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Abstract The bi-objective minimum diameter-cost spanning tree problem (bi-MDCST)
seeks spanning trees with minimum total cost and minimum diameter. The bi-objective
version generalizes the well-known bounded diameter minimum spanning tree problem. The
bi-MDCST is a NP-hard problem and models several practical applications in transportation
and network design. We propose a bi-objective multiflow formulation for the problem and
effective multi-objective metaheuristics: a multi-objective evolutionary algorithm and a fast
nondominated sorting genetic algorithm. Some guidelines on how to optimize the problem
whenever a priority order can be established between the two objectives are provided. In addi-
tion, we present bi-MDCST polynomial cases and theoretical bounds on the search space.
Results are reported for four representative test sets.

Keywords Spanning trees · Multiflow formulation · Multi-objective metaheuristics ·
Transportation and network design

1 Introduction

The bi-objective minimum diameter-cost spanning tree problem (bi-MDCST) is defined in a
connected and undirected graph G = (V, E) with a set V of vertices and a set E of edges. A
cost ci j ≥ 0 is associated to each edge [i, j] ∈ E , with i < j . Let T be a spanning tree of G.
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Thus, there is a unique path Pi j in T linking any pair of nodes i, j ∈ V . Let di j be the number
of edges in Pi j . Then, the diameter D of T is defined as D = max{di j : i, j ∈ V, i �= j}. A
minimum spanning tree (MST) of G is a spanning tree T with minimum total cost. Finding an
MST of a graph is a polynomial-time problem, as well as defining the diameter of a tree. This
work focuses on the bi-MDCST that consists of finding a spanning tree of G with minimum
total cost and minimum diameter.

The bi-MDCST is a NP-hard problem [14] and addresses network design and transporta-
tion logistic applications. In network design, the diameter refers to quality of service (QoS)
requirements where small diameters reduce delays and improve reliability. Costs can repre-
sent time or financial costs to transmit data, to install the network infrastructure, etc. Another
application appears on high speed trains where one looks for an MST backbone, and minimum
diameters reduce the transportation time between any pairs of cities and improve QoS [32].

The bi-MDCST generalizes some problems such as the bounded diameter minimum span-
ning tree problem (BDMST) and the minimum diameter spanning tree problem (MDST). The
BDMST consists of finding a spanning tree with minimum total cost, where the diameter does
not exceed a given positive integer value. The BDMST is NP-hard [9] when 4 ≤ D < |V |−1,
and several formulations [10,29], exact [11,22,23] and heuristics [19,24,27] methods are
found in the literature. The MDST has received less attention, and seeks a spanning tree
(not necessarily with minimum total cost) where the diameter is minimized. Distributed and
efficient algorithms are presented in [2,13].

Some works in the literature deal with bi-objective spanning trees with the minimization
of two cost functions such as the branch-and-bound framework proposed in [30], and the
enumeration in two phases introduced in [26,31]. Moreover, the multi-objective evolutionary
algorithm (MOEA) for the network design problem presented in [35] aims at minimizing
the infrastructure cost as the first objective, and at minimizing the maintenance cost as the
second one. The work [1] is also dedicated to optimizing two cost functions using a multi-
objective greedy randomized adaptive search procedure. However, as far as we know, few
works focus on the bi-MDCST with its two specific objective functions. A theoretical study
is found in [14] and the authors prove several problems based on spanning trees are NP-
hard, including the bi-MDCST. Approximation algorithms for a class of bicriteria network
design problems are proposed in [20], but no computational experiments are reported for
the bi-MDCST. A MOEA for the bi-MDCST is presented in [15,28]. Results are compared
with constructive and greedy heuristics for the BDMST. However, such kinds of heuristics
do not produce high-quality results for the BDMST. In this study, we propose formula-
tions for the bi-MDCST using different strategies to deal with the two objectives. The first
one considers a simultaneous optimization of the two objectives. For such a purpose, a
general bi-objective multiflow formulation is proposed inspired by the work [10] for the
BDMST, and two multi-objective metaheuristics: a MOEA and a fast nondominated sorting
genetic algorithm (NSGAII). The MOEA is based on the one proposed in [28], with some
improvements. The second strategy relies on optimizing the bi-MDCST whenever a priority
order is established between the two objectives. Results are reported for four benchmarks
of instances and several metrics have been used to evaluate the MOEA and the NSGAII
algorithms.

This paper is organized as follows: A general multicommodity flow formulation is intro-
duced in Sect. 2, followed by some simple polynomial solvable bi-MDCST cases in Sect. 3.
Then, the next sections are dedicated to presenting strategies for solving the bi-MDCST. For
instance, an optimization in two phases is presented in Sect. 4. A MOEA and a NSGAII
metaheuristics are detailed in Sect. 5. Finally, computational results are reported in Sect. 6,
and concluding remarks are given in Sect. 7.
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2 A general multicommodity flow formulation for the bi-MDCST

The general multiflow formulation has been developed based on the work of Gouveia and
Magnanti for the BDMST [10]. The formulation makes use of an undirected graph G =
(V, E) and the diameter D = max{dpq : p, q ∈ V, p �= q}, as mentioned before. Moreover,
let xi j be the decision variables on the choice of edge [i, j]. If edge [i, j] belongs to the
solution xi j = 1, otherwise xi j = 0. The flow variables are defined in the set A which is
obtained from the set E by considering that for every edge [i, j] ∈ E with i < j , there
are arcs (i, j) and ( j, i). Thus, the directed flow variables y pq

i j specify if the path from p

to q,∀p, q ∈ V, p �= q, i �= q and j �= p, passes through arc (i, j) ∈ A, i.e. y pq
i j = 1,

otherwise y pq
i j = 0. Obviously, y pi

i j = y jq
i j = 0 since no cycles exist in a tree. Let variables

dpq be the number of edges in the path from p to q .
The formulation from (1) to (12) formally defines the bi-MDCST. A solution is then a

spanning tree T defined in a 2-dimensional space by its cost z1 and its diameter z2 values. Let
X be the feasible space of solutions T defined by the vector f (x) = {z1, z2}. Considering the
objectives i = 1, 2, a solution fi (x) dominates another fi (x ′) if and only if fi (x) ≤ fi (x ′)
for all objectives i = {1, 2} and fi (x) < fi (x ′) for at least one of the objectives i = {1, 2}.
A solution Ti ∈ X is said to be Pareto-optimal fi (x∗) with respect to X if and only if there
is no T j ∈ X for which f j (x) dominates fi (x∗). The Pareto-optimal front is the set of
Pareto-optimal f (x∗) solutions.

