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Abstract

The generalized vehicle routing problem with flexible fleet size (GVRP-flex) extends the classical capacitated
vehicle routing problem (CVRP) by partitioning the set of required nodes into clusters and has interesting
applications such as humanitarian logistics. The problem aims at minimizing the total cost for a set of
routes, such that each cluster is visited exactly once and its total demand is delivered to one of its nodes. An
exact method based on column generation (CG) and two metaheuristics derived from iterated local search
are proposed for the case with flexible fleet size. On five sets of benchmarks, including a new one, the CG
approach often provides good upper and lower bounds, whereas the metaheuristics find, in a few seconds,
solutions with small optimality gaps.

Keywords: generalized vehicle routing problem; column generation; splitting procedure; iterated local search; humanitar-
ian logistics; disaster response

1. Introduction

Natural disasters often cause irreparable and dramatic losses to populations and the environment.
An efficient organization of relief operations is essential to mitigate these effects and reduce the
risks of overmortality and propagation. Even when the relief agencies and their donors can provide
abundant aid, its distribution can be seriously impaired if the logistic aspects are neglected. The re-
cent large-scale disasters such as the 2010 earthquake in Haiti or the 2004 tsunami in Indonesia have
highlighted the consequences of logistic deficiencies. For instance, only 5% of the ruins were cleared
away in the capital of Haiti one year after the earthquake. A more efficient logistic management in
humanitarian disasters is then a promising application field for operations research.

Disaster relief operations require efficient evacuation or delivery of resources such as medical staff
or equipment to damaged sites, spread over a vast area. The road network is often so damaged that
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the first wave of relief is performed by planes. To save time, the resources are dropped at one of the
airports that is still operational in each region, the local authorities dealing with the distribution in
the rest of the region. The regions to be visited are not necessarily administrative, they can be defined
by other criteria such as proximity, easy distribution from the selected airport (e.g., a connected
component of the residual road network), geographical restrictions (e.g., a valley surrounded by
high mountains), etc. This kind of distribution can also be applied to archipelagos, if one delivery
harbor selected for each island.

These situations can be modeled as a generalized vehicle routing problem with flexible fleet size
(GVRP-flex), an extension of the capacitated vehicle routing problem (CVRP) in which the set of
customers is partitioned into clusters. From a depot with a fleet of vehicles of known capacity, the
problem aims at minimizing the total distance for a set of routes, such that each cluster is visited
exactly once, the total demand of a cluster is delivered to one of its required node, and vehicle
capacity is respected.

This work is inspired by humanitarian logistics but this is not a case study. Our concern is to
propose several strategies to solve a core problem, the GVRP-flex. The objective is not only to
develop software components for humanitarian logistics, but also to have efficient solution methods
for the GVRP-flex. After a literature review in Section 2 the problem and basic notations are
introduced in Section 3 An exact method based on column generation is proposed in Section 4 while
Section 5 reports a splitting procedure called by iterated local search (ILS) based metaheuristics
described in Section 6. This splitting procedure is used to deduce a feasible GVRP-flex solution
from a giant tour. Computational results are presented in Section 7, followed by concluding remarks
in Section 8.

2. Literature review

2.1. Vehicle routing in humanitarian logistics

The location and transportation issues in disaster management have attracted many operational
research (OR) specialists, impulsing a stream of research called “emergency logistics” or “humani-
tarian logistics.” The reader may refer to three good surveys as entry points. Altay and Green (2006)
review the literature on disaster operations management and split the activities into four phases:
mitigation, preparedness, response, and recovery. More recently, de la Torre et al. (2012) consider
several families of problems and OR models: allocation policies, needs assessment, uncertainty in
demands and supplies, vehicles, and routes. Caunhye et al. (2012) distinguish between predisaster
operations (short-notice evacuation, stock prepositioning, facility location for shelters, stores, and
medical centers) and postdisaster activities (relief distribution, casualty transportation).

The subset of transportation problems in disaster management is not limited to vehicle routing
for distributing relief. For instance, Saadatseresht et al. (2009) propose a genetic algorithm to solve
an evacuation planning problem. Yi and Özdamar (2007) study a dynamic problem combining
evacuation of injured people and deliveries, modeled by flow techniques. In fact, the three surveys
cited before show that vehicle routing problems that take place in the response phase still receive
little attention.
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As we have not found publications on the applications of GVRP or GVRP-flex to emergency
logistics, we give a few examples of vehicle routing problems already studied in this field. There are
two main groups of existing works.

The first group consists of variants of the CVRP, but with different objective functions. For
instance, Campbell et al. (2008) minimize the average arrival time (min-avg VRP) or the latest
arrival time (min-max VRP) at customers. Using insertion heuristics and a comparison with CVRP
solutions, they show that these two approaches result in faster delivery, but at the expense of a
higher total transportation cost. In Ngueveu et al. (2010), the authors solve the min-avg VRP (that
they call cumulative VRP) using a memetic algorithm, that is, a genetic algorithm hybridized with
a local search procedure. Ribeiro and Laporte (2012) improve their results using an adaptive large
neighborhood search (LNS). In the same vein, Huang et al. (2012) formulate different performance
metrics taking into account efficacy (speed or sufficiency of deliveries), efficiency (total travel time
for selected routes), and equity (e.g., the spread of service levels across nodes).

The second group copes with more complex and specialized vehicle routing problems, which
can differ considerably according to the kind of disaster considered and the operations to be
performed. For instance, Van Hentenryck et al. (2011) worked on restoring water, electricity, and
gas infrastructures after hurricanes. The general objective is to repair, as fast as possible, these
structures to minimize the affected population, which includes not only vehicle routing for the
last mile but also strategic decisions such as stockpiling of power system supplies (Coffrin et al.,
2011). The results from this research have provided recommendations for the Homeland Security
Department in the United States.

Barbarosoglu et al. (2002) propose an interactive approach to route helicopters, with compli-
cations such as refueling operations and pilots with specialized skills. Results are presented for a
simplified scenario inspired from a real disaster in Turkey. A warehouse location-routing problem
with three objectives submitted by the Austrian Red Cross is described by Rath and Gutjhar (2011):
warehouses must be selected among potential sites and routes must be constructed from the open
sites. Lin et al. (2011) describe a tactical vehicle routing problem over a multiperiod horizon, with
a limited fleet, soft time windows, several commodities with urgency levels, and penalties for late
deliveries. The objective combines the total travel time and sum of penalties. Berkoune et al. (2012)
consider several products too, but their version over a single period involves several distribution
centers (DC), one heterogeneous fleet per DC, and loading/unloading times for each vehicle type.
Vehicles may do several trips, subject to a maximum working time.

2.2. GVRP research

The literature on the GVRP is even more scarce than its uncapacitated version, the generalized
traveling salesman problem (GTSP). The GVRP was introduced in 2000 by Ghiani and Improta
(2000). These authors present a transformation of the GVRP into the capacitated arc routing
problem (CARP) and solve one instance with 50 nodes, 24 effective clusters, and 1 artificial cluster
for the depot, via a metaheuristic called CARPET. Baldacci et al. (2010) show that a number
of classical problems can be modeled as a GVRP, for example, the traveling salesman problem
with profits, the periodic VRP, and the VRP with selective backhauls. However, no computational
experiments are reported.
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Concerning exact methods, Kara and Bektas (2003) published integer linear formulations for the
GVRP and the GTSP. Solving directly by means of CPLEX, these authors report results for several
GTSP instances and the 24-cluster GVRP used in Ghiani and Improta (2000). The latter is solved
to optimality but in 17,600 seconds on a 1.1 GHz PC. Quite recently, Bektas et al. (2011) designed
a branch-and-cut procedure and a LNS for the GVRP with limited fleet.

Regarding heuristics, Pop et al. (2011) describe greedy algorithms (inspired by the nearest neighbor
principle and the Clarke–Wright savings heuristic for the CVRP) and local search procedures, but
without computational experiments. Two other papers provide numerical results, but for different
versions of the GVRP: Moccia et al. (2011) develop a tabu search for the GVRP with time windows
and limited fleet, a problem inspired by the location of stops for school bus routing, and test it
on instances with and without time windows. Finally, Pop et al. (2010) design a genetic algorithm
for the split GVRP, in which the total demand of a cluster can be supplied by more than one
vehicle.

