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Abstract. In this article, the Robust Vehicle Routing Problem (RVRP)
with uncertain traveling costs is studied. It covers a number of impor-
tant applications in urban transportation and large scale bio-terrorism
emergency. The uncertain data are defined as a bounded set of discrete
scenarios associated with each arc of the transportation network. The
objective is to determine a set of vehicle routes minimizing the worst
total cost over all scenarios. A mixed integer linear program is proposed
to model the problem. Then, we adapt some classical VRP heuristics to
the RVRP, such as Clarke and Wright, randomized Clarke and Wright,
Sequential Best Insertion, Parallel Best Insertion and the Pilot versions
of the Best Insertion heuristics. In addition, a local search is developed
to improve the obtained solutions and be integrated in a Greedy Ran-
domized Adaptive Search Procedure (GRASP). Computational results
are presented for both the mathematical formulation and the proposed
heuristics.

Keywords: Vehicle routing · Robust optimization · Min-max objec-
tive · Heuristic · Local search · Metaheuristic

1 Introduction

The Vehicle Routing Problem (VRP) is a NP-hard problem which aims at defin-
ing routes for a fleet of vehicles, such that each vehicle starts and ends its tour at a
depot node, each customer is visited once, and vehicle loads comply with vehicle
capacity [1]. Introduced by Dantzig and Ramser [2], the VRP is one of the most
studied problems in combinatorial optimization. One of its main assumptions is
that the parameters and the data are assumed to be deterministic and known in
advance [3–5]. Therefore, a perturbation on the input data could result in subop-
timal or even infeasible solutions [6]. This assumption simplifies the problem but
makes it less realistic since uncertainties occur in most real life contexts. Thus,
a new and important trend consists in investigating extensions of the VRP with
uncertain data, both in terms of theoretical and practical issues.
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In the last years, VRP problems with parameters affected by uncertainties
have been treated by using stochastic approaches, which models uncertainties
through random variables with known probability distribution [7–10]. The robust
optimization approach is an alternative to stochastic programming, designed as
a mean to protect solutions against undesirable impacts due to incomplete or
imprecise information on the data. It has been introduced in [11] and applied
to a number of applications such as portfolio optimization [12], transportation
[13], supply chain management [14] and network design problems [15].

The Robust Vehicle Routing Problem (RVRP) usually refers to uncertain
data in the given instances: time windows, traveling costs, demands etc. This
study considers the RVRP where each arc is weighted by an uncertain traveling
cost or time. This version has important applications in urban transportation
and evacuation problems such as large scale bio-terrorism emergency. The RVRP
considered in this work is defined on a connected and directed graph G = (V,A)
with a set V = {0, 1, 2...n} of n vertices (customers), including the depot (0),
and a set A = {(i, j)|i, j ∈ V, i �= j} of arcs. Uncertain data are modeled here as
a set of p discrete scenarios S = {1, 2, ...p}, where each scenario k ∈ S specifies
one cost ckij ∈ R to each arc (i, j) ∈ A. Moreover, a demand di is associated with
each customer i ∈ V and a fleet of identical vehicles F = {1, 2, ..m}, located at
the depot, is available. Each vehicle has capacity equal to Q. A solution is a set
of vehicle routes starting and ending at the depot, visiting each customer once
and respecting vehicles capacity. Its cost is the total cost of traversed arcs. We
consider a min-max objective: the worst cost of the solution over all scenarios
must be minimized.

This work brings the following contributions. We handle uncertain data as
a bounded set of discrete scenarios for the costs of the arcs in a directed net-
work (the VRP literature considers undirected graphs with symmetric costs).
This situation reflects for instance transit problems in urban networks. A simple
mathematical formulation is introduced for this RVRP. Then, we propose several
constructive heuristics such as the Clarke and Wright (CW), Randomized CW
(RCW), Parallel Best Insertion (PBI), Sequential Best Insertion (SBI), Pilot
Parallel Best Insertion (PPBI) and Pilot Sequential Best Insertion (PSBI). In
addition, more sophisticated strategies, such as local search and Greedy Ran-
domized Adaptive Search Procedure (GRASP) are elaborated. To the best of
our knowledge, no heuristic has been published in the literature to solve the
RVRP investigated in this study.