z1 = min
∑

[i, j]∈E

ci j · xi j (1)

z2 = min D subject to (2)
∑

[i, j]∈E

xi j = |V | − 1, (3)

∑

j :(i, j)∈A

yiq
i j = 1 ∀i, q ∈ V, i �= q, (4)

∑

j :(i, j)∈A

y pq
i j −

∑

j :( j,i)∈A

y pq
ji = 0 ∀i, p, q ∈ V, p �= q, i �= q, i �= p, (5)

∑

i :(i, j)∈A

y pj
i j = 1 ∀p, j ∈ V, p �= j, (6)

y pq
i j + y pq

ji ≤ xi j ∀[i, j] ∈ E,∀p, q ∈ V, p �= q, (7)
∑

(i, j)∈A
i �=q, j �=p

y pq
i j ≤ dpq ∀p, q ∈ V, p �= q, (8)

D ≥ dpq ∀p, q ∈ V, p �= q, (9)

y pq
i j ∈ {0, 1} ∀(i, j) ∈ A,∀p, q ∈ V, p �= q, i �= q, j �= p, (10)

xi j ∈ {0, 1} ∀[i, j] ∈ E, (11)

dpq ≥ 1 ∀p, q ∈ V, p �= q. (12)

The two objectives are gibven in Eqs. (1) and (2), and they aim respectively at minimizing
the total cost and the diameter. Restriction (3) ensures the spanning tree has |V | − 1 edges.
Restrictions (4), (5), and (6) are respectively responsible for sending, conserving, and receiv-
ing the flow. Inequalities (7) state no flow passes through edge [i, j] whenever edge [i, j]

123



198 J Glob Optim (2014) 60:195–216

does not belong to the solution, i.e. xi j = 0. Constraints (8) compute the number of edges
in a path from p to q . Restrictions (8), (9) together with the objective function (2) minimize
the diameter. Variables are defined from (9) to (12). This formulation contains O(|A| · |V |2)
variables and O(|E | · |V |2) constraints.

In order to perform the diameter minimization, the following modifications have been
made on the model proposed in [10]: the second objective function (2) has been introduced,
the variables dpq and constraints (9) have been added, and the right side of restrictions (8) are
set to dpq instead of D. It is important to highlight that variables dpq can be dropped from the
formulation. However, keeping them allows us to obtain the number of edges between each
node p, q without any additional computation. This can be interesting for the development
of methods coupling exact and heuristics strategies.

3 Some polynomial cases and theoretical bounds

Some Pareto-optimal solutions to the bi-MDCST can be computed in polynomial time fol-
lowing the results found by [9] for the BDMST problem. Consider the graph G = (V, E)

defined in Sect. 2. Moreover, the Property 1 defined by Handler [12] is applied in the proofs.

Property 1 Whenever D is even, the spanning tree has a central vertex i such that no other
vertex is more than D/2 edges away from i . If D is odd, the spanning tree has a central edge
e = [i, j], such that all vertices k ∈ V \{i, j} are no more than (D − 1)/2 edges away from
one extremity of e.

Proposition 1 Given the assumption that there are solutions for G with diameters D = 2
and D = 3 (a complete graph always has spanning trees of diameters D = 2 and D = 3), the
Pareto-optimal spanning trees with diameters D = 2 and D = 3 are computed in polynomial
time.

Proof for the case when D = 2 According to Property 1 for the even D case, a spanning tree
has a central node. Thus, a procedure can build, at each iteration, a spanning tree considering
each node c ∈ V at a time as the central node. All the other nodes i ∈ V \{c} are connected
to c by adding edges [i, c], if i < c, otherwise [c, i]. Building a unique spanning tree of
D = 2 consumes O(|V |). But at most |V | spanning trees of diameter D = 2 are generated.
Thus, the Pareto-optimal solution with D = 2 is computed with computational complexity
O(|V |2). 	


Proof for the case when D = 3 Given a minimum spanning tree T j with D = 2. A spanning
tree Ti with D = 3 is in the Pareto-optimal front if and only if the total cost of Ti is less than
the cost of T j . Otherwise, Ti does not belong to the Pareto-optimal front since it is dominated
by T j . Thus, for D = 3, the following hypothesis is taken into account: suppose the solution
with D = 3 is not dominated. Then, finding such a Pareto-optimal solution can be done in
polynomial computational time. Following Property 1 for the odd D case, a spanning tree has
a central edge [i, j] ∈ E . Then, at each iteration, a procedure takes an edge [i, j] ∈ E as the
central one, and connects all other nodes k ∈ V \{i, j} to one of the central edge extremities i
or j . The edge with minimum cost connecting k to one of the extremities i or j , is included in
the spanning tree. Building a unique spanning tree with D = 3 consumes O(|V |), but at most
|E | spanning trees are generated and compared in terms of total cost. Thus, the procedure
has computational worst case complexity O(|E | · |V |) 	
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Concerning the MST of a given graph G, its cost is an upper bound on the search space
considering the cost objective function. An MST is unique whenever all costs associated
to each [i, j] ∈ E are distinct, and it can be computed in polynomial time by using the
classic algorithms of Prim and Kruskal [6]. On the contrary, whenever all (or some) costs
are identical, in the context of the bi-MDCST, an enumeration of the minimum spanning
trees is needed to chose the one with minimum diameter. A special bi-MDCST polynomial
case occurs when all costs associated to each edge [i, j] ∈ E are identical, and the graph
G is complete. In this case, it is obvious that the Pareto-optimal front is degenerated and
composed of exactly one solution defined by the cost of the MST, and with D = 2.

A lower bound considering the diameter objective function can be obtained from the graph
G. The diameter of a graph differs from the diameter of a spanning tree since a spanning
tree has a unique path between each pair of nodes. Denote by d ′

i j (i, j ∈ V ) the minimum
number of edges among of every possible paths between i and j in G, the diameter of G is
D′ = max{d ′

i j : i, j ∈ V, i �= j} which is a lower bound on the search space considering the
diameter. It is obvious that the minimum diameter spanning tree of G has a diameter greater
than or equal to the diameter of G. The proposed multi-objective genetic algorithms use the
cost of the MST and the diameter of G to bound the search space.