This short review shows that very few solution methods, either exact or heuristic, are available
for the GVRP, explaining perhaps the scarcity of possible applications to relief distribution in the
literature on emergency logistics. This motivated us to design algorithms able to tackle large GVRP
instances.

3. Problem definition and notation

The GVRP-flex is defined on a complete undirected graph G = (V, E ). The node-set V contains
one depot-node 0 and n demand nodes, indexed from 1 to n. A fleet of homogeneous vehicles with
capacity Q is based on the depot. The fleet is here virtually unlimited, that is, the number of vehicles
used is a decision variable in our algorithms. A demand di is associated with each demand node i.
In the edge-set E , edge [i, j] models a shortest path linking nodes i and j in the real network, with
a precomputed cost ci j (distance or travel time). Thus, the triangular inequality holds.

The set V is partitioned into m clusters, that is, V = C0 ∪ C1 ∪ . . . ∪ Cm and Ci ∩ Cj = ∅, ∀i, j ≤
m, i �= j. C0 is an artificial cluster reduced to the depot while the other clusters, called “effective
clusters,” contain demand nodes. |Cj |, ∀ j = 1, 2, . . . , m, denotes the number of nodes belonging to
cluster Cj . The total demand of cluster Cj is denoted as q j = ∑

i∈Cj
di. To ensure problem feasibility,

q j ≤ Q for each cluster Cj, j = 1, 2, . . . , m.
The GVRP-flex consists in determining a set of routes with minimum total distance. Each route

is a cycle performed by one vehicle that leaves the depot, visits a subset of clusters, and returns to
the depot. Each cluster is visited by exactly one vehicle and its total demand is delivered to one of
its nodes, called the “active node.” The total demand satisfied by a route must fit vehicle capacity.

Figure 1 illustrates the optimal solution for 12-24-ST (where ST stands for small trips), one
instance with 12 effective clusters and 24 nodes used in Section 7 for computational evaluations.
The dotted lines are cluster borders. The black points indicate the nodes in each cluster while the
small black square corresponds to the depot. In this example, five vehicles are used to serve all
clusters.

Note that the GVRP-flex contains two special cases, known to be NP-hard: the CVRP corresponds
to clusters containing one node each, while the GTSP is the single-vehicle or uncapacitated version.
Thus, the GVRP-flex is also NP-hard.
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Fig. 1. Example of GVRP-flex instance with an optimal solution.

4. Column generation method

To be able to solve instances of reasonable size, the GVRP-flex is reformulated in this section using
Dantzig–Wolfe decomposition, with binary variables associated with the choice of routes. As the
number of possible routes is extremely large, this problem is solved by a column generation (CG)
approach embedded in a branch-and-bound tree (branch-and-price, B&P). The CG method is well
known and has proved its effectiveness in many routing problems, for example, see Cullen et al.
(1981), Desrosiers et al. (1984), Dror and Langevin (2000). We formulate the master problem as a
set-partitioning problem (SPP) and the CG subproblem as a shortest path problem with resource
constraints, and we describe the branching procedure.

4.1. Set-partitioning model

Let P denote the set of all feasible routes. Each route p ∈ P can be represented by a cost cp and an
m-bit vector γ p whose each element γ

p
i is equal to 1 if the route visits one demand node of cluster

Ci. The cost of a route p is the sum of the costs of the arcs used by this route. We define binary
variables λp taking the value 1 if and only if feasible route p is selected. The GVRP-flex can be
modeled as a SPP, in which the goal is to select a subset of routes with minimum total cost, such
that each cluster is serviced once. As SPP is NP-hard and the number of feasible routes extremely
large, CG is used to solve the relaxed SPP and get a good lower bound, starting with a small subset
of routes P′. The following formulation corresponds to the restricted master problem (RMP).
The objective function (1) to be minimized is the total length of selected routes while constraints
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(2) ensure that each cluster is serviced once.

min
∑

p∈P′
cpλp, (1)

subject to

�i −→
∑

p∈P′
γ

p
i λp = 1 ∀ i = 1, 2, . . . , m, (2)

λp ≥ 0 ∀p ∈ P′. (3)

Each iteration consists in solving a pricing subproblem to add routes to P′. The dual variables �i
associated with constraints (2) are used to calculate the reduced cost of the routes in the subproblem.
Note that �i is the dual value of cluster Ci: as only one node is visited to service the entire cluster,
all nodes in the same cluster have the same dual value. The feasible routes with negative reduced
cost discovered by the subproblem are added to the RMP. The same steps are repeated with the
new dual variables, until the pricing subproblem finds no more feasible routes with negative reduced
cost.

4.2. Elementary shortest path problem with resource constraints

The aim of the pricing subproblem is to find good candidates to enter the basis of the master
problem (1)–(3). A route p is feasible if and only if

� it begins and ends at the depot (node 0);
� the total demand of serviced clusters does not exceed vehicle capacity Q;
� each cluster is serviced at most once by the route.

Hence, the reduced cost of the route p

c̄p = cp −
m∑

i=1

γ
p

i �i. (4)

The pricing subproblem is an elementary shortest path problem with resource constraints solved
using a label-setting algorithm (Feillet et al., 2004). A label lp = (c̄p, Qp, vp, K1

p, . . . , Km
p ) is associ-

ated to every partial route p, where c̄p is the reduced cost, Qp denotes the residual vehicle capacity
(Qp = Q − ∑

i γ
p

i × qi), vp is the last node visited, and Ki
p, 1 ≤ i ≤ m is a binary indicator equal to

1 if and only if cluster Ci is visited by the route. In other words, a partial route is characterized by its
reduced cost and its resource consumptions (vehicle capacity and clusters visited). When multiple
routes lead to the same node, they are compared and dominated labels are discarded. Only the
nondominated labels are extended by the nodes of unexplored clusters. Label lp dominates (weakly)
label lp′ if and only if it visits at least the same clusters without being more expensive:
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� vp = vp′ ,
� c̄p ≤ c̄p′,
� Qp ≥ Qp′,
� Ki

p ≥ Ki
p′ 1 ≤ i ≤ m.

4.3. B&P algorithm

A B&P algorithm is a branch-and-bound procedure in which CG is used to provide good lower
bounds at each node of the search tree. For the incumbent node, our branching procedure determines
the arc a = (v, v′) on which the flow κa = ∑

p|a∈p λp is fractional but closest to 1. Two child nodes
are generated. In the left child, arc a = (v, v′) is made mandatory, that is, all outgoing arcs of node v
and all incoming arcs of v′ (except a) are removed. In the right child, arc a is forbidden, that is, it is
removed from the network. The tree is explored in a depth-first manner. The left node is examined
first to discover solutions more quickly, tracing a branch that stops when all arcs have integer flows
(new feasible solution) or when the node can be pruned. Then a backtrack occurs to treat the right
child of the parent node.

In our tests, the B&P is stopped after 1 hour. Four cases corresponding to growing instance sizes
are possible at the end. In the best case, the tree is completely explored and one exact solution is
obtained. In the second case, the tree is only partially explored and the B&P turns into a heuristic
method that returns distinct lower and upper bounds. In the third case, no branching occurs: the
relaxed LP is completely solved by CG at the root node and we always obtained one feasible solution
by solving the same LP but with integer variables, using CPLEX. The fourth and last case happens
on the largest instances: the initial LP cannot be solved in 1 hour.