The remaining of this work is organized as follows: a bibliographical review
is introduced in Sect. 2, followed by a description of a mathematical formulation
in Sect. 3. Then, the proposed heuristics are detailed in Sect. 4. Finally, the com-
putational experiments and concluding remarks are respectively given in Sects. 5
and 6.

2 Related Works

Some works in the literature deal with the RVRP, mainly with uncertain data
associated with time windows, travel times, travel costs or demands. We present



386 E.L. Solano-Charris et al.

in this section the main works which either apply robust optimization tech-
niques and some entry points for research applying stochastic programming for
the RVRP. The pioneer work [16] addresses the RVRP with uncertain demands
and time windows. Analytical results on cluster-first route-second heuristics are
given for large scale RVRPs. A survey which outlines the RVRP models with
uncertainties related to demands, travel times and cost coefficients can be found
in [17]. Some issues on applying stochastic programming and robust optimiza-
tion are also discussed. Reference [18] provides a more extended review on the
RVRP.

The RVRP with uncertain demands is probably the most investigated case.
For instance, a Branch-and-Bound (B&B) algorithm is proposed by [19] which
considers the min-max optimization criterion. The authors analyze the trade-off
between robust solutions and deterministic solutions. The computational results
show that the robust solution can protect from unmet demand while incurring
a small additional cost over the deterministic optimal routes. Furthermore, a
Particle Swarm Optimization (PSO) strategy integrating a local search is pro-
posed in [6]. The PSO results are compared with the B&B proposed by [19], and
performs well when costs are affected by small perturbations. The authors in
[20] adapted the two-index and three-index VRP formulations and another one
using the Miller, Tucker and Zemlin (MTZ) subtour elimination constraints. A
Branch-and-Cut method is applied. The results demonstrate the computational
advantages of the robust rounded capacity inequality cuts for the RVRP and
the robust two-index vehicle flow formulation. Moreover, the price of robustness
using different level of uncertainties is also analyzed.

More recently, the Open Vehicle Routing Problem (OVRP) with uncertain
demands has been investigated by [21]. The OVRP differs from the VRP since
vehicles do not return to the depot. In order to trade off the unmet demands,
four heuristics strategies are considered to obtain the optimal solution when
demands are disturbed, and a differential evolutionary algorithm is proposed.
Instances with up to 199 customers have been tested.

Concerning the RVRP with uncertainties on time windows, a cutting-plane
algorithm is embedded in a B&B method and in a column generation app-
roach based on path inequalities and resource inequalities in [22]. Computational
results are presented using the budget uncertainty polytopes and the results show
that the path inequalities are almost as easy to separate as in the deterministic
VRP case.

Uncertain travel times are handled via stochastic programming in [23]. The
authors consider a two-stage recourse stochastic programming solved by a B&B.
Two strategies “here and now” and “wait and see” are investigated. For the sce-
narios, the authors restrict the number of times an uncertain travel time can have
the worst value. The results show that the approach obtains good solutions when
the penalization over the objective function is small. As far as we know, the only
work dealing with robust optimization strategies for the RVRP with uncertain
travel costs is [24]. The authors considers the RVRP with uncertain travel costs
modeled as interval data. An ant colony algorithm is introduced, where pertur-
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bations are performed on the objective coefficients towards the upper bounds of
the interval data. This work differs from the RVRP focused here, since interval
data are considered instead of discrete scenarios. Moreover, we consider in this
paper a directed network with asymmetric costs.

Finally, the work [25] deals with the RVRP with uncertain data in travel times
and demands. The authors also consider delays. Thus, the number of acceptable
delayed segments are provided in order to determine a supported robustness. A
multiflow formulation solved by Dantzig-Wolfe decomposition scheme are pre-
sented. The solutions are compared with the solutions obtained with the Monte-
Carlo simulation and show that a robust solution can be improved with a small
penalty in the optimal value.