4 Solving the bi-MDCST

In practice, there are several ways to deal with the two objectives. The works [4,8,38]
provide an overview of new trends, recent advances and bibliography reviews on multi-
objective strategies. Some well-known strategies for solving multi-objective problems consist
of aggregating the two objective functions, establishing a priority order to optimize the two
objectives, or else optimizing simultaneously the two objectives.

In the aggregating strategy, after an appropriate normalization, the objective functions z′
1

and z′
2 can be aggregated to obtain f (x). Thus, a linear combination f (x) = α ·z′

1+(1−α)·z′
2

can be applied. In this approach, the scalar α ∈ [0, 1] represents the compromise between
the two objectives. Whenever α = 0, only the diameter is considered, and if α = 1 the total
cost is optimized.

Optimizing the two objectives in two distinct phases implies the decision makers are
able to determine a priority order for the objectives. It can be seen as a special case of the
aggregating strategy where α is set to 0 or 1 in order to state the first objective to be optimized.

Finally, optimizing several objectives simultaneously can be achieved by applying meth-
ods such as metaheuristics, branch-and-bound, column generation, ε-constraint [34] and
parallel partitioning method [18].

4.1 Optimization in two phases for the bi-MDCST

Using an optimization in two phases, the objectives are optimized in a priority order. Here,
the diameter is used as the priority objective. Thus, it corresponds to the special case where
α = 0. In the second phase, the optimization relies on finding an MST where the diameter
is bounded to the value found in the first optimization phase. Such a strategy is interesting
for applications where small diameters are required. Moreover, one can use well-known
formulations for the BDMST in the second optimization phase.

Formulation from (2) to (12) is used for the first optimization phase. As pointed out
in [10,29], once the diameter is fixed, a single commodity network flow formulation can be
applied for the BDMST. Then, in the second optimization phase, the formulations introduced
in [29] are considered. In spite of the dual gaps, such formulations are able to prove optimality
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for instances of medium size for the BDMST. These formulations make use of Property 1
previously defined in Sect. 3, and work on a digraph G ′ = (V ′, A′) that is obtained from
G = (V, E) as follows: an artificial vertex r is introduced in V . Thus, V ′ = V ∪ {r} and
A′ = A ∪ {(r, 1), . . . , (r, |V |)}, and for every edge [i, j] ∈ E , with i < j , arcs (i, j) and
( j, i) ∈ A′ are added with costs ci j = c ji .

Both odd and even D formulations use the decision variables xi j on the choice of arc
(i, j) ∈ A′, and non-negative variables ui which specify the number of arcs in a path from r to
i ∈ V ′. When D is odd, the formulation also uses binaries variables zi j that define, whenever
edge [i, j] ∈ E is selected as the central spanning tree edge, zi j = 1, or not zi j = 0. Let D∗ be
the optimal diameter found in the first optimization phase. Thus, L = D∗/2 when D∗ is even
and L = (D∗−1)/2 when D∗ is odd. For D∗ even, the second optimization phase is given as:

min
∑

(i, j)∈A

ci j · xi j subject to (13)

∑

j∈V

xr j = 1, (14)

∑

(i, j)∈A′
xi j = 1 ∀ j ∈ V, (15)

ui − u j + (L + 1)xi j + (L − 1)x ji ≤ L ∀(i, j) ∈ A′, (16)

ui ≤ L + 1 ∀i ∈ V ′, (17)

xi j ∈ {0, 1} ∀(i, j) ∈ A′, (18)

ui ≥ 0 ∀i ∈ V ′. (19)

Objective (13) minimizes the total cost. Restriction (14) states the artificial vertex r is
connected to only one vertex in V . Constraints (15) ensure that only one arc must be incident
to each vertex of V . Inequalities (16) define a topological order from the vertex r to each
vertex i ∈ V and eliminate subcycles. Restrictions (17) together with (16) establish that
paths from the artificial vertex r to each vertex i ∈ V have at most L + 1 arcs. Variables are
defined in (18) and (19).

When D∗ is odd, the formulation takes into account that the MST center is an edge as
follows:

min
∑

(i, j)∈A

ci j · xi j +
∑

[i, j]∈E

ci j · zi j subject to (20)

∑

j∈V

xr j = 2, (21)

∑

[i, j]∈E

zi j = 1, (22)

zi j = xri · xr j ∀[i, j] ∈ E, (23)

zi j ∈ {0, 1} ∀[i, j] ∈ E, (24)

Constraints (15)–(19).
The objective function (20) computes the total cost including the center edge cost. Restric-

tion (21) ensures the artificial central vertex r is connected to exactly two vertices of V . Con-
straints (22) and (23) guarantee only one central edge is selected. Restrictions (23) are non-
linear, but they can be easily linearized as shown in [29]. Variables zi j are defined in (24). Con-
straints (15)–(19) have already been defined. Readers are referred to [29] for further details.
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5 Multi-objective metaheuristics

MOEA are genetic algorithms enclosing operators to classify non-dominated solutions. Sev-
eral MOEA approaches are available in the literature [5] such as the strength pareto evolu-
tionary algorithm (SPEA), the Niched–Pareto genetic algorithm (NPGA), the NSGAII, etc.
They mainly differ in the operators applied to classify solutions as dominated or not, and on
the genetic operators used to modify the population. MOEA strategies try to find (or to be
close to) the Pareto-optimal front.

A pseudo-code of a standard MOEA algorithm is presented in Algorithm 1. It is the main
procedure applied to the proposed MOEA and NSGAII. Let t and Rt be respectively the cur-
rent iteration and the overall population at the iteration t . Moreover, the ranking corresponds
to the number of solutions T j which dominate a solution Ti . The initialization steps from
lines 1–5 mainly consist of generating an initial population R1 (line 2) and evaluating each
individual i ∈ R1 taking into account the objective functions (line 3). Then, solutions are
classified by using at least the ranking operator and positioning them in the search space as
dominated or not (line 4). The Pareto front is built and kept in line 5. A number of evolutional
iterations are performed from lines 6–14. Initially, elite (good) individuals are selected (line
7). Thus, genetic operators (mutation, crossover, recombination, etc) are applied using indi-
viduals belonging to the population in line 8, then t and the population are updated in lines 9
and 10, respectively. The new population is evaluated (line 11), solutions are classified (line
12), and the Pareto front is updated (line 13). The procedure in Algorithm 1 returns the best
Pareto front found so far (line 15).