5. Splitting procedure

5.1. Methods based on giant tours for CVRP and GTSP

Route-first cluster-second heuristics for vehicle routing problems consist in relaxing vehicle capacity,
computing a Travelling Salesman Problem (TSP) tour that visits each customer exactly once (called
“giant tour”), and splitting it into capacity-feasible trips. Beasley (1983) showed that an optimal
CVRP solution (subject to the sequence) can be deduced from a given giant tour T using a splitting
procedure based on an acyclic auxiliary graph H = (X, A). The node-set X contains one dummy
node 0 and n nodes indexed from 1 to n for the customers. If T is given as an ordered list of
the n customers, any feasible trip (subsequence of customers) (Ti, Ti+1, . . . , Tj ) is modeled in the
arc-set A by one arc (i − 1, j), weighted by the trip cost. The optimal splitting can be obtained by
computing a least-cost path from nodes 0 to n in H , the arcs along this path giving the routes of the
CVRP solution. This can be done in O(nb), where b is the average number of customers in feasible
subsequences.

These ideas have lead to efficient genetic algorithms for the CVRP (Prins, 2004), in which chro-
mosomes encoded as giant tours are evaluated by the splitting procedure. A similar idea was used
by Bontoux et al. (2010) in a memetic algorithm for the GTSP. These authors encode a GTSP
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solution as an ordering T of the m effective clusters and consider an auxiliary graph F with m + 2
node layers. The first and last layers contain only the depot-node, while the others correspond to the
customers in T1, T2, . . . , Tm. One arc links any two customers pertaining to two successive clusters.
The optimal GTSP solution for the given ordering corresponds to a shortest path linking the two
depot copies in F .

5.2. Generalization for the GVRP-flex

Our goal is to design a polynomial splitting procedure for the GVRP-flex, named Split, called in the
ILS-based metaheuristics of Section 6. Let T = (T1, T2, . . . , Tm) be an ordering (giant tour) of the
m clusters. We build a weighted auxiliary graph H = (X, A) with nodes 0 to n. Any subsequence
of clusters (Ti, Ti+1, . . . , Tj ), which can be visited by a feasible GVRP-flex route (total demand
compatible with vehicle capacity), is modeled by one arc (i − 1, j) in A. The weight of this arc
is computed using the method of Bontoux et al. (2010), that is, we compute a shortest path in
another auxiliary graph F with j − i + 3 node layers: one layer reduced to the depot, j − i + 1
layers corresponding to the customers of clusters Ti, Ti+1, . . . , Tj , and one final layer with the
depot.

Figure 2 gives a small example for four clusters and vehicle capacity Q = 10. The left part shows
the cluster ordering, with the Bontoux et al. (2010) method applied to subsequence (T2, T3, T4).
The auxiliary graph F is here the subgraph induced by the required nodes of T2, T3, and T4. The
best route to visit these three clusters (bold segments) is (0, 2, 3, 8, 0), with cost 17. The lower part
illustrates the auxiliary graph H , in which each possible route is represented by one arc weighted by
the route cost, for example, the best route for (T2, T3, T4) is represented by arc (1,4). The shortest
path in H is composed of the two thick arcs, with cost 35. The right part of the figure shows the
resulting GVRP-flex solution with two trips.

Algorithm 1 provides an efficient implementation of Split, in which no auxiliary graph is generated
explicitly. It is based on two nested loops (lines 4 and 7) that browse all feasible subsequences of
clusters (Ti, Ti+1, . . . , Tj ), that is, each arc (i − 1, j) of the implicit auxiliary graph H . For each
subsequence of clusters, the total demand is computed in “load” while the minimum cost of the
route is calculated by a procedure Compute_cost. Label Vj represents the cost of a shortest path
from nodes 0 to j in the implicit auxiliary graph H (value on top of each node in Fig. 2). Whenever
a better path is found to reach node j, Vj is updated, Pj stores the predecessor of j on this path,
and a Store_route procedure records the last route of the path (route associated with the current
subsequence).

Compute_cost is described in Algorithm 2. The trick for a low complexity is to deduce the best
route for the input subsequence of clusters (Ti, Ti+1, . . . , Tj ) from intermediate results computed in
the previous call for (Ti, Ti+1, . . . , Tj−1). To do so, a label Wu is calculated for each node contained
in the clusters of the subsequence: if u belongs to cluster Tk, Wu is the node of a shortest path
that leaves the depots, visits one node in clusters Ti to Tk−1, and ends at node u ∈ Tk. This path
corresponds to a route, but without the return to the depot. The predecessor of u on this route
is stored in Bu. The vectors W and B are stored as global variables to be preserved between two
calls.
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Fig. 2. Example for the splitting procedure.

For each node u ∈ Tj , the best route to u is arc (0, u) if j = i (line 3). Otherwise (lines 7–13),
the procedure adds arc (v, u) to the routes ending at each node v ∈ Tj−1 and updates label Wu
when improved. Lines 14–17 add arc (u, 0) to return to the depot and memorize the best route
as a pair (cost, y), y being the last demand node. These results are necessary for tracing the route
back.

Store_route (Algorithm 3) records the best route for the subsequence of clusters (Ti, Ti+1, . . . , Tj ).
Using the last node u and the predecessors stored in B (computed by Compute_cost), the route is
traced backwards and its demand nodes are stored in row j of an m × m matrix S of demand nodes.

Finally, using Algorithm 4, the GVRP-flex solution can be extracted from the shortest path
computed in graph H . The algorithm begins at the last node (cluster) m and backtracks using
predecessors Pj . The solution is encoded as a list containing the customers of successive trips,
separated by depot copies. For each node j of H , the trip corresponding to the arc ending at j on
the shortest path has been stored in S by Store_route.

Note that Split gives an optimal GVRP-flex solution, subject to the order defined by the giant
tour. It is also easy to show that there exist optimal giant tours, that is, tours yielding an optimal
GVRP-flex solution after splitting. Hence, it is possible to design metaheuristics that search the
space of giant tours, like the ones presented in the next section.

C© 2013 The Authors.
International Transactions in Operational Research C© 2013 International Federation of Operational Research Societies



162 H.M. Afsar et al. / Intl. Trans. in Op. Res. 21 (2014) 153–175

Algorithm 1: General structure of Split for one giant tour T

V (0) ← 0;1

P (0) ← 0;2

for i ← 1 to m do Vi ← ∞;3

for i ← 1 to m do4

j ← i;5

load ← 0;6

repeat7

load ← load + q(T (j));8

if load ≤ Q then9

Compute cost (T, i, j, cost, y);10

if V (i − 1) + cost < V (j) then11

V (j) ← V (i − 1) + cost;12

P (j) ← i − 1;13

Store route (y, S, j);14

end15

j ← j + 1;16

end17

until (load > Q) or (j > m);18

end19

return (Vm , P, B)20

If b is the average number of clusters per route (average out-degree of the nodes in H), it is
possible to show that Split runs in O(n2b/m). If m = n (one customer per cluster), we find the O(nb)

complexity already mentioned for the CVRP in Section 5.1.

6. ILS-based metaheuristics

6.1. Principles and general structure

ILS is a simple but effective metaheuristic, which has been successfully applied to a number of
optimization problems (Lourenço et al., 2002). Starting from one initial local optimum S, each
iteration takes a copy of S, applies a perturbation procedure, and improves the perturbed copy
using a local search procedure. S is updated if the resulting child-solution is better. As ILS has
produced high-quality results for vehicle routing problems (Prins, 2009; Nguyen et al., 2012), we
propose an ILS-based metaheuristic dedicated to the GVRP-flex, with additional components such
as a restart procedure. We refer to this version as the multi-start ILS (MS-ILS) heuristic. We also
propose a relaxed version (R-ILS), in which the incumbent solution S is updated at each iteration,
even if the child is not better.

