRMP and the final column generation strategy is shown in
Fig. 6.
6. Results

The computational experiments were run on an Intel Core
2 Duo with 2.66 GHz clock and 4 GB of RAM memory. The
compact formulations have been developed with OPL studio
6.3 and were tested using CPLEX 12 under default parameters.
The column generation strategies have been developed in Cþþ
with Concert. Comparison between the proposed formulations are
measured in terms of time to prove optimality and time to solve
the linear relaxation.

The instances have been generated using real characteristics of
some medium size clusters from an oil basin in Brazil. The wells
have been randomly chosen from the map of an oil basin in the
Northeast region. Up to 60 wells are considered for a maintenance
service which is chosen from a set of real maintenance requests
(stimulation, cleaning, reinstatement for instance). In practice, the
maintenance duration for requests of the same type can vary. We
set an average duration (in days) for all the requests of the same
type. The travel time typically requires a few hours. The wells
production varies from 1 to 7 Bbl a day. The number of workover
rigs varies from 2 to 5 and the time horizon is set to 15 days.



Table 1
Comparison of the schedule-based formulations.

w n On S1 S2 S3

cpu Nodes LR % gap cpu Nodes LR % gap cpu Nodes LR % gap

2 3 26.72 0.02 23 22.71 15.00 0.00 0 24.41 8.66 0.01 0 25.65 4.00

4 55.21 0.04 104 40.19 27.20 0.05 52 42.58 22.88 0.03 32 46.64 15.52

5 57.40 0.22 474 37.65 34.41 0.17 264 40.32 29.76 0.12 135 44.39 22.67

3 4 44.22 0.05 71 40.19 9.11 0.03 6 41.40 6.38 0.02 0 43.15 2.42

5 48.64 0.16 229 40.63 16.47 0.11 99 42.42 12.79 0.11 48 44.99 7.50

6 59.63 1.77 2111 44.64 25.14 2.53 3011 46.83 21.47 0.47 280 50.17 15.86

7 84.73 6.00 8290 60.79 28.25 4.99 3443 63.25 25.35 4.73 2320 67.17 20.72

8 84.33 64.08 99 643 53.61 36.43 29.66 35 079 56.27 33.27 9.79 5883 60.80 27.90

9 97.37 687.19 1 015 445 56.61 41.86 151.10 128 773 59.47 38.92 53.09 47 766 64.50 33.76

10 125.41 236 027.52 5 044 223 76.80 38.60 2019.52 1 023 360 78.36 37.36 589.12 471 845 81.27 35.04

11 157.95 – – – – 155 567.55 5 676 657 93.41 40.86 56 949.38 1 763 093 96.43 38.95

12 185.85 – – – – – – – – 23 644.42 4 711 921 104.55 43.74

13 – – – – – – – – – – – –

Table 2
Comparison of the vehicle routing formulations.

w n On R1 R2

cpu Nodes LR % gap cpu Nodes LR % gap

2 3 26.72 0.01 0 22.71 14.99 0.01 0 25.65 4.00

4 55.21 0.02 26 40.19 27.20 0.03 0 47.57 13.83

5 57.40 0.05 205 37.65 34.41 0.04 86 46.76 18.54

3 4 44.22 0.01 0 22.71 0.08 0.01 0 22.73 0.00

5 48.64 0.02 0 40.19 9.11 0.01 0 43.15 2.43

6 59.63 0.04 12 40.63 16.45 0.04 5 45.96 5.49

7 84.73 0.12 422 44.64 25.13 0.06 132 52.90 11.28

8 84.33 152.56 785 303 53.61 36.42 2.29 9824 70.03 16.95

9 97.37 – – – – 46.82 308 716 77.69 20.21

10 125.41 – – – – 76.92 441 942 104.74 16.48

11 157.95 – – – – 1105.55 5 155 053 127.58 19.22

12 185.85 – – – – – – – –

13 – – – – – – – – –

Table 3
Comparison of the column generation strategies.