5.1 Multi-objective genetic algorithms for the bi-MDCST

A standard MOEA and a NSGAII have been developed for the bi-MDCST. The MOEA [28]
has been applied since, to our knowledge, it is the first bi-objective metaheuristic “dedi-
cated” to the bi-MDCST. On the other hand, the NSGAII [7] has been shown to be a very
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efficient heuristic for solving multi-objective problems [36]. The works [16,21] investigate
the performance of genetic algorithms applied to multi-objective spanning tree problems.

The MOEA and the NSGAII proposed in this work share the following characteristics. (i)
The population size is set to N = 2 · |V | solutions, and individuals are generated as described
in the sequence. (ii) The data structure for a solution corresponds to a list of predecessors
for each node in the tree. The works [3,25] provide details on data structure performance to
encode trees. (iii) A 2-opt local search is performed to improve the solutions, and it is applied
to every new individual in the incumbent population. A move in this local search consists of
exchanging two edges in the solution by two edges not belonging to the solution. The move is
performed in such a way that the diameter of the spanning tree does not change. Thus, a move
is accepted whenever the cost reduces. The local search using the 2-opt neighborhood updates
a given solution when the first improvement move is found, following a first-improvement
search strategy.

As mentioned above, t and Rt are respectively the current iteration and the overall popula-
tion at the iteration t . The population Rt is composed of sets Pt and Qt . Thus, Rt = Pt ∪ Qt ,
where |Rt | = N and |Pt | = |Qt | = N/2. The set Pt of individuals is composed of |V | − 2
individuals randomly generated, and two particular solutions: an MST of G, and a spanning
tree T of G with minimum diameter D = 2 or D = 3, if it exists. The MST is computed
using Prim’s algorithm [6]. The |V | − 2 solutions of Pt are built using a randomized Prim’s
algorithm as in [25]. Prim’s algorithm uses a greedy strategy and the spanning tree is built
by adding one smallest edge cost at a time. In the Prim randomized version, one edge is ran-
domly chosen to enter the solution among every edge with an extremity node in the incumbent
spanning tree, and another node outside of the solution. The set Qt is obtained using genetic
operators between two solutions randomly chosen in Pt .

The MOEA for the bi-MDCST proposed in [28] identifies non-dominated solutions by
using the ranking, while the NSGAII applies the ranking, and the crowding distance that is
a distance of solutions around a specific solution.

In terms of stopping criteria, calibration experiments have been performed to fine-tune it.
Other specific details for the MOEA and the NSGAII are given below.

5.1.1 A standard MOEA for the bi-MDCST

The MOEA suggested in [28] for the bi-MDCST uses an edge-set data structure (a list of
edges belonging to the spanning tree) and works as follows: the initial population has |V |
individuals. Then, individuals in the population are evaluated and classified. At each iteration,
only two new individuals are introduced in the population. They are generated by applying
recombination and a modified edge-delete mutation genetic operators, detailed below. After
that, the population is ordered and the two worst individuals are discarded. Convergence is
controlled by the ranking histogram suggested in [17]. The algorithm stops when the rank
histogram reaches a pre-specified target rate.

In the recombination operator, a new solution T1 is derived from two others, T2 and
T3, by taking an edge at a time belonging to both T2 and T3, and including them in T1. If
necessary, edges randomly chosen from T2 or T3 are added to T1, without making cycles. In
the greedy edge replacement mutation operator, an edge [i, j] ∈ E is randomly deleted in the
spanning tree T . Thus, T is disconnected, generating two subtrees t1 and t2. These subtrees
are connected with the smallest cost edge [k, l] ∈ E linking t1 and t2, where [k, l] �= [i, j].
The modified edge delete mutation operator is a combination of the greedy edge replacement
mutation and the recombination operators. Initially, an edge is removed from T1 which makes
it unfeasible. Thus, a recombination is performed using T1 and a feasible solution T2. In a
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previous work [15], the authors mention that the individuals are randomly selected in the
population to generate new ones.

Some details of the MOEA presented in [28] are omitted, for example, how the operators
have been applied along the MOEA iterations. Thus, it is difficult to exactly reproduce
such an algorithm. Moreover, some aspects of the MOEA [15,28] make the approach non
competitive. For instance, only two new solutions enter the population at each iteration. As a
consequence, the convergence and the population diversity are significantly affected. In order
to try to overcome this problem, we use a similar strategy as applied for the NSGAII. Thus,
here, the population is improved first by setting a size of N = 2·|V |, and second, by replacing
up to |V | individuals at each iteration. The ranking operator and the genetic operators have
been considered as in the work [28]. Furthermore, we use a list of predecessors to encode
the spanning trees, as explained in Sect. 5.1.

In the first iteration of the MOEA, the population Rt = Pt ∪ Qt is obtained by randomly
generating solutions for the set Pt , and by applying the modified edge delete mutation operator
to build the set Qt . For the other iterations, |V | elite solutions are selected and the set Qt of
individuals is obtained as in the first iteration.

5.1.2 A NSGAII for the bi-MDCST

The NSGAII for the bi-MDCST is inspired by the steady-state algorithm proposed in [7].
Such an algorithm uses two operators to classify solutions, the ranking and the crowding
distance. For each individual belonging to the population, the ranking computes the number
of solutions which dominate it. Thus, the individuals with ranking equal to zero are set in the
best Pareto front found so far. After applying the ranking, all individuals in the population are
set in a Pareto front on the search space. For each individual, the crowding distance defines
the distance to its nearest neighbours in the same Pareto front and it contributes to making the
Pareto front uniform. Thus, the bigger the crowding distance is, the more solutions should
be generated in the region considered.

In the first iteration of the NSGAII, the population Rt = Pt ∪ Qt is obtained by randomly
generating solutions for the set Pt , and by applying the crossover operator for trees, proposed
in [3], to build the set Qt . The crossover works as follows: two solutions, one from the elite
set T j and another from the rest of the population Ti are randomly selected. Then, a support
graph G ′′ = (V, E ′′) is built, where every edge [i, j] ∈ Ti and every edge [k, l] ∈ T j are
added to E ′′. Figure 1 illustrates an example, where solutions Ti and T j are respectively
depicted in Fig. 1a, b, and the resulting support graph G ′′ is given in Fig. 1c. After building
G ′′, a spanning tree of G ′′ is computed using the randomized Prim algorithm. This operator
allows us to avoid unfeasible trees, particularly for sparse graphs. For the other iterations, the
|V | better solutions pass through the next iteration, and the set Qt is generated as mentioned
above.