3 Mathematical Formulation

A Mixed Integer Linear Programming (MILP) formulation for the min-max
RVRP is given from (1) to (10). It makes use of binary variables xij which
defines if an arc (i, j) belongs to the solution (xij = 1) or not (xij = 0). Vari-
ables ti specify the vehicle load when leaving each node i ∈ V . Thus, the variable
t0 associated with the depot is considered only when vehicles leave the depot,
as a consequence t0 = 0.

min Z = δ subject to: (1)
∑

(i,j)∈A

ckijxij ≤ δ ∀k ∈ S (2)

∑

i∈V

xij = 1 ∀j ∈ V \{0} (3)

∑

j∈V

xij = 1 ∀i ∈ V \{0} (4)

∑

i∈V

x0i = m (5)

tj ≥ ti + dj − Q(1 − xij) ∀(i, j) ∈ A, i, j �= 0 (6)
di ≤ ti ≤ Q ∀i ∈ V (7)
xij ∈ {0, 1} ∀(i, j) ∈ A (8)
δ ≥ 0 (9)
ti ≥ 0 ∀i ∈ V (10)

The objective function (1) together with constraints (2) ensure that the worst
total cost is minimized. Equalities (3) and (4) are the classical flow conservation
constraints, which guarantee that only one vehicle arrives at each customer i and
leaves it. Constraints (5) specify that m vehicles leave the depot and return to
it, due to the flow conservation restrictions. Constraints (6) and (7) generalize
the classical MTZ constraints for the TSP [26]. Here they are based on vehicle
loads: if a vehicle visits i then j, its load increases by dj . These constraints
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prevent subtours and ensure that vehicle capacity is respected. Finally, variables
are defined from (8) to (10).

4 Heuristic Methods

Two Clarke and Wright-based heuristics, two insertion-based heuristics, and two
pilot insertion-based heuristics are described below, as well as a local search and
a GRASP. The main differences between the proposed RVRP heuristics and
the similar versions for the VRP found in the literature are mainly the use of
scenarios, the asymmetric arc costs, and a lexicographic approach to compare
decisions in a greedy heuristic and evaluate moves in the local search.

A solution (complete or being constructed) is defined by a set of feasible
routes, the total cost for each scenario k and the worst cost (maximum of these
costs). We first tried implementations that do not degrade the worst cost, but the
results were mitigated. Indeed, several decisions can lead to the same variation of
the worst cost and cannot be distinguished. Moreover, a single move in the local
search is in general not enough to decrease the worst cost: a sequence of moves
is required. The lexicographic approach consists in sorting the costs of a solution
(one per scenario) in non-increasing order, giving what we call the lexicographic
vector of a solution. Then, a solution is said to be better than another solution if
its vector is lexicographically smaller. This strategy is quite fruitful for instance,
in the local search, a sequence of moves can improve progressively the lexico-
graphic vector until the first component (the worst case) decreases. The price to
pay is a multiplication of complexity expressions by O(p log p) to sort the costs
and get the lexicographic vector. However, this extra cost is acceptable if the
number of scenarios is relatively small compared with the number of customers.
Compared to classical VRP heuristics, the algorithms are also complicated by
the directed network. For instance, the cost of a sequence of customers changes
when reversed, contrary to the undirected case.

4.1 Constructive Heuristics

Clarke and Wright-Based Heuristics. The CW heuristic or savings method
is a well-known constructive heuristic for the VRP [27]. Its general idea consists
of concatenating two routes such that the cost saving is maximized. The original
CW heuristic considers symmetric costs associated with the arcs. As mentioned
above, costs are asymmetric. Thus, there are more ways to concatenate two
routes than in the original CW for each scenario. Furthermore, since the opti-
mization criterion considered is a min-max one, edges are sorted in increasing
order of savings instead of decreasing order in the CW.

A randomized version of the CW, referred as RCW is also proposed. The
RCW is based on the CW, but when evaluating the merger of two routes, the
resulting solution cost is increased by a random percentage in the range [0, θ].
Thus, instead of selecting the best savings at each iteration, good moves, not
necessarily the best, can be done. The best concatenation at each iteration is
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determined in O(n2), multiplied by the complexity of the sorting algorithm in
O(p log p). Hence, CW runs in O(n3p log p), where p is the number of scenarios
and n is the number of customers.

Insertion-Based Heuristics. The insertion heuristics have been proposed by
[28]. The best insertion heuristics build a set of feasible routes by selecting seed
customers and inserting them in one of the partial routes already created. At
each iteration, the heuristic expands the current route by inserting the best
unserviced customer, such that the vehicle capacity is ensured. SBI and PBI
heuristics are introduced below.

SBI begins with a single route reduced to a loop on the depot. Best insertions
are performed in the current route and it stops whenever all customers are
attended, or if the new cannot be done because it exceeds the vehicle capacity.
SBI tends to assign few customers to the last vehicle, thus routes are not balanced
considering the number of customers.