w n On CG1 CG2

cpu it. % gap cpu it. % gap

2 3 26.72 0.02 4 0.0 0.01 1 0.0

4 55.21 0.02 5 0.0 0.01 1 0.0

5 57.40 0.03 7 0.0 0.01 1 0.0

3 4 44.22 0.01 4 0.0 0.01 1 0.0

5 48.64 0.03 6 0.0 0.01 1 0.0

6 59.63 0.04 10 0.0 0.01 1 0.0

7 84.73 0.04 10 0.0 0.01 1 0.0

8 84.33 0.08 19 0.0 0.01 1 0.0

9 97.37 0.10 21 0.0 0.01 1 0.0

10 125.41 0.22 41 0.0 0.04 1 0.0

11 157.95 0.12 44 0.0 0.11 2 0.0

12 185.85 0.21 53 0.0 0.14 3 0.0

13 220.23 0.49 64 0.0 0.17 4 0.0

14 249.77 1.55 71 0.0 0.28 9 0.0
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Thus, the settings are consistent with the information provided
in [1]. All the time units have been converted in seconds.

Results from the first experiment are reported in Table 1. Each
line corresponds to an instance. S1 refers to the original schedule-
based formulation (1)–(10). S2 corresponds to S1 coupled with
the following strategies: two-hop-lifting (15), variables and con-
straints reduction, and setting M¼T. S3 differs from S2 by the use
of three-hop-lifting (16). Columns w and n respectively give the
amount of workover rigs and of maintenance requests (wells).
The optimal solution value is reported in column ðOn

Þ. For each
formulation (S1, S2 and S3), the time in seconds to prove
optimality (cpu), the number of nodes visited in the branch-
and-bound tree (nodes), the value of the linear relation (LR) and
the relative gap (% gap) are reported.

In spite of a big duality gap, the scheduling-based formulations
are able to solve real instances with up to three rigs and 12
maintenance requests. Adding some improvements (lifting,
reductions, adjustment) helps strengthening the initial formula-
tion. The linear relaxation gaps have been improved on average
by 3.58% for S2 and 8.7% for S3 when compared to S1. The
computational time has also been significantly reduced: for
example, the S1 takes about 3 days to solve the instance with
three rigs and 10 maintenance requests, while S3 spends about
10 min.

Results for the OVRP-based formulation are given in Table 2.
R1 refers to the formulation (17)–(26) with lifting constraints (27)
and R2 corresponds to R1 with the generalized bounds (28) and
(29). The gaps are smaller than those obtained by using the
scheduling formulations. For instance, the gap averages are
11.67% using R2, against 22.34% using S3. However, the OVRP-
based formulations solve instances with up to 11 wells only. We
observe that the date and the horizon planning time (time
window) significantly complicate the OVRP-based formulation.
The generalized bounds strengthen the values associated to the
variables which specify the starting service time. As a conse-
quence, R2 is more efficient than R1. From our experience, the
problem becomes clearly harder since some wells might be left



Table 5
CG-based heuristics on larger instances.