Once the initial population Rt is built, the ranking and the crowding distance operators
are computed for every solution Ti ∈ Rt . Let the crowding distance w be a vector of size

Fig. 1 Example of a support
graph G′′
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M . It is computed as shown in Eq. (25), where suc( j) and pred( j) are respectively the
value which precedes j in w and the value which follows j in w. The bi-MDCST involves
two objectives m = 1, 2, thus zmax

m and zmin
m are the maximum and the minimum objective

functions values. Since cost and diameter are values with different scales, values have been
properly normalized in the interval [0, 1].

w j =
M∑

m=1

(
zsuc( j)

m − zpred( j)
m

zmax
m − zmin

m

)
(25)

Solutions in the population are then ordered using the ranking and the crowding distance.
Given Ti and T j , its corresponding ranking r1 and r2, and its crowding distance wi and
w j . A solution Ti is better than T j if the following conditions (ri < r j ) or ((ri = r j ) and
(wi > w j )) hold. After ordering solutions, the first |V | best are kept to pass though the next
iteration. The other |V | individuals are generated using the crossover mentioned above. This
procedure is performed until the stopping criterion is met. The best Pareto front found so far
is returned.

6 Computational experiments

The experiments were performed on an Intel Core i7 with 2.7 GHz clock and 8Gb of RAM
memory. Experiments for the optimization in two phases were performed using CPLEX 12
under default parameters. The standard MOEA and the NSGAII were developed in C ANSI
with DevCpp 4.9.9.2. Results for the optimization in two phases are reported in Sect. 6.1.
Then, Sect. 6.2 is dedicated to describing the results produced by the metaheuristics. Ini-
tially, a set of experiments has been addressed to calibrate both metaheuristics MOEA and
NSGAII in Sect. 6.2.1. Then, extensive experiments are done to compare both metaheuristics
6.2.2. Finally, Sect. 6.2.3 shows a comparison of the metaheuristics with the optimal results
produced by using the optimization in two phases.

Four sets of instances are used in the experiments, three G, L and R are respectively
from the published papers [10,19,24]. It is important to mention that such sets of instances
are difficult and representative for both the BDMST and for the bi-MDCST. Considering
the BDMST for which the search space is usually smaller than the one for the bi-MDCST,
from our knowledge, no algorithm has proved optimality for instances proposed by [24].
Moreover, the instances of [10] have a number of edges with similar costs which raises the
combinatorial choices of such problems.

The last set, referred here as T , has been developed in this work and it contains sparse
instances composed of two subsets c and p of 9 and 11 instances respectively. The first
9 instances have been generated using an arbitrary Hamiltonian cycle to ensure the graph
connectivity. The remaining edges are randomly added accordingly to the graph density set
to {0.2, 0.3, 0.4}. For the other 11 instances, the graph connectivity is ensured by an arbitrary
Hamiltonian path. The remaining edges are randomly added and the graphs have density
{0.08, 0.09, 0.1}. In the naming format X_vY _Z , X corresponds to the instance type (c or
p), Y to the number of vertices, and Z to the graph density.

6.1 Results for the optimization in two phases

Table 1 gives the results for the optimization in two phases, presented in Sect. 4. Each line
corresponds to an instance, and the instance names, the MST diameter (D) and cost (C) are

123



J Glob Optim (2014) 60:195–216 205

Table 1 Results for the optimization in two phases

Instances MST First optimization phase Second optimization phase

D C D∗ LR Time Nodes C∗ LR Time Nodes

c_v15_0.2 11 433 7 4.1 76.9 2,375 497 398.3 0.2 171

c_v15_0.3 10 415 4 4.0 74.6 83 635 392.3 1.4 10,659

c_v15_0.4 10 375 4 3.0 30,862.2 20,250 465 341.0 0.8 2,972

c_v20_0.2 10 776 5 4.0 29,123.0 14,215 980 748.2 1.0 3,072

c_v20_0.3 8 470 5 3.1 326,655.7 72,378 618 436.7 1.7 4,412

c_v20_0.4 10 467 − 3.0 – – – – – –

c_v25_0.2 12 599 − 4.0 – – – – – –

c_v25_0.3 9 529 − 3.0 – – – – – –

c_v25_0.4 12 447 − 3.0 – – – – – –

p_v25_0.09 18 1,144 17 11.0 208 2,885 1,146 1,062.0 0.1 47

p_v25_0.10 16 1,186 9 8.0 41 277 1,323 1,099.0 0.2 783

p_v30_0.08 20 1,838 12 9.0 312.5 920 1,858 1,822.3 0.2 550

p_v30_0.09 14 1,217 9 7.0 49,340.0 32,321 1,407 1,161.1 2.1 10,127

p_v30_0.10 17 1,140 9 7.0 271,062.5 43,341 1,315 1,088.0 3.9 23,736

p_v35_0.08 20 1,604 − 8.0 – – – – – –

p_v35_0.09 10 1,513 − 6.0 – – – – – –

p_v35_0.10 14 1,112 − 7.0 – – – – – –

p_v40_0.08 15 1,553 − 8.0 – – – – – –

p_v40_0.09 13 1,467 − 5.2 – – – – – –

p_v40_0.10 19 1,313 − 5.0 – – – – – –

shown. Then, results for the first and the second optimization phases are depicted. The optimal
diameter (D∗) and the optimal cost (C∗) are respectively provided, whenever possible, for the
first and the second optimization phases. Moreover, the linear relaxation (LR), the running
time (time) in seconds to prove optimality, and the number of nodes (nodes) visited in the
branch-and-bound tree to prove optimality are given for both phases. The symbol (−) means
the solver runs out of memory. Thus, some instances are not solved to optimality even for the
first optimization phase. For such instances, the linear relaxation in the second optimization
phase has not been computed since D∗ values are unknown.

Results for the first optimization phase indicate the general multiflow formulation is able
to treat only small and sparse instances. The running time increases significantly for small
instances in this test set. Moreover, results show expected behavior: the tree diameter reduces
when the graph density increases, and the problem becomes harder to solve. Formulations
introduced in Sect. 4 for the second optimization phase solve the problem in a small running
time. Thus, further research should be addressed in order to adapt such formulations for
dealing with the first optimization phase.

6.2 Results for the multi-objective metaheuristics

Experiments for the multi-objective metaheuristics have been performed to calibrating and
comparing them, as well as evaluating the quality of the solutions. Initially, a calibration is
done to decide the stopping criteria. Then, results produced by the two metaheuristics MOEA
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and NSGAII are compared. The algorithms’ convergence is also analysed. Finally, optimal
values from works [11,29] and from the multiflow formulation have been used to measure
their performance.