PBI employs all vehicles available and fills m routes in parallel, which are
initially empty. Then, at each iteration, the heuristic evaluates all feasible inser-
tions of unrouted customers for every available routes. Since demands cannot be
splitted, PBIH can fail to use m vehicles. In this case, one extra route is created
and the heuristic performs similar steps as the SBIH.

The SBI and PBI mainly differ on the way the routes are built. In the SBI,
a client is inserted at a time, and the routes are filled one after the other. While
in the PBI heuristics, a set of routes are initially available and the customers
are inserted in parallel to each route, i.e. the first customer is assigned for each
route, only then, the second customers is set to the routes, etc. The resulting
solutions can be found in O(n2p log p) by the SBI and for the PBI heuristics in
O(mn2p log p).

Pilot Insertion-Based Heuristics. In the pilot method [29], a main heuristic
calls an auxiliary heuristic (the pilot heuristic) to guide its decisions. We derived
two pilot heuristics from SBI and PBI, called respectively PSBI and PPBI. It
requires partial solutions, generated by the insertion heuristic, and with some
customers already attended. Starting from the depot, the Pilot heuristic tests
at each iteration all possible ways of extending the emerging route, adding to
a route, one customer not visited at a time, following the PSBI. For both the
PSBI and PPBI, a copy of the solution under construction is taken to insert
the customer tested in incumbent partial solution, and the heuristic iterates
by calling the pilot heuristic. The best insertion is performed. The difference
between the PSBI and the PPBI is the way customers are included in the partial
solution, and follows the insertions strategies previously described for the SBI
and PBI. Since the pilot version of a heuristic consist in calling it as a subroutine
at each iteration, the complexity of the non-pilot version is squared, making the
pilot approach time-consuming.
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4.2 Local Search

Relocation, Interchanges, and 2-opt moves are applied in the local search proce-
dure for the RVRP. Each iteration of the local search examines all ordered pairs
of distinct routes (T,U) and evaluates the moves on one route if T = U or oth-
erwise on two routes T �= U . The cost of the solution obtained if the move were
performed is computed for each scenario. The current iteration stops as soon
as a move improving the lexicographic vector of the current solution is detected
(first improvement local search), or if no such move exists.

Interchanges exchanges two chains which may have 1 or 2 customers each.
The lengths of the two swapped chains can be different.

Relocations move one or two adjacent customers to a different position.
2-opt moves intra-routes try to improve a solution by inverting a subsequence

between two customers i and j (included, j must be after i). When T �= U , vehi-
cles capacity must be checked before computing the cost variations. A variant of
2-opt is also proposed considering the asymmetric cost when a route is inverted.
For this variant, the chains of nodes before i and after j are inverted.

Concerning complexity, the number of interchanges moves is O(n2) since
they are applied to each pair of customers. There are also O(n2) relocations,
because the n customers can be inserted in O(n) different positions. There
are also O(n2) 2-opt moves. Each move traditionally evaluated in O(1) is now
checked in O(p log p), due to the construction of the lexicographic vector of the
solution obtained by each move.

4.3 Greedy Randomized Adaptive Search Procedure

The GRASP is a multi-start metaheuristic proposed by [30]. It basically consists
in building at each iteration, an initial solution using a randomized constructive
heuristic, then in improving it by a local search. The best solution found is
kept. GRASP is especially interesting as it only requires two components (a
randomized heuristic and a local search) and very few parameters like the number
of iterations. The GRASP for the RVRP makes use of the RCW heuristic and
the local search presented in Sect. 4.2. The stopping criteria is the number of
iterations which can be fine-tuned.

5 Computational Experiments

The tests were performed on a Dell Precision M6600 with a 2.2 GHz Intel Core
i7-2720QM, 16 GB of RAM and Windows Professional. The proposed heuristics
and metaheuristics were developed in Delphi XE, and the mathematical formu-
lation was tested using GLPK (GNU Linear Programming Kit) under default
parameters. All experiments for the mathematical formulation were carried out
with a runtime limit of four hours. The goals of the experiments are to analyze
the heuristics performance and the impact of using discrete scenarios for the
RVRP.
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Table 1. Results for the constructive and greedy heuristics

Instance name d Q GLPK Gap’(%)