The key feature of our MS-ILS is to alternate between the space of giant tours and the space
of GVRP solutions. The internal ILS begins with one pair (S, T ), where S is a GVRP solution
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Algorithm 2 : Algorithm for Compute cost

cost ← ∞;1

for each u ∈ T (j) do2

if j = i then3

Wu ← c0u;4

Bu ← 0;5

else6

Wu ← ∞;7

for each v ∈ Tj−1 do8

if Wv + cvu < Wu then9

Wu ← Wv + cvu;10

Bu ← v;11

end12

end13

if Wu + cu0 < cost then14

cost ← Wu + cu0;15

y ← u;16

end17

end18

end19

Algorithm 3 : Algorithm for Store route
u ← j − i + 2;1

k ← y;2

repeat3

u ← u − 1;4

Sju ← k;5

k ← Bk;6

until k = 0;7

Algorithm 4 : Algorithm to extract the GVRP-flex solution

L ← ∅;1

j ← m;2

repeat3

i ← Pj + 1;4

insert at the beginning of L the route (0, Sj1, Sj2, . . . , Sj,j−i+1, 0);5

j ← Pj ;6

until j = 0;7
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computed via a heuristic and T, the giant tour obtained by concatenating its routes. Then, each
ILS iteration performs four steps: (I) a random perturbation is applied to a copy T ′ of T ; (II) T ′

is converted into a GVRP solution S′ via Split; (III) S′ is improved using a local search procedure;
(IV) if S′ outperforms S, it replaces S and its routes are concatenated to get a giant tour T , giving
the pair (S, T ) for the next iteration. The ILS is embedded in a main loop that restarts it from
several initial solutions.

The process is detailed in Algorithm 5, before presenting the components. The input parameters
are the maximum number of restarts (nb r) and, for each internal ILS, the maximum number
of restarts (nb ils) and the maximum number of iterations without improving the best solution S
(nb f ). S∗ denotes the global best solution. As 90% of the running time is spent in the calls to the local
search, we preferred to define a “computing budget” budget = nb r × nb ils (line 2) and to stop the
internal ILS and the main loop after budget calls to the local search, instead of doing a fixed number
of restarts. The idea is to allow more restarts on instances for which the ILS has a fast convergence.

The main loop (lines 4–29) launches successive ILS and records the global best solution S∗.
The first pair (S, T ) of each ILS is computed in lines 5–8, starting with the heuristic GiantTour
explained in the sequel. The ILS loop (lines 10–25) implements the cyclic alternation between the
two search spaces, as explained previously, using the procedures Perturbation, Split, LocalSearch,
and Concatenate. The counter cont f is incremented when the current best solution of the ILS (S)
is not improved, otherwise it is reset to zero. The ILS stops after nb f iterations without improving
its best solution S, after a total of nb ils iterations, or when the budget is exhausted.

The relaxed version (R-ILS) is identical, except that lines 18 and 19 are moved before line 17 to
always accept the new solution. This nonstandard ILS generates a trajectory in which the cost may
temporarily increase, rather than staying on the incumbent solution S and applying perturbation
and local search until a better solution is found.

6.2. Initial giant tours

The initial giant tour of each ILS is built by a method inspired by the geometric sweep heuristic for
the CVRP (Laporte et al., 2000). The use of spatial (geographical) information is a tactical decision,
particularly in the context of disaster logistics management. The heuristic initially computes the
centroid of each cluster as follows: if (xi, yi) denotes the geographical coordinates of each node
i ∈ V \{0}, the centroid coordinates (x̄ j, ȳ j ) of each cluster j = 1 . . . m are given in Equation (5).
Then, the polar angle of each centroid is computed, taking the depot as origin, and the clusters are
sorted in increasing order of these angles to give an ordered list L. Finally, the giant tour starts at
the depot, visits the ordered clusters, and returns to the depot.

∀ j = 1 . . . m : x̄ j =
∑

i∈Cj
xi

|Cj|
and ȳ j =

∑
i∈Cj

yi

|Cj|
. (5)

To get a distinct tour for each restart, the first cluster visited is shifted and the list L is browsed
circularly each time the GiantTour heuristic is called: the first giant tour is (L1, L2, . . . , Ln), the
second one (L2, L3, . . . , Ln, L1), and so on.
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Algorithm 5 : MS-ILS pseudo-code

Input: nb r, nb ils, nb f

cost(S∗) ← ∞;1

budget ← nb r × nb ils;2

cont b ← 0;3

repeat4

GiantTour (T );5

S ← Split (T );6

LocalSearch (S);7

T ← Concatenate (S);8

cont ils, cont f ← 0;9

while ( (cont ils < nb ils) and (cont f < nb f) and (cont b < budget) ) do10

cont ils ← cont ils + 1;11

T ← T ;12

Perturbation (T );13

S ← Split (T );14

LocalSearch (S );15

cont b ← cont b + 1;16

if ( cost(S ) < cost(S) ) then17

S ← S ;18

T ← Concatenate (S);19

cont f ← 0;20

end21

else22

cont f ← cont f + 1;23

end24

end25

if ( cost(S) < cost(S∗) ) then26

S∗ ← S;27

end28

until ( cont b < budget );29

6.3. Perturbation and local search

The perturbation is applied to giant tours, not to GVRP solutions. It consists in exchanging two
randomly selected clusters.

Swap and relocation moves are used in the local search procedure that is applied to each new
GVRP solution. A swap is an exchange of two clusters, while a relocation removes one cluster to
reinsert it in a different position. The two moves are applied to one or two routes. Vehicle capacity
must be checked for inter-route moves only. Swap moves are evaluated before relocations. The cost
variation of each move is quickly computed, assuming that the active nodes of involved clusters
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are preserved. As soon as an improving move is detected, it is accepted and the current solution
is updated (first-improvement strategy). A further improvement can be obtained by recomputing
for each affected route the best active nodes in visited clusters, using the dynamic programming
method developed by Bontoux et al. (2010) for the GTSP and recalled in Section 5.1. This process
is repeated until no improvement is possible.

Concerning complexity, the number of swap moves is O(m2) since they are applied to each pair
of effective clusters (the cluster containing the depot is not considered). There are also O(m2)

relocations, because the m effective clusters can be inserted in O(m) different positions. Each move
can be evaluated in O(1). For a route containing k effective clusters E1, E2, . . . , Ek, the complexity
of the dynamic programming procedure applied after each accepted move is linear in the number
of arcs |E1| + ∑k−1

i=1 |Ei| · |Ei+1| + |Ek|.

7. Computational experiments

The computational experiments were carried out on an Intel Core 2 Duo with 3 GHz clock and
4 GB of RAM. Five sets of benchmark instances were used. They are detailed in Section 7.1. The
CG is coded in C++ and coupled with the MIP solver CPLEX 12.0 using default parameters. Its
running time is limited to 1 hour. The MS-ILS and R-ILS metaheuristics have been developed in
ANSI C. After preliminary experiments, both MS-ILS and R-ILS have been tuned with the same
parameters: number of restarts nb r = 20, maximum number of iterations per ILS nb ils = 100,
maximum number of iterations without improvement nb f = 20. The computing budget is then
budget = nb r × nb ils = 2000 calls to the local search.

7.1. Sets of instances

Among the five sets of benchmarks used in our tests, three consist of GVRP instances from published
papers, one is derived from VRPTW instances (VRP with time windows), while the last one is a
new set that uses a different cluster construction detailed below.

Pop et al. (2011) used instances eil51, eil76, and eil101 from the TSPLIB, added demands and
defined �n/5� clusters using a clustering approach proposed by Fischetti et al. (1997). However, as
they handled the split GVRP, they selected small vehicle capacities to oblige several routes to visit
the same cluster. They got seven instances using two capacities for eil51, three for eil76, and two for
eil101. We kept the networks, demands, and clusters but set vehicle capacity to the maximum cluster
demand, multiplied by α ∈ {1.5, 2.0}. This gives the first set (P) with six instances, from 51 nodes
and 11 clusters to 101 nodes and 21 clusters. The instance names contain the value of α, followed
by the TSPLIB file name.

The second set (A) contains only one instance with 51 nodes and 24 clusters, derived by Araque
et al. (1994) from a CVRP instance and used by Ghiani and Improta (2000).

The third set (S) reuses the networks and demands of three VRPTW instances with 101
nodes (c101, r101, and rc101) proposed by Solomon (1987). Time windows are dropped while
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clusters and vehicle capacities are determined as for set (P). The six resulting instances contain 21
clusters.