Three metrics are used to evaluate the results. The first one Q indicates the number of
solutions in the Pareto front. The second metric S, called of spacing, is a measure of spread
(distribution) of solutions in the Pareto front found so far, and has been computed as in [33].
An average Euclidean distance between solutions is computed to get S. The smaller the value
of S, the better the solutions distribution is because it indicates a uniform distribution in the
best Pareto front. The third metric is the hypervolume H [37] which gives the area size from
the worst solution θ in the search space. For the bi-MDCST, the solution θ corresponds to
the diameter of an MST of G, and the cost of an MDST of G. The bigger the H value, the
better the Pareto front is because it shows the front is far from θ . It is important to highlight
that the values computed for all metrics have been normalized in the interval [0, 1].

6.2.1 Calibration experiments for the metaheuristics

Calibration experiments are presented in Tables 2 and 3 for a sample of instances coming
from the four test sets. Instances se_v40_a400 and se_v60_a600 are from [10], c_v20_a190
and c_v25_a300 are from [19], c_v70_d7_1 and c_v100_d10_1 comes from [24], and
c_v35_0.08 and c_v40_0.10 are proposed in this work. The other instances have similar
results as for this sample. In order to observe the quality of solution, convergence, and run-
ning time, a number of 100, 300, and 500 independent iterations have been performed using
the MOEA and the NSGAII. For each independent run, the values of metrics Q, S, H , and
the running time (time) in seconds are given.

For both MOEA and NSGAII, in most of the cases, the values of Q improve when the
number of iterations increases. However, for some instances, such as c_v20_a190 using the
MOEA strategy, the Q value decreases when performing 500 iterations instead of 300. This
happens when a better solution in the first front is found and it dominates the others. In this
case, the H value increases which confirms such a result.

The expected behavior is that H values increase whenever more iterations are performed.
It means the best Pareto front found so far is improved and solutions become far from θ .

Table 2 Calibration results for the MOEA

MOEA

Instances 100 iterations 300 iterations 500 iterations

Q S H Time Q S H Time Q S H Time

se_v40_a400 7 0.25 0.56 0.76 10 0.24 0.64 2.25 8 0.29 0.65 3.19

se_v60_a600 12 0.21 0.61 2.64 11 0.26 0.69 7.34 11 0.26 0.69 1.22

c_v20_a190 6 0.20 0.55 0.09 9 0.12 0.61 0.30 8 0.12 0.64 0.46

c_v25_a300 4 0.45 0.36 0.16 5 0.37 0.46 0.41 5 0.36 0.48 0.61

c_v70_d7_1 8 0.28 0.38 4.26 10 0.25 0.50 12.39 10 0.20 0.57 27.10

c_v100_d10_1 6 0.48 0.28 14.62 8 0.41 0.36 39.78 8 0.40 0.39 68.01

c_v35_0.08 6 0.18 0.54 0.68 8 0.09 0.55 2.08 8 0.09 0.58 3.30

c_v40_0.10 5 0.38 0.35 1.16 5 0.41 0.37 3.51 4 0.48 0.42 5.37
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Table 3 Calibration Results for the NSGAII

NSGAII

Instances 100 iterations 300 iterations 500 iterations

Q S H Time Q S H Time Q S H Time

se_v40_a400 14 0.11 0.81 1.08 14 0.11 0.82 3.96 14 0.11 0.82 6.74

se_v60_a600 17 0.10 0.85 3.95 20 0.10 0.86 14.05 21 0.10 0.86 24.19

c_v20_a190 9 0.25 0.77 0.15 10 0.24 0.78 0.45 11 0.16 0.79 0.78

c_v25_a300 12 0.17 0.74 0.24 12 0.17 0.75 0.76 12 0.17 0.75 1.32

c_v70_d7_1 16 0.13 0.80 4.75 18 0.12 0.83 17.80 19 0.13 0.84 31.97

c_v100_d10_1 14 0.10 0.78 12.80 28 0.08 0.86 52.03 30 0.08 0.87 99.64

c_v35_0.08 8 0.11 0.66 1.05 7 0.12 0.69 3.47 7 0.12 0.69 5.79

c_v40_0.10 9 0.13 0.77 1.41 10 0.13 0.78 4.59 10 0.14 0.78 7.64

In many cases, the H values improve when passing from 300 to 500, or else it remains the
same.

The spacing S values reduce when solutions are uniformly distributed in the Pareto front.
In most of the cases, results obtained by applying the NSGAII behave like that. However, for
the MOEA, the S values often grow when the number of iterations increases. It means the
Pareto front is not uniformly filled. A similar result is obtained for a few particular instances
like c_v40_0.10 using both strategies. In this case, the instance is very sparse and does not
have many different solutions in the Pareto front. This conclusion comes from the fact that
diameters are integer values. Then, for a small and sparse instances, the number of different
solutions in the Pareto front can be limited.

Figures 2 and 3 present the initial population, and the best Pareto front after 100, 300,
and 500 independent runs, respectively, for the MOEA and the NSGAII. Similar results are
obtained for the other instances. |V | − 2 solutions in the initial population are randomly
generated and genetic operators are applied to get the other |V | solutions, which explains
such a distribution in the search space for the first iteration. The best Pareto front found
with 100 iterations is sometimes significantly worse compared to the runs with 300 and
500 iterations. This is the case for the instance se_v60_a600 with the MOEA, and for the
instance c_v100_d10_1 using the NSGAII. Passing from 300 to 500 slightly improves the
Pareto front, but it allows us to make it uniform such as for instance se_v60_a600 solved by
the NSGAII.

The MOEA and the NSGAII have been developed with similar population size and data
structure to encode individuals (trees). However, it is expected that the running time to
perform the same number of iterations differs since they have different operators to classify the
population and different genetic operators. The objective remains to give the same opportunity
in terms of running time for both strategies while performing at least 500 iterations. Then, for
the comparison experiments between MOEA and NSGAII, the stopping criteria have been
set as the maximum running time (rounded up) to compute 500 iterations using one of the
strategies, considering the number of vertices of the instances for each test set.