LR LB UB T(s) Gap SBI PBI PSBI PPBI CW RCW

n10-m2-p10 264 150 195.5 217 *217 8.2 0.0 36.4 36.4 5.5 13.4 21.2 4.6

n10-m2-p20 264 175 250.6 284 *284 32.2 0.0 18.0 18.0 15.1 12.0 7.4 2.8

n10-m2-p30 264 200 272.1 301 *301 35.8 0.0 23.9 23.9 16.6 12.3 8.6 4.7

n15-m2-p10 346 200 320.2 346 *346 313.2 0.0 37.9 37.9 24.9 24.3 19.1 9.5

n15-m2-p20 346 230 339.3 373 *373 6,560 0.0 32.4 32.4 21.7 19.3 12.6 6.2

n15-m2-p30 346 260 368.7 398 404 - 1.5 49.0 49.0 25.1 21.4 21.4 9.5

n20-m2-p10 441 250 402.3 419 423 - 1.0 49.6 40.3 29.6 27.0 24.8 16.2

n20-m2-p20 441 300 443.3 460 470 - 2.2 48.9 37.8 26.1 24.3 16.3 9.3

n20-m2-p30 441 350 463.7 481 501 - 4.2 44.3 44.3 25.4 23.9 20.6 14.6

n10-m3-p10 264 95 227.0 255 *255 10.4 0.0 30.6 17.2 6.3 8.2 19.2 4.7

n10-m3-p20 264 105 279.5 316 *316 24.7 0.0 16.8 16.8 12.7 6.6 12.7 0.6

n10-m3-p30 264 115 302.0 337 *337 38.9 0.0 28.8 28.8 10.4 9.8 8.9 0.0

n15-m3-p10 346 120 349.1 381 *381 2,200 0.0 38.6 38.6 13.9 17.3 15.2 1.0

n15-m3-p20 346 140 365.2 399 *399 6,871 0.0 26.1 26.1 18.0 14.5 13.8 4.3

n15-m3-p30 346 160 394.4 426 433 - 1.6 36.9 36.9 22.8 16.4 11.7 5.9

n20-m3-p10 441 160 427.3 443 448 - 1.1 43.1 51.5 32.1 30.0 26.9 17.2

n20-m3-p20 441 175 466.3 481 497 - 3.3 50.3 34.1 23.3 24.9 20.6 15.0

n20-m3-p30 441 190 489.6 508 528 - 3.9 54.3 53.1 23.8 22.8 17.1 16.9

Average 1.0 37.0 34.6 19.6 18.3 16.6 8.4

For the purpose of these experiments, random instances were generated as
follows. The travel cost of each arc and the demand per client is randomly
chosen in [1,50]. The number of vehicles is either 2 or 3. The capacity of vehicles
is selected to ensure a slack of 0.2Q to 0.8Q between the total demand d and
fleet capacity mQ. The number of scenarios is either 10, 20 or 30. The file name
format of each instance is nρ-mβ-pγ, where ρ, β and γ stand respectively for the
numerical values of n, m and p.

Tables 1 and 2 summarize the results for the MILP, the greedy heuristics, the
local search and the GRASP. The MILP results in Table 1 corresponds to the five
columns LR (linear relaxation), LB (best lower bound), UB (best upper bound
(UB), Gap (percentage deviation of the optimum or the best upper bound to
LB), and T (s) (computational time in seconds) except for the instances where
the solver has attained the time limit. In this case, it is referred as “−”. The
last six columns indicate the percentage gap Gap’ between the upper bound
produced by each proposed heuristic and the lower bound achieved by GLPK.
The RCW heuristic is run 50 times with θ = 8%. Due to lack of space, running
times of greedy heuristics are not reported but here after they are commented. In
Table 2, the results produced by the GLPK are recalled, followed by the solution
values and running times for the local search and the GRASP. The local search
is applied to the solution produced by the CW heuristic. The GRASP performs
ncalls = 500 iterations, each of them calling the RCW heuristic with θ = 8%
and the local search. Optimal values are identified by asterisks “∗”.

Results in Tables 1 and 2 demonstrate that in spite of its simple definition,
the RVRP is a very hard problem to solve. In fact, the heuristics which work
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Fig. 1. Heuristic results respectively for the instances with m = 2 and m = 3.

well for the VRP are not able to find a good approximation. The two insertion
heuristics are the fastest (less than 1 ms on average) but lead to very poor average
gaps, 37.0 % for SBI and 34.6 % for PBI.