The fourth set (B), adapted from the CVRP library available at http://branchandcut/
VRP/data/, was used by Bektas et al. (2011) and Moccia et al. (2011). Bektas et al. (2011) solved
these GVRP instances but with a fixed fleet. In this set composed of two subsets (B1) and (B2) of
74 instances each, instances have clusters with up to four sites. In the naming format X -nY -kZ-C�-
V �, X corresponds to the instance type, Y to the number of vertices, Z to the number of vehicles
in the original CVRP instance, � to the number of clusters, and � to the number of vehicles in the
resulting GVRP instance. Set B1 contains instances with 32–101 nodes and 16–51 clusters. In set
B2, the number of nodes varies in the same interval but there are 11–34 clusters.

The purpose of the comparison with the work of Bektas et al. (2011) is rather to convince
decision makers that ignoring the constraint on fleet size does not lead to major changes in
terms of cost and number of vehicles. As we will see, we can sometimes reduce the total du-
ration or length of the routes at the expense of one additional vehicle, which is important in
humanitarian logistics, and in particular in this research that takes place in a project on disaster
response.

The fifth set (APS; for Afsar, Prins, and Santos) contains elongated clusters inspired by the valleys
or peninsulas that can be found in disaster logistics, as mentioned in the introduction. It consists
of 20 new instances randomly generated using a different cluster construction method. The region
is divided into elementary squares, and some pairs of adjacent squares (vertically or horizontally)
are randomly merged to get a mix of small squares and rectangles. The set is made of five groups
of four instances, with a number of clusters m ∈ {12, 25, 50, 75, 100}. The four instances in each
group comprise two subgroups of two instances: one with small clusters (at most three nodes per
cluster on average) and one with larger clusters (at least five customers on average). Each subgroup
of two includes one ST problem with short trips (two or three clusters per trip on average) and
one LT with longer trips (five to seven clusters per trip). For many vehicle routing problems such
as the CVRP, it is well known that instances with long trips are harder to solve, at least for exact
methods. The resulting instances range from 12 clusters and 24 customers to 100 clusters and 504
customers, with a file name format m-n-ST or LT. The smallest one, 12-24-ST, is illustrated in
Fig. 1.

Note that comparisons with published methods are not possible for sets (P) and (S) (instances
are modified for our GVRP version) and for the set of new instances (APS). Solution costs can be
compared for the unique instance of set (A) and, when our algorithms find the same number of
vehicles as Bektas et al. (2011), for set (B).

7.2. Results

Tables 1–5 provide the numerical results. The instance names are followed by the results obtained
using CG, MS-ILS, and R-ILS. Concerning CG, the best lower bound (LB), the best upper bound
(UB) and the running time in seconds are provided. For each metaheuristic, the best solution value
(UB), the running time in seconds, and the relative gap in percent to the lower bound produced by
CG are listed. Asterisks denote proven optima. Null times represent durations smaller than 0.01
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Table 1
Numerical results for Pop, Araque, Solomon, and APS instances

Column generation MS-ILS R-ILS

Instances m Q LB UB t(s) UB t(s) Gap(%) UB t(s) Gap (%)

1.5-eil51 11 186 258.24 258.24* 0.24 258.24* 0.14 0.00 258.24* 0.13 0.00
1.5-eilA76 16 267 376.82 376.82* 0.15 379.17 0.30 0.62 376.82* 0.28 0.00
1.5-eilA101 21 320 414.86 414.86* 6.78 429.53 0.54 3.54 414.86* 0.52 0.00
2-eil51 11 248 239.53 239.53* 0.06 239.53* 0.17 0.00 239.53* 0.16 0.00
2-eilA76 16 356 329.31 329.31* 2.58 332.37 0.35 0.93 329.31* 0.35 0.00
2-eilA101 21 426 375.82 386.71 131.95 390.63 0.65 3.94 386.82 0.63 2.93
v51c24 24 15 541.00 541.00* 1772.58 541.00* 0.89 0.00 541.00* 0.73 0.00
1.5-c101 21 255 2476.90 2476.90* 0.29 2476.90* 0.51 0.00 2476.90* 0.47 0.00
2-c101 21 340 2383.69 2383.69* 0.97 2383.69* 0.56 0.00 2383.69* 0.51 0.00
1.5-rc101 21 300 761.02 761.02* 237.79 762.43 0.77 0.19 761.02* 0.51 0.00
2-rc101 21 400 682.89 682.89* 718.69 682.89* 0.65 0.00 682.89* 0.60 0.00
1.5-r101 21 320 624.86 624.86* 8.32 639.53 0.58 2.35 626.56 0.55 0.27
2-r101 21 426 596.68 596.68* 2137.32 600.63 0.63 0.66 596.82 0.63 0.02
12-24-ST 12 200 504.37 504.37* 0.01 504.37* 0.13 0.00 504.37* 0.11 0.00
12-24-LT 12 200 354.64 354.64* 5.28 354.64* 0.21 0.00 354.64* 0.19 0.00
12-72-ST 12 200 506.08 506.08* 0.17 506.08* 0.13 0.00 506.08* 0.13 0.00
12-72-LT 12 200 290.29 290.29* 28.26 290.29* 0.31 0.00 290.29* 0.30 0.00
25-54-ST 25 200 1006.29 1006.29* 19.49 1006.29* 0.79 0.00 1006.29* 0.48 0.00
25-54-LT 25 200 585.88 589.27 1969.87 589.27 0.80 0.58 589.27 0.68 0.58
25-162-ST 25 200 858.75 858.75* 327.76 860.57 0.91 0.21 858.75* 0.60 0.00
25-162-LT 25 200 560.88 593.16 1821.87 581.31 1.22 3.64 581.28 1.04 3.64
50-121-ST 50 500 1566.95 1580.72 77.60 1609.83 3.31 2.74 1595.50 2.12 1.82
50-121-LT 50 500 – – – 1150.81 4.22 – 1147.26 2.49 –
50-283-ST 50 500 1655.23 1655.23* 84.76 1682.58 3.64 1.65 1668.27 2.16 0.79
50-283-LT 50 500 – – – 1135.82 4.27 – 1120.69 2.86 –
75-150-ST 75 500 2788.43 2805.14 857.91 2830.27 14.16 1.50 2821.24 5.06 1.18
75-150-LT 75 500 – – – 1482.35 13.64 – 1461.64 6.81 –
75-400-ST 75 500 2643.42 2664.47 787.05 2693.37 13.34 1.89 2666.54 4.71 0.87
75-400-LT 75 500 – – – 1425.73 10.81 – 1398.16 6.24 –
100-216-ST 100 500 4130.81 4159.25 1230.29 4265.72 33.35 3.27 4213.20 9.32 1.99
100-216-LT 100 500 – – – 1972.63 29.45 – 1958.01 12.04 –
100-504-ST 100 500 3661.55 3676.79 1103.67 3763.73 22.52 2.79 3711.60 8.46 1.37
100-504-LT 100 500 – – – 2210.71 23.25 – 2182.75 10.64 –

second. Empty cells means that the linear program at the root of the B&P tree cannot be solved in
1 hour.

Table 1 depicts results for Pop, Araque, Solomon, and APS instances (33 instances). The
CG method solves to optimality 19 instances in less than 36 minutes: All instances are of
sets (P), (A), and (S), except instance 2-eilA101 that displays an optimality gap of 2.9%.
Solutions with a maximum gap of 0.9% (for 50-121-ST) are obtained for all APS instances
with ST. The biggest ST instance solved exactly is 50-283-ST (50 clusters and 283 nodes). As
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expected, LT instances with longer routes look harder: no solution is found from 50 clusters
onward.

For these test sets, MS-ILS and R-ILS, respectively, reach 11 and 16 optima of the 19 found
by CG. For the others, when the CG lower bound is available, solutions are obtained in at most
34 seconds and the gaps never exceed 4%. R-ILS is always faster than MS-ILS and it provides
strictly better solutions when MS-ILS is not optimal. It is important to mention that for some
instances, such as 25-162-LT, the CG approach is not optimal, so the gaps computed using the CG
lower bound overestimate the real gap.