w n CG_H1 CG_H2

O1 O1 % gap cpu O2 O2 % gap cpu

3 15 529.54 529.54 0.00 0.06 529.54 529.54 0.00 0.03

20 722.81 722.82 0.00 0.65 722.81 722.82 0.00 0.13

25 941.01 941.01 0.00 6.21 941.01 941.01 0.00 0.11

30 1406.87 1406.87 0.00 6.59 1406.87 1406.87 0.00 0.13

35 1837.24 1837.30 0.00 27.35 1837.30 1837.30 0.00 0.36

40 2104.12 2104.12 0.00 87.79 2104.12 2104.12 0.00 0.49

45 2558.00 2558.20 0.01 312.65 2558.25 2558.43 0.02 0.84

50 2684.48 2684.48 0.00 459.38 2685.13 2685.13 0.02 0.84

55 3135.63 3137.44 0.06 4408.80 3136.20 3137.44 0.06 2.43

60 3283.22 3283.49 0.01 1277.00 3283.34 3283.65 0.01 1.72

4 15 426.45 426.45 0.00 0.06 426.45 426.45 0.00 0.06

20 478.54 478.60 0.01 0.20 578.54 478.60 0.01 0.15

25 768.79 769.02 0.03 1.81 768.79 769.02 0.03 0.38

30 1212.59 1212.79 0.02 4.60 1212.59 1212.79 0.02 0.42

35 1615.32 1615.32 0.00 21.00 1615.56 1615.56 0.01 0.27

40 1884.92 1885.15 0.01 25.52 1884.92 1885.15 0.01 0.45

45 2312.90 2313.34 0.02 379.56 2312.93 2313.57 0.03 0.52

50 2463.12 2463.40 0.01 353.02 2463.26 2463.40 0.01 0.83

55 2873.23 2873.59 0.01 1351.06 2873.31 2873.59 0.01 1.90

60 3037.58 3037.58 0.00 991.74 3037.58 3037.58 0.00 1.22

5 15 366.41 366.41 0.00 0.04 366.41 366.41 0.00 0.03

20 490.32 490.32 0.00 0.08 490.32 490.32 0.00 0.04

25 649.67 649.67 0.00 0.27 649.67 649.67 0.00 0.10

30 1040.69 1040.69 0.00 4.05 1040.69 1040.69 0.00 0.28

35 1409.91 1409.91 0.00 32.10 1409.91 1409.91 0.00 0.36

40 1680.66 1681.46 0.05 36.35 1680.84 1681.54 0.05 0.76

45 2080.57 2080.57 0.00 206.77 2080.71 2080.89 0.02 1.15

50 2256.05 2256.19 0.01 271.53 2256.05 2256.19 0.01 1.63

55 2630.23 2630.42 0.01 1371.38 2630.62 2630.79 0.02 2.09

60 2810.24 2810.28 0.00 795.08 2810.37 2810.44 0.01 1.77
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unattended. This results from the introduction of another combi-
natorial layer on whether a well is visited or not. Thus, the OVRP-
based formulation shows a better performance when all nodes
have to be visited.

Table 3 reports the results of the three column generation
strategies on the same set of instances. CG1 refers to the basic
column generation, using LC to generate the best improving
column (Fig. 4). CG2 extends CG1 by first calling a GRASP/VND
metaheuristic to compute initial columns, by computing improv-
ing columns on the DAG structure as well as performing a VND
local search on the best solutions found by HLC, as shown in
Fig. 6. For each strategy, the CPU time in seconds (cpu), the
number of iterations (it.) and the relative gap to the optimal
integer solution (% gap) are reported. With the exception of CG1
on the largest instance, all instances have been solved in less than
1 s. This is quite a strong reduction when comparing with the
results from the compact models in Tables 1 and 2. CG2 improve-
ments appear to speed up the process. The number of global
iterations is reduced as well.

Since both variations produce results significantly better than
the other models, one needs a set of larger instances to measure
the differences. Table 4 displays the results on instances with up
to 60 nodes and five rigs. The time limit has been set to 2 h and an
asterisk ðnÞ indicates that the optimal solution of the LRMP is
fractional. The size of the largest instances (60 wells) already
corresponds to realistic operational situations. One can note that
the basic strategy is limited to 30–35 wells instances. The
improvements in (CG2) allow to address instances with 60 wells.

Many optimal solutions of the LRMP are fractional in Table 4.
In such cases a common heuristic (CG_H1) consists in using a
solver (CPLEX) to compute the integer solution over the set of
Table 4
Comparison of the strategies on larger instances.

