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Abstract The well-known Shortest Path problem (SP) consists in finding a shortest path
from a source to a destination such that the total cost is minimized. The SP models practical
and theoretical problems. However, several shortest path applications rely on uncertain data.
The Robust Shortest Path problem (RSP) is a generalization of SP. In the former, the cost
of each arc is defined by an interval of possible values for the arc cost. The objective is to
minimize the maximum relative regret of the path from the source to the destination. This
problem is known as the minmax relative regret RSP and it is NP-Hard. We propose a mixed
integer linear programming formulation for this problem. The CPLEX branch-and-bound
algorithm based on this formulation is able to find optimal solutions for all instances with
100 nodes, and has an average gap of 17 % on the instances with up to 1,500 nodes. We also
develop heuristics with emphasis on providing efficient and scalable methods for solving
large instances for the minmax relative regret RSP, based on Pilot method and random-key
genetic algorithms. To the best of our knowledge, this is the first work to propose a linear
formulation, an exact algorithm and metaheuristics for the minmax relative regret RSP.
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1 Introduction

Given a connected digraph G = (V, A) with a set V of nodes and a set A of arcs. Each
arc (i, j) ∈ A is associated to a cost ci j ∈ R. Moreover, let n = |V | and m = |A| be
respectively the total number of nodes and arcs of G. The well-known Shortest Path problem
(SP) consists in finding a shortest path from a source s ∈ V to a destination t ∈ V such
that the total cost is minimized. A solution exists if no negative-weight cycle is reachable
from s to t . Polynomial-time algorithms are available to solve SP, such as Dijkstra’s [14]
and Bellman-Ford’s [5]. The SP models practical and theoretical problems [18]. However,
several shortest path applications rely on uncertain data.

Some strategies can be applied to solve problems under uncertainty as the stochastic
programming [39] and the robust optimization [6,27]. The stochastic programming is mostly
applied whenever the probability law associated to the uncertain data is known in advance. A
drawback of this approach is that it is sometimes difficult to define the probability distribution
associated to the uncertain data, or else errors can happen on the parameters estimation.
Moreover, stochastic programming cannot be applied when the optimization implies non-
repetitive decisions as for infrastructure design, environmental or nuclear accidents, etc. [1].
We refer to [7,34] for works dedicated to the stochastic shortest path problem, which also
extends SP since it minimizes the expected total cost.

Robust optimization is an alternative to stochastic programming where the variability of
the data is represented by deterministic values. In this work, we focus on robust optimization
models where the uncertain data can be modelled by an interval of possible values. We refer
to the book [27] for other robust optimization models. The Robust Shortest Path problem
(RSP) is a generalization of SP, where the cost of each arc (i, j) ∈ A is defined by an
interval [li j , ui j ], with li j , ui j ∈ Z, where ui j ≥ li j ≥ 0, for all (i, j) ∈ A [22]. There are
different versions of RSP with interval data in the literature, that differ from each other by
the optimization criteria used [1,2,10,23,31–33].

The most studied version of RSP uses the minmax regret criterion and is called minmax
regret RSP. Let P ⊆ A be a path from an origin s to a destination t in G. The regret of P
in the scenario r (also referred as the robust deviation of P in r ) is defined as the difference
between the cost of P in r and the cost of the shortest path Sr from s to t in r . In other words,
the robust deviation of P in r is the regret of using P instead of Sr in case the scenario
r occurs. The robust cost of P is the largest robust deviation of P over all scenarios. The
minmax regret RSP consists in finding the path P∗ from s to t with the smallest robust cost.
This problem is shown to be NP-hard even for acyclic digraphs [27].

This work is dedicated to the minmax relative regret RSP. Let P ⊆ A be a path from an
origin s to a destination t in G. The relative regret of P in the scenario r (also referred as
the relative robust deviation of P in r ) is defined as (cost (P, r)− cost (Sr , r))/cost (Sr , r),
where cost (P, r) denotes the cost of P in r and cost (Sr , r) denotes the cost of Sr in r . The
relative robust cost of P is the largest relative deviation of P over all scenarios. The minmax
relative regret RSP consists in finding the path P∗ from s to t with the smallest relative
robust cost. This problem is shown to be NP-hard even for acyclic digraphs [2]. Although
the minmax relative regret RSP differs from the minmax regret RSP only by the objective
function, the former is more difficult to solve, because the objective function is nonlinear.

Relative robust deviation is a better metric than robust deviation because the regret of using
P instead of Sr is normalized by the cost of Sr . For instance, let two paths P ′ and P ′′, as well
as two scenarios r ′ and r ′′ such that cost (P ′, r ′) = 11, cost (Sr ′ , r ′) = 1, cost (P ′′, r ′′) =
100, and cost (Sr ′′ , r ′′) = 90. According to the minmax regret criterion, the regret of P ′ in
r ′ (11− 1 = 10) is the same as that of P ′′ in r ′′ (100− 90 = 10). However, one can see that
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the cost of P ′ is tenfold that of Sr ′ , while the cost of P ′′ is only 11 % larger than that of Sr ′