6.2.2 Comparison experiments between the MOEA and the NSGAII

Computational results comparing the MOEA and the NSGAII are presented in Tables 4, 5,
6 and 7, respectively for the sets G, L , R, and T . Each line corresponds to an instance, and
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Fig. 2 Population evolution for the MOEA strategy

the two first columns depict its name and the running time in seconds. Then, metrics Q, S,
and H values are shown for both MOEA and NSGAII. Symbol (−) means the metric values
have not been computed since there are less than or equal to two solutions in the Pareto front.
Values in bold denote whenever the metric H is better for one of the strategies. We highlight
values for H since it is a pertinent metric of the Pareto front quality. The higher the H values
are, the further from θ the Pareto front is.

Considering the number of solutions Q in the Pareto front, for the sets G and R, respec-
tively in Tables 4 and 6, the NSGAII outperforms the MOEA for all instances. For the test
set L (Table 5), the NSGAII finds better results for 17 out of 24 instances, and has obtained
similar results as the MOEA for 7 instances. The results for test set T in Table 7 slightly
differ from the previous ones. The NSGAII finds better results than the MOEA for 8 out
of 20 instances, and 9 similar results. The MOEA produces three better results than the
NSGAII.
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Fig. 3 Population evolution for the NSGAII strategy

Table 4 Results for the MOEA
and the NSGAII using instances
from [10]

Instances Time MOEA NSGAII

Q S H Q S H

se_v40_a400 60 10 0.18 0.82 13 0.13 0.81

sr_v40_a400 60 7 0.14 0.61 8 0.16 0.65

se_v60_a600 100 10 0.27 0.76 19 0.15 0.88

sr_v60_a600 100 6 0.17 0.48 13 0.20 0.79

The NSGAII has got better S values than the MOEA for 2 out of 4, 16 out of 24, 19 out of
20, and 12 out of 20, respectively for results in Tables 4, 5, 6, and 7. It is important to mention
that the position of a solution in the search space will significantly impact on the spacing
S values. Sometimes, even if Q and H values improve, the spacing can be worse. This is
the case of the instance s_v20_a50_d7 (Table 5). It shows that solutions are not uniformly
distributed in the Pareto front.
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Table 5 Results for the MOEA and the NSGAII using instances from [19]

Instances Time MOEA NSGAII

Q S H Q S H

c_v10_a45_d4 10 7 0.14 0.60 7 0.12 0.62

c_v10_a45_d5 10 3 0.68 0.23 4 0.29 0.54

c_v10_a45_d6 10 4 0.51 0.46 4 0.28 0.55

c_v10_a45_d7 10 7 0.14 0.61 7 0.14 0.64

c_v10_a45_d8 10 5 0.17 0.56 5 0.17 0.56

c_v10_a45_d10 10 6 0.14 0.63 6 0.24 0.66

c_v15_a105_d4 15 8 0.25 0.72 10 0.18 0.78

c_v15_a105_d5 15 8 0.25 0.72 10 0.18 0.78

c_v15_a105_d8 15 5 0.27 0.55 6 0.24 0.65

c_v15_a105_d10 15 8 0.25 0.72 10 0.18 0.78

c_v25_a300_d4 25 12 0.16 0.72 12 0.17 0.79

c_v25_a300_d5 25 11 0.21 0.70 12 0.19 0.81

c_v25_a300_d6 25 12 0.18 0.72 13 0.17 0.81

c_v25_a300_d8 25 11 0.14 0.73 13 0.17 0.84

c_v25_a300_d9 25 8 0.24 0.61 9 0.19 0.73

s_v20_a50_d4 20 7 0.20 0.74 8 0.18 0.75

s_v20_a50_d5 20 7 0.34 0.66 8 0.24 0.75

s_v20_a50_d6 20 7 0.15 0.60 7 0.16 0.65

s_v20_a50_d7 20 6 0.16 0.61 7 0.29 0.77

s_v20_a50_d8 20 6 0.16 0.51 7 0.20 0.66

s_v40_a100_d4 30 12 0.19 0.84 17 0.16 0.85

s_v40_a100_d5 30 8 0.33 0.71 12 0.10 0.79

s_v40_a100_d6 30 8 0.23 0.64 9 0.15 0.76

s_v60_a150_d5 40 7 0.29 0.50 13 0.14 0.73

In terms of H values, the NSGAII produces better results than the MOEA for 61 out of
68 instances for the four test sets. It is worse only for three instances. The NSGAII found
Pareto fronts of good quality for most of the cases. The crowding distance operator plays
an important role since it manages the population diversity very well. As a consequence, it
helps to improve the Pareto front along the NSGAII iterations.

Figure 4 illustrates the best Pareto front obtained by using the proposed MOEA and the
NSGAII, and optimal values for some diameters for the BDMST from [11,29]. We notice
that the NSGAII manages to find some optimal values for the BDMST or else to be close to
them. It is important to highlight that the search space for bi-MDCST is larger than the one
for the BDMST problems. Thus, it is an interesting and promising result, especially because
the methods proposed in [11,29] are very sophisticated exact algorithms for the BDMST. The
NSGAII produces good quality results for the bi-MDCST, and it works consistently well.

Figure 5 illustrates the best Pareto front for the NSGAII and the MOEA using a sample
of instances from different test sets. It clearly shows the MOEA is not able to find solutions
whenever the diameter increases, as it is the case for instances se_v40_a400 and c_v70_d7_3.
An opposite problem happens when the MOEA is not able to find solutions for small diameters
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Table 6 Results for the MOEA and the NSGAII using instances from [24]

Instances Time MOEA NSGAII

Q S H Q S H

c_v50_d5_1 60 14 0.16 0.77 22 0.06 0.74

c_v50_d5_2 60 18 0.11 0.72 22 0.13 0.84

c_v50_d5_3 60 12 0.15 0.64 18 0.11 0.80

c_v50_d5_4 60 11 0.14 0.57 16 0.12 0.70

c_v50_d5_5 60 12 0.13 0.63 14 0.08 0.74

c_v70_d7_1 120 12 0.14 0.63 18 0.10 0.81

c_v70_d7_2 120 13 0.20 0.76 29 0.13 0.89

c_v70_d7_3 120 15 0.17 0.76 24 0.09 0.85

c_v70_d7_4 120 9 0.23 0.60 23 0.11 0.81

c_v70_d7_5 120 14 0.11 0.69 21 0.10 0.81

c_v100_d10_1 180 8 0.30 0.31 30 0.10 0.88

c_v100_d10_2 180 10 0.29 0.64 29 0.09 0.88

c_v100_d10_3 180 9 0.31 0.62 18 0.14 0.84

c_v100_d10_4 180 8 0.28 0.49 26 0.10 0.84

c_v100_d10_5 180 10 0.33 0.71 25 0.10 0.86

c_v250_d15_1 450 2 – – 17 0.21 0.76

c_v250_d15_2 450 2 – – 21 0.16 0.84

c_v250_d15_3 450 3 0.32 0.22 14 0.26 0.72

c_v250_d15_4 450 5 0.50 0.32 19 0.18 0.78

c_v250_d15_5 450 6 0.40 0.30 16 0.17 0.81

as illustrated by the instance c_v50_d5_1. In any case, we notice the main problem of the
MOEA strategy is managing the population diversity.