As already mentioned, we have run our algorithms on the fourth test set (B) with limited fleet
sizes to see if solutions with smaller mileage or duration, important in disaster logistics, could
be obtained. Due to page length, results for subset (B1) are split over Tables 2 and 3, the ones
for subset (B2) being listed in Tables 4 and 5. All these tables include additional columns for the
results of Bektas et al. (2011): the fleet size K (minimum number of vehicles, computed using a
bin-packing algorithm), and the upper bound UB found using an LNS. Columns K for MS-ILS
and R-ILS indicate the number of vehicles used, while all other columns have been previously
defined.

For our algorithms, an asterisk means that our version of the GVRP with a flexible fleet
size is solved to optimality. Values in boldface indicate an improvement in terms of cost com-
pared with results produced in Bektas et al. (2011), but sometimes at the expense of one more
vehicle. Finally, costs in italics mean they are slightly worse than those found in Bektas et al.
(2011).

On subset (B1), the CG method fails on 22 instances of 74, all with more than 50 nodes, but
provides good results for the 52 others, including 12 optima. On these 52 instances, the same
solutions as LNS are found 32 times (same cost, same number of vehicles), better costs are obtained
4 times but with one vehicle more, and a bit higher costs 16 times. MS-ILS finds 53 times the
same solution as LNS, 4 times a better solution at the expense of an extra vehicle, and 17 times a
slightly degraded cost but with the same vehicles (except on P-n60-k10-C30-V5 that requires one
supplementary vehicle). For R-ILS, these numbers are, respectively, 65, 4, and 5. R-ILS always
outperforms MS-ILS, except for the last instance of Table 3, while being substantially faster. Note
that our two metaheuristics reach the 12 optima of CG.

For subset (B2), CG looks more robust. It fails only 10 times of 74 and gets 29 optima
among the 64 other solutions. CG retrieves 42 LNS solutions, improves four costs (two with
one additional vehicle and two without), and provides slightly degraded solutions in 18 cases.
MS-ILS finds the same solutions as LNS for 60 instances. It provides better costs with the
same vehicles in three cases, better costs with an extra vehicle in two cases, and augmented
costs with the same number of vehicles in nine cases. These numbers become, respectively, 68,
3, 2, and 1 for R-ILS. All optima of CG are achieved by R-ILS while only one is missed by
MS-ILS.

Concerning running times, the maximum duration of the CG approach is 36 minutes. The
LNS lasts at most 1.87 seconds. Our two metaheuristics are also quite fast: they need more than
2.5 seconds only for the last instance of Table 3.

Summarizing, our approach and the algorithms of Bektas et al. (2011) look complemen-
tary. Our policy concerning the number of vehicles pays more attention to the application
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Table 2
Numerical results for subset (B1) of Bektas instances

Bektas Column generation MS-ILS R-ILS

Instances K UB LB UB t(s) UB K t(s) Gap (%) UB K t(s) Gap (%)

A-n32-k5-C16-V2 2 519 489.67 508 24.07 508 3 0.34 3.74 508 3 0.31 3.74
A-n33-k5-C17-V3 3 451 441.00 451 12.03 451 3 0.42 2.27 451 3 0.36 2.27
A-n33-k6-C17-V3 3 465 462.50 465 3.61 465 3 0.37 0.54 465 3 0.31 0.54
A-n34-k5-C17-V3 3 489 485.83 489 18.87 489 3 0.42 0.65 489 3 0.37 0.65
A-n36-k5-C18-V2 2 505 492.18 502 496.57 502 3 0.46 2.00 502 3 0.35 2.00
A-n37-k5-C19-V3 3 432 432.00 432* 7.70 432* 3 0.55 0.00 432* 3 0.45 0.00
A-n37-k6-C19-V3 3 584 578.57 584 170.39 584 3 0.46 0.94 584 3 0.37 0.94
A-n38-k5-C19-V3 3 476 473.33 476 33.58 476 3 0.55 0.56 476 3 0.43 0.56
A-n39-k5-C20-V3 3 557 527.24 559 485.14 557 3 0.65 5.64 557 3 0.52 5.64
A-n39-k6-C20-V3 3 544 538.58 544 741.56 544 3 0.5 1.01 544 3 0.46 1.01
A-n44-k6-C22-V3 3 608 607.52 608 1957.23 608 3 0.64 0.08 608 3 0.45 0.08
A-n45-k6-C23-V4 4 613 587.25 613 220.37 613 4 0.74 4.38 613 4 0.66 4.38
A-n45-k7-C23-V4 4 674 640.00 682 825.87 674 4 0.79 5.31 674 4 0.58 5.31
A-n46-k7-C23-V4 4 593 571.25 593 1154.88 593 4 0.71 3.81 593 4 0.56 3.81
A-n48-k7-C24-V4 4 667 644.00 669 1174.62 668 4 0.81 3.73 667 4 0.66 3.57
A-n53-k7-C27-V4 4 603 597.70 603 215.55 603 4 1.20 0.89 603 4 0.87 0.89
A-n54-k7-C27-V4 4 690 669.48 693 150.03 690 4 1.02 3.07 690 4 0.77 3.07
A-n55-k9-C28-V5 5 699 675.12 701 42.94 699 5 1.13 3.54 699 5 0.85 3.54
A-n60-k9-C30-V5 5 769 – – – 769 5 1.44 – 769 5 0.87 –
A-n61-k9-C31-V5 5 638 624.67 638 2132.60 639 5 1.24 2.29 638 5 0.99 2.13
A-n62-k8-C31-V4 4 740 – – – 740 4 1.61 – 740 4 1.09 –
A-n63-k9-C32-V5 5 912 – – – 912 5 1.52 – 912 5 1.04 –
A-n63-k10-C32-V5 5 801 – – – 801 5 1.33 – 801 5 1.01 –
A-n64-k9-C32-V5 5 763 – – – 764 5 1.50 – 763 5 1.04 –
A-n65-k9-C33-V5 5 682 – – – 682 5 1.53 – 682 5 1.29 –
A-n69-k9-C35-V5 5 680 – – – 689 5 2.22 – 680 5 1.53 –
A-n80-k10-C40-V5 5 997 – – – 997 5 2.40 – 997 5 1.75 –
B-n31-k5-C16-V3 3 441 377.80 447 449.20 441 3 0.45 16.73 441 3 0.34 16.73
B-n34-k5-C17-V3 3 472 435.85 477 380.79 472 3 0.49 8.29 472 3 0.42 8.29
B-n35-k5-C18-V3 3 626 584.46 647 2007.23 626 3 0.44 7.11 626 3 0.45 7.11
B-n38-k6-C19-V3 3 451 444.67 451 96.38 451 3 0.56 1.42 451 3 0.41 1.42
B-n39-k5-C20-V3 3 357 350.00 357 40.24 357 3 0.72 2.00 357 3 0.62 2.00
B-n41-k6-C21-V3 3 481 475.15 481 39.82 481 3 0.70 1.23 481 3 0.62 1.23
B-n43-k6-C22-V3 3 483 458.25 499 1237.85 483 3 0.65 5.40 483 3 0.58 5.40
B-n44-k7-C22-V4 4 540 498.49 558 1294.98 540 4 0.63 8.33 540 4 0.57 8.33
B-n45-k5-C23-V3 3 497 493.39 498 124.81 497 3 0.81 0.73 497 3 0.79 0.73
B-n45-k6-C23-V4 4 478 445.49 478 1066.63 478 4 0.95 7.30 478 4 0.70 7.30
B-n50-k7-C25-V4 4 449 449.00 449* 70.51 449* 4 1.16 0.00 449* 4 0.96 0.00
B-n50-k8-C25-V5 5 916 – – – 922 5 0.87 – 917 5 0.62 –
B-n51-k7-C26-V4 4 651 634.60 654 1081.40 651 4 0.97 2.58 651 4 0.82 2.58
B-n52-k7-C26-V4 4 450 – – – 450 4 1.04 – 450 4 0.90 –
B-n56-k7-C28-V4 4 486 – – – 486 4 1.29 – 486 4 1.05 –
B-n57-k7-C29-V4 4 751 – – – 751 4 1.54 – 751 4 1.09 –
B-n57-k9-C29-V5 5 942 – – – 947 5 1.15 – 944 5 0.88 –
B-n63-k10-C32-V5 5 816 – – – 816 5 1.53 – 816 5 1.12 –