w n On CG1 CG2

cpu it. % gap cpu it. % gap

3 15 529.54 2.09 76 0.0 0.06 3 0.0

20 *722.81 67.44 86 0.0 0.59 3 0.0

25 941.01 638.72 85 0.0 6.21 4 0.0

30 1406.87 731.59 93 0.0 6.59 5 0.0

35 *1837.24 3275.08 99 0.0 27.29 14 0.0

40 2104.12 – – – 87.79 12 0.0

45 *2558.00 – – – 312.60 8 0.0

50 2684.48 – – – 459.38 18 0.0

55 *3135.63 – – – 4408.67 15 0.0

60 *3283.22 – – – 1276.96 9 0.0

4 15 426.45 1.43 70 0.0 0.06 6 0.0

20 *478.54 38.17 117 0.0 0.13 4 0.0

25 *768.79 431.17 130 0.0 1.52 5 0.0

30 *1212.59 574.29 98 0.0 4.52 4 0.0

35 1615.32 – – – 21.00 4 0.0

40 *1884.92 – – – 25.11 4 0.0

45 *2312.90 – – – 379.38 8 0.0

50 *2463.12 – – – 352.98 12 0.0

55 *2873.23 – – – 1350.96 12 0.0

60 3037.58 – – – 991.74 14 0.0

5 15 366.41 1.13 68 0.0 0.04 4 0.0

20 490.32 30.25 117 0.0 0.08 3 0.0

25 649.67 284.49 150 0.0 0.27 3 0.0

30 1040.69 565.98 217 0.0 4.05 6 0.0

35 1409.91 – – – 32.10 9 0.0

40 *1680.66 – – – 35.91 12 0.0

45 *2080.57 – – – 206.67 8 0.0

50 *2256.05 – – – 271.17 10 0.0

55 *2630.23 – – – 1371.20 11 0.0

60 *2810.24 – – – 794.81 20 0.0
generated columns. This obviously provides an upper bound on
the total oil loss. The quality of the solution can also be measured
by the relative gap (relative difference between this upper bound
and the lower bound given by the value of the fractional solution).
We propose another column generation-based heuristic (CG_H2),
which relies on the same principle except that only columns
satisfying Property 2 are generated. Thus the column generation
scheme is restricted to the LC_DAG, HLC_DAG column generators.
The strategy is the same as CG_H1 when the resulting solution is
fractional. Table 5 displays the results for both heuristics. For each
instance and each heuristic, O is the value of the LRMP optimal
solution, O is the value of the integer solution computed by the
heuristic and gap is the relative gap in percents. Note that the gap
for CG_H2 uses O2 instead of O1 . The cpu columns report the total
CPU time in seconds. The time required in the second step is
nearly negligible as it never exceeds 0.5 s for CG_H1 and 0.9 s for
CG_H2. CG_H1 always produces a solution at least as good as
when using CG_H2. However, the time differs significantly for the
largest instances. Thus, those two heuristics can already produce
excellent solutions for real-life instances (with 50–60 wells).
Moreover, given the quality of the solutions produced by CG_H2
and the time to compute them, CG_H2 may be a valuable choice
for addressing even larger instances.
7. Conclusions

The WRP corresponds to an operational context in the oil
industry where environmental and financial impacts are critical.
Thus, providing optimal solutions (and not only good solutions) is
an important issue that can lead to thousands of dollars savings.



C. Duhamel et al. / Computers & Operations Research 39 (2012) 2944–2953 2953
In this work, we investigated several formulations for the pro-
blem. The schedule-based formulation has been first presented
in [1]. We have extended it to allow wells to remain unattended
which is more realistic since rigs are expensive equipments
usually available is small quantities. Several improvements have
been provided as well, especially the ‘‘two-hop-lift’’ and the
‘‘three-hop-lift’’ to strengthen the formulation. The second for-
mulation uses features from the OVRP and from the OP. It has
been improved by lifting MTZ constraints and by providing
generalized upper and lower bounds. The third formulation
consists in reformulating the problem as a set-covering problem.
It uses a columns generation strategy to compute the optimal
solution of the linear relaxation. This approach is improved
by using heuristics to find initial columns and new columns.
Moreover, we take advantage of the structure of the objective
function to first generate the column in a subspace. If it fails to
find improving columns, the search is then performed in the
original space.

The numerical results show that the proposed improvements
strengthen the formulations. The schedule-based (S3) and the
OVRP-based (V2) formulations have the same level of perfor-
mance: the gaps from (V2) are lower, but (S3) can solve a instance
with one more well. Thus, they both are limited to small
instances. The extended formulation is far more efficient since it
can solve in less than 1 s all the instances the previous formula-
tions solve. Besides, the optimal solution of the LRMP for all those
instances is integer. The improvements allow to handle larger
instances: (CG1) is limited to 30 wells, while (CG2) can address 60
nodes. Since the optimal solution of LRMP is sometimes frac-
tional, one should develop a branch and price to find the optimal
integer solution. We have used instead two column generation-
based heuristics. They consist in computing an integer solution
out of the set of generated columns. The first heuristic is based on
CG2 while the second one relies on a restricted version is thus
much faster. The solution they compute is within 0.1% of the
optimality.

Those approaches remain affordable in an operational context
when considering the planning time horizon. Extensions of the
WRP addressing the fleet heterogeneity and uncertainties on the
wells repair time are currently under investigation.
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