6.2.3 Comparison experiments between the metaheuristics and the optimization in two
phases

Results produced by the optimization in two phases are compared to the corresponding point
in the Pareto front produced by the MOEA and by the NSGAII. Table 8 shows, for each
instance, the optimal solution values defined by its diameter D∗ and its cost C∗, followed
by the total running time in seconds to perform the two optimization phases. It important
to mention that such running time is the one required to compute a single solution. The
Pareto front is composed of several solutions. Considering the diameter D∗, a deviation in
percentage between the optimal cost value and the best cost value found so far by the MOEA
and by the NSGAII for the corresponding diameter is depicted in the columns named gap. The
symbol “*” means the metaheuristic did not return a result for the corresponding diameter.
This situation can occur since the heuristics discard dominated solutions considering the final
population. The last column time depicts the running time in seconds given for both MOEA
and NSGAII.

The NSGAII manages to find optimal values for the corresponding diameter for 8 out of
10 instances. Clearly, the NSGAII and the MOEA fail to obtain solutions when D = 5 which
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Table 7 Results for the MOEA and the NSGAII using instances proposed here

Instances Time MOEA NSGAII

Q S H Q S H

c_v15_0.2 10 2 – – 3 0.29 0.64

c_v15_0.3 10 5 0.07 0.59 5 0.09 0.60

c_v15_0.4 10 5 0.11 0.57 5 0.23 0.59

c_v20_0.2 15 4 0.25 0.29 4 0.13 0.41

c_v20_0.3 15 2 – – 3 0.47 0.48

c_v20_0.4 15 5 0.11 0.49 6 0.17 0.61

c_v25_0.2 20 6 0.34 0.58 6 0.14 0.59

c_v25_0.3 20 3 0.52 0.29 4 0.31 0.70

c_v25_0.4 20 7 0.31 0.69 7 0.19 0.69

p_v25_0.08 20 2 – – 2 – –

p_v25_0.09 20 6 0.15 0.66 6 0.14 0.66

p_v30_0.08 25 4 0.29 0.49 4 0.13 0.59

p_v30_0.09 25 4 0.06 0.30 5 0.13 0.44

p_v30_0.10 25 6 0.23 0.52 7 0.11 0.66

p_v35_0.08 30 8 0.21 0.65 6 0.16 0.77

p_v35_0.09 30 2 – – 1 – –

p_v35_0.10 30 5 0.23 0.62 6 0.29 0.71

p_v40_0.08 35 5 0.21 0.36 4 0.28 0.58

p_v40_0.09 35 4 0.51 0.45 4 0.27 0.55

p_v40_0.10 35 8 0.20 0.29 9 0.16 0.77

is a not suprising result since small diameters D = 4 and D = 5 are known to be difficult to
solved.

In spite of the gap obtained for the instance c_v20_0.3, the NSGAII found optimal values
for all other instances in a much smaller running time compared to the multiflow formulation.

7 Concluding remarks and perspectives

In this work, a general multiflow formulation is proposed for the bi-MDCST inspired by
the BDMST formulation proposed in [10]. To the best of our knowledge, it is the first
mathematical formulation using multiflow for the bi-MDCST. Some polynomial solvable
cases and bounds on the search space are presented. Moreover, this work also brings important
contributions in terms of metaheuristics, a MOEA and a NSGAII metaheuristics have been
developed for the bi-MDCST.

In addition, an optimization in two phases has been introduced, considering the diameter
as the priority objective. Optimal values and lower bounds have been computed for sparse
instances. The results indicate the general multiflow formulation is able to solve sparse and
small instances. Moreover, they show expected behavior: when density increases, the tree
diameter reduces and the problem is harder to solve.
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Fig. 4 Comparison experiments between the MOEA, the NSGAII, and optimal solutions for the BDMST

In terms of metaheuristics, the proposed MOEA is inspired by the work [28], with improve-
ments in the size of population and data structures to encode trees. However, results indicate
such a strategy fails to manage the population diversity. The NSGAII proposed in [7] has
been applied to the bi-MDCST. The results show the NSGAII produces very good quality
results for the bi-MDCST, and it works consistently well compared to the MOEA. Moreover,
we also point out that the results produced by the NSGAII are very close to those produced
by sophisticated exact methods for the BDMST, for some instances. This is a very interesting
and promising result. The better performance of the NSGAII is probably due to the two oper-
ators used for evaluating and selecting individuals in the population. They allow an accurate
management of diversity.

Regarding future work, there is room for improvements of the proposed bi-MDCST math-
ematical formulation, as well as investigating other formulations. Exact algorithms to solve
the bi-MDCST such as branch-and-bound, and the Parallel Partitioning Method can also be
developed. Moreover, we intend to improve the NSGAII by adding new genetic operators
and new moves to the local search procedure. Other multi-objective metaheuristics could
also be developed.
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Fig. 5 Comparison experiments between the MOEA and the NSGAII
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Table 8 Deviation of the MOEA and the NSGAII compared to the optimization in two phases

Instances Optimization in phases MOEA NSGAII Time

D∗ C∗ Time Gap Gap

c_v15_0.2 7 497 77.1 0.00 0.00 10

c_v15_0.3 4 635 76.0 0.00 0.00

c_v15_0.4 4 465 30,863.00 10.06 0.00

c_v20_0.2 5 980 29,124.0 * * 15

c_v20_0.3 5 618 326,657.4 * 4.63

p_v25_0.09 18 1,146 208.1 0.00 0.00 20

p_v25_0.10 16 1,323 41.2 0.00 0.00

p_v30_0.08 20 1,858 312.7 0.00 0.00 25

p_v30_0.09 14 1,407 49,342.1 * 0.00

p_v30_0.10 17 1,315 272,150.5 7.85 0.00
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