Continued
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Table 2
Continued

Bektas Column generation MS-ILS R-ILS

Instances K UB LB UB t(s) UB K t(s) Gap (%) UB K t(s) Gap (%)

B-n64-k9-C32-V5 5 509 – – – 509 5 1.61 – 509 5 1.42 –
B-n66-k9-C33-V5 5 808 – – – 809 5 1.66 – 809 5 1.28 –
B-n67-k10-C34-V5 5 673 – – – 673 5 1.72 – 673 5 1.40 –
B-n68-k9-C34-V5 5 704 – – – 705 5 1.71 – 704 5 1.40 –
B-n78-k10-C39-V5 5 803 – – – 809 5 2.43 – 803 5 1.79 –
P-n16-k8-C8-V5 5 239 239.00 239* 0.00 239* 5 0.04 0.00 239* 5 0.04 0.00
P-n19-k2-C10-V2 2 147 147.00 147* 8.09 147* 2 0.15 0.00 147* 2 0.13 0.00
P-n20-k2-C10-V2 2 154 154.00 154* 15.90 154* 2 0.16 0.00 154* 2 0.14 0.00
P-n21-k2-C11-V2 2 160 160.00 160* 57.42 160* 2 0.19 0.00 160* 2 0.16 0.00
P-n22-k2-C11-V2 2 162 162.00 162* 32.81 162* 2 0.18 0.00 162* 2 0.16 0.00
P-n22-k8-C11-V5 5 314 314.00 314* 0.06 314* 5 0.12 0.00 314* 5 0.12 0.00
P-n23-k8-C12-V5 5 312 312.00 312* 9.00 312* 5 0.13 0.00 312* 5 0.11 0.00
P-n40-k5-C20-V3 3 294 294.00 294* 478.65 294* 3 0.59 0.00 294* 3 0.53 0.00
P-n45-k5-C23-V3 3 337 337.00 337* 1002.55 337* 3 0.82 0.00 337* 3 0.68 0.00
P-n50-k10-C25-V5 5 410 404.00 412 4.9 413 5 0.68 2.23 410 5 0.60 1.49
P-n50-k7-C25-V4 4 353 341.30 353 35.00 353 4 0.80 3.43 353 4 0.77 3.43
P-n50-k8-C25-V4 4 392 370.00 372 9.10 373 5 0.81 0.81 372 5 0.67 0.54
P-n51-k10-C26-V6 6 427 427.00 427* 0.89 427* 6 0.82 0.00 427* 6 0.58 0.00
P-n55-k10-C28-V5 5 415 407.22 415 10.38 415 5 0.94 1.91 415 5 0.81 1.91

Table 3
Numerical results for subset (B1) of Bektas instances (continued)

Bektas Column generation MS-ILS R-ILS

Instances K UB LB UB t(s) UB K t(s) Gap (%) UB K t(s) Gap (%)

P-n55-k15-C28-V8 8 555 546.32 551 2.05 551 9 0.81 0.86 551 9 0.61 0.86
P-n55-k7-C28-V4 4 361 346.89 361 225.13 361 4 1.13 4.07 361 4 0.95 4.07
P-n55-k8-C28-V4 4 361 351.86 363 105.94 361 4 1.06 2.60 361 4 0.91 2.60
P-n60-k10-C30-V5 5 443 431.75 447 19.98 445 6 1.18 3.07 445 5 0.97 3.07
P-n60-k15-C30-V8 8 565 557.17 565 3.02 566 8 1.06 1.58 565 8 0.80 1.41
P-n65-k10-C33-V5 5 487 485.11 489 1280.91 490 5 1.38 1.01 487 5 1.04 0.39
P-n70-k10-C35-V5 5 485 484.91 485 1542.81 486 5 1.57 0.22 485 5 1.24 0.02
P-n76-k4-C38-V2 2 383 – – – 390 2 2.35 – 383 2 1.92 –
P-n76-k5-C38-V3 3 405 – – – 413 3 2.33 – 405 3 1.96 –
P-n101-k4-C51-V2 2 455 – – – 456 2 6.19 – 457 2 3.95 –

context—disaster logistics. We prefer to avoid fixing the number of vehicles a priori to focus on
solution cost (mileage or duration). This approach looks profitable, since in most cases the author-
ities will need a minimal fleet and obtain sometimes better costs by investing in one additional
vehicle.
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Table 4
Numerical results for subset (B2) of Bektas instances

Bektas Column generation MS-ILS R-ILS

Instances K UB LB UB t(s) UB K t(s) Gap(%) UB K t(s) Gap (%)

A-n32-k5-C11-V2 2 386 386.00 386* 13.64 386* 2 0.20 0.00 386* 2 0.17 0.00
A-n33-k5-C11-V2 2 318 313.50 316 0.69 315 2 0.20 0.48 315 2 0.18 0.48
A-n33-k6-C11-V2 2 370 370.00 370* 1.28 370* 2 0.18 0.00 370* 2 0.16 0.00
A-n34-k5-C12-V2 2 419 408.80 422 1.72 419 2 0.21 2.50 419 2 0.20 2.50
A-n36-k5-C12-V2 2 396 396.00 396* 118.09 396* 2 0.22 0.00 396* 2 0.20 0.00
A-n37-k5-C13-V2 2 347 347.00 347* 0.49 347* 2 0.30 0.00 347* 2 0.27 0.00
A-n37-k6-C13-V2 2 431 431.00 431* 40.18 431* 2 0.23 0.00 431* 2 0.19 0.00
A-n38-k5-C13-V2 2 367 367.00 367* 1.62 367* 2 0.28 0.00 367* 2 0.28 0.00
A-n39-k5-C13-V2 2 364 364.00 364* 82.30 364* 2 0.27 0.00 364* 2 0.25 0.00
A-n39-k6-C13-V2 2 403 403.00 403* 2.18 403* 2 0.24 0.00 403* 2 0.21 0.00
A-n44-k6-C15-V2 2 503 491.00 491* 24.46 491* 3 0.34 0.00 491* 3 0.33 0.00
A-n45-k6-C15-V3 3 474 474.00 474* 43.03 474* 3 0.34 0.00 474* 3 0.31 0.00
A-n45-k7-C15-V3 3 475 460.20 475 39.55 475 3 0.35 3.22 475 3 0.29 3.22
A-n46-k7-C16-V3 3 462 451.00 464 13.48 462 3 0.36 2.44 462 3 0.34 2.44
A-n48-k7-C16-V3 3 451 442.00 451 68.12 451 3 0.40 2.04 451 3 0.34 2.04
A-n53-k7-C18-V3 3 440 433.50 440 70.92 440 3 0.55 1.50 440 3 0.47 1.50
A-n54-k7-C18-V3 3 482 479.25 483 809.83 482 3 0.52 0.57 482 3 0.42 0.57
A-n55-k9-C19-V3 3 473 473.00 473* 8.24 473* 3 0.53 0.00 473* 3 0.40 0.00
A-n60-k9-C20-V3 3 595 583.50 596 1190.53 595 3 0.57 1.97 595 3 0.47 1.97
A-n61-k9-C21-V4 4 473 469.36 478 37.78 473 4 0.59 0.78 473 4 0.56 0.78
A-n62-k8-C21-V3 3 596 579.54 616 1540.94 596 3 0.68 2.84 596 3 0.55 2.84
A-n63-k10-C21-V4 4 593 588.20 599 191.38 593 4 0.68 0.82 593 4 0.53 0.82
A-n63-k9-C21-V3 3 642 629.84 642 647.42 644 3 0.67 2.25 642 3 0.48 1.93
A-n64-k9-C22-V3 3 536 529.36 546 1464.32 536 3 0.75 1.25 536 3 0.66 1.25
A-n65-k9-C22-V3 3 500 500.00 500* 69.23 500* 3 0.62 0.00 500* 3 0.6 0.00
A-n69-k9-C23-V3 3 520 514.20 521 312.42 520 3 0.77 1.13 520 3 0.71 1.13
A-n80-k10-C27-V4 4 710 – – – 710 4 1.07 – 710 4 0.85 –
B-n31-k5-C11-V2 2 356 314.00 357 10.18 356 2 0.22 13.38 356 2 0.17 13.38
B-n34-k5-C12-V2 2 369 342.33 369 6.84 369 2 0.24 7.79 369 2 0.23 7.79
B-n35-k5-C12-V2 2 501 455.80 510 10.92 501 2 0.24 9.92 501 2 0.25 9.92
B-n38-k6-C13-V2 2 370 370.00 370* 1.35 370* 2 0.27 0.00 370* 2 0.26 0.00
B-n39-k5-C13-V2 2 280 280.00 280* 0.57 280* 2 0.32 0.00 280* 2 0.29 0.00
B-n41-k6-C14-V2 2 407 387.75 412 9.69 407 2 0.32 4.96 407 2 0.33 4.96
B-n43-k6-C15-V2 2 343 342.80 344 24.78 343 2 0.36 0.06 343 2 0.30 0.06
B-n44-k7-C15-V3 3 395 381.00 395 14.32 395 3 0.33 3.67 395 3 0.29 3.67
B-n45-k5-C15-V2 2 422 407.29 412 7.11 410 2 0.38 0.67 410 2 0.40 0.67
B-n45-k6-C15-V2 2 336 – – – 336 2 0.37 – 336 2 0.35 –
B-n50-k7-C17-V3 3 393 383.50 397 9.75 393 3 0.48 2.48 393 3 0.47 2.48
B-n50-k8-C17-V3 3 598 590.24 598 125.49 598 3 0.40 1.31 598 3 0.31 1.31
B-n51-k7-C17-V3 3 511 501.33 511 30.83 511 3 0.48 1.93 511 3 0.45 1.93
B-n52-k7-C18-V3 3 359 348.00 359 12.27 359 3 0.55 3.16 359 3 0.53 3.16
B-n56-k7-C19-V3 3 356 346.00 357 436.08 356 3 0.66 2.89 356 3 0.55 2.89
B-n57-k7-C19-V3 3 558 517.67 576 308.50 558 3 0.65 7.79 558 3 0.55 7.79
B-n57-k9-C19-V3 3 681 – – – 681 3 0.54 – 681 3 0.49 –
B-n63-k10-C21-V3 3 599 599.00 599* 1260.49 599* 3 0.70 0.00 599* 3 0.55 0.00
B-n64-k9-C22-V4 4 452 447.20 452 54.33 452 4 0.73 1.07 452 4 0.67 1.07
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Table 5
Numerical results for subset (B2) of Bektas instances (continued)