The pilot heuristics are able to find better solutions, with average gaps of
19.6 % for the PSBI and 18.3 % for the PPBI, and the running time reaches
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Table 2. Results for the heuristic coupled with the local search and the GRASP

Instance name GLPK CW+ LS GRASP

LR LB UB T(s) Gap Cost Gap’ T(s) Cost Gap’ T(s)

n10-m2-p10 195.5 217 *217 8.2 0.0 247 13.8 0.00 *217 0.0 0.28

n10-m2-p20 250.6 284 *284 32.2 0.0 296 4.2 0.00 *284 0.0 0.65

n10-m2-p30 272.1 301 *301 35.8 0.0 307 2.0 0.00 *301 0.0 1.11

n15-m2-p10 320.2 346 *346 313.2 0.0 385 11.3 0.00 347 0.3 1.02

n15-m2-p20 339.3 373 *373 6,560 0.0 410 9.9 0.01 376 0.8 2.39

n15-m2-p30 368.7 398 404 - 1.5 426 7.0 0.01 406 2.0 4.21

n20-m2-p10 402.3 419 423 - 1.0 458 9.3 0.01 436 4.1 2.58

n20-m2-p20 443.3 460 470 - 2.2 508 10.4 0.01 484 5.2 6.22

n20-m2-p30 463.7 481 501 - 4.2 536 11.4 0.02 513 6.7 10.48

n10-m3-p10 227.0 255 *255 10.4 0.0 279 9.4 0.00 *255 0.0 0.22

n10-m3-p20 279.5 316 *316 24.7 0.0 333 5.4 0.00 *316 0.0 0.56

n10-m3-p30 302.0 337 *337 38.9 0.0 348 3.3 0.00 *337 0.0 0.98

n15-m3-p10 349.1 381 *381 2,200.0 0.0 396 3.9 0.00 *381 0.0 0.93

n15-m3-p20 365.2 399 *399 6,871.0 0.0 411 3.0 0.00 *399 0.0 2.25

n15-m3-p30 394.4 426 433 - 1.6 476 11.7 0.01 435 2.1 3.98

n20-m3-p10 427.3 443 448 - 1.1 514 16.0 0.01 464 4.7 2.45

n20-m3-p20 466.3 481 497 - 3.3 540 12.3 0.01 511 6.2 6.01

n20-m3-p30 489.6 508 528 - 3.9 573 12.8 0.02 541 6.5 10.16

Average 9,350.4 1.0 8.7 0.01 2.1 3.14

50 ms on average. In fact, the heuristics with best performances are the CW and
the RCW, as can be seen in Table 2 and in Fig. 1. Indeed, they find solutions
with average gaps of 16.6 % and 8.4 %, respectively. CW is quite fast (5 ms on
average) but the price to pay for RCW and its 50 iterations is an augmented
average duration (around 0.3 s).

Starting from the solution returned by CW, the average gap is lowered from
16.6 % to 8.7 % by the local search, in less than 1 s. It is noticed that the best
solutions for the RVRP were obtained with the GRASP procedure, which is able
to retrieve 8 optima out of the 10 found by GLPK, with a small average gap of
2.1 % in 3.14 s, while GLPK achieves an averaged gap of 1.0 % in 9,350.4 s. This
results show the advantages of using our local search and the GRASP to achieve
small gaps and retrieve most proven optima in competitive computational time.
This good performance probably comes from the combination of a constructive
heuristic, a local search with moves that work well on the RVRP, and the random
sampling of the local optima done by the GRASP in the solution space.

6 Conclusions

This article considers the RVRP with uncertain data associated with the costs
or travel times. In this case, the variation of travel costs in the transportation
network are considered. Constructive and greedy heuristics, a local search and
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a GRASP procedure are proposed. Such strategies have been addressed to deal
with asymmetric costs and also with a set of discrete scenarios.

The experimental results show the RVRP is a hard problem in spite of its
rather simple statement. Among the proposed heuristics, the CW-based heuris-
tics outperform the others, and the local search manages to reduce their solution
gaps. The GRASP is able to find even better solutions, including most proven
optima, in reasonable running times.

Regarding future work, the current mathematical formulation can be strength-
ened and other formulations can be explored. We are currently investigating
other metaheuristics and hybridizations for the RVRP. In addition, other opti-
mization criteria can be studied such as min-max regret and lexicographical
criterion. Finally, we are working on the design of transportation urban net-
works for which uncertainties are modeled as scenarios, to take into account the
delays produced by traffic jams.
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