Bektas Column generation MS-ILS R-ILS

Instances K UB LB UB t(s) UB K t(s) Gap (%) UB K t(s) Gap (%)

B-n66-k9-C22-V3 3 609 – – – 609 3 0.84 – 609 3 0.64 –
B-n67-k10-C23-V4 4 558 – – – 558 4 0.80 – 558 4 0.77 –
B-n68-k9-C23-V3 3 523 – – – 523 3 0.82 – 523 3 0.66 –
B-n78-k10-C26-V4 4 606 – – – 606 4 0.99 – 606 4 0.87 –
P-n16-k8-C6-V4 4 170 170.00 170* 0.17 170* 4 0.03 0.00 170* 4 0.03 0.00
P-n19-k2-C7-V1 1 111 111.00 111* 0.03 111* 1 0.09 0.00 111* 1 0.09 0.00
P-n20-k2-C7-V1 1 117 117.00 117* 0.05 117* 1 0.08 0.00 117* 1 0.08 0.00
P-n21-k2-C7-V1 1 117 117.00 117* 0.04 117* 1 0.08 0.00 117* 1 0.08 0.00
P-n22-k2-C8-V1 1 111 111.00 111* 0.04 111* 1 0.11 0.00 111* 1 0.10 0.00
P-n22-k8-C8-V4 4 249 249.00 249* 0.00 249* 4 0.00 0.00 249* 4 0.06 0.00
P-n23-k8-C8-V3 3 174 174.00 174* 0.01 174* 3 0.07 0.00 174* 3 0.07 0.00
P-n40-k5-C14-V2 2 213 213.00 213* 7.17 213* 2 0.30 0.00 213* 2 0.27 0.00
P-n45-k5-C15-V2 2 238 238.00 238* 5.28 238* 2 0.31 0.00 238* 2 0.34 0.00
P-n50-k7-C17-V3 3 261 261.00 261* 57.75 261* 3 0.41 0.00 261* 3 0.46 0.00
P-n50-k8-C17-V3 3 262 262.00 262* 0.57 262* 3 0.36 0.00 262* 3 0.41 0.00
P-n50-k10-C17-V4 4 292 292.00 292* 4.57 293 4 0.38 0.34 292* 4 0.36 0.00
P-n51-k10-C17-V4 4 309 309.00 309* 154.52 309* 4 0.35 0.00 309* 4 0.41 0.00
P-n55-k7-C19-V3 3 271 260.67 272 22.53 272 3 0.50 4.35 271 3 0.62 3.96
P-n55-k8-C19-V3 3 274 266.00 274 21.43 275 3 0.51 3.38 274 3 0.55 3.01
P-n55-k10-C19-V4 4 301 293.20 301 4.20 302 4 0.46 3.00 301 4 0.50 2.66
P-n55-k15-C19-V6 6 378 378.00 378* 0.13 378* 6 0.32 0.00 378* 6 0.32 0.00
P-n60-k10-C20-V4 4 325 315.50 327 5.12 327 4 0.49 3.65 325 4 0.53 3.01
P-n60-k15-C20-V5 5 382 368.67 374 1.67 376 6 0.41 1.99 374 6 0.39 1.45
P-n65-k10-C22-V4 4 372 361.80 372 14.49 376 4 0.59 3.92 372 4 0.62 2.82
P-n70-k10-C24-V4 4 385 375.80 385 31.27 386 4 0.73 2.71 385 4 0.71 2.45
P-n76-k4-C26-V2 2 320 – – – 309 2 1.11 – 309 2 1.04 –
P-n76-k5-C26-V2 2 309 – – – 309 2 1.03 – 309 2 1.04 –
P-n101-k4-C34-V2 2 374 – – – 375 2 2.32 – 375 2 1.91 –

8. Conclusions

In this paper, we proposed for the GVRP-flex, an exact solution method based on Dantzig–Wolfe
decomposition and CG, and two metaheuristics derived from ILS. These algorithms can be useful
for a problem that has still a scarce literature, in spite of promising applications in disaster relief
operations.

The results show that the exact approach performs particularly well on compact clusters. The
partial exploration of the B&P tree returns relatively small optimality gaps when demands are rather
homogeneous and vehicle capacity is not very large.

This work also brings important contributions in terms of heuristics. A tour splitting procedure
has been designed for the GVRP-flex and included in the metaheuristics. It allows searching the
space of giant tours instead of the wider set of GVRP-flex solutions. The initial giant tours are built
using a constructive heuristic based on geographical information.
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The proposed metaheuristics produce high-quality results in a few seconds. R-ILS outperforms
MS-ILS in terms of cost and running time, although it does not comply with the standard ILS model:
it moves to a new local optimum even if it deteriorates the incumbent one. The better performance
probably resides in the fact that accepted solutions contain optimal subsequences, since these are
local optima relatively close to the incumbent solution (because of the small perturbation applied).
This strategy avoids being trapped in a few attraction basins.

We plan to address other objective functions to better model emergency and equity in disaster
interventions, and also integrate stochastic issues to tackle uncertainty. We also intend to couple
the metaheuristic approach with the exact method to guide the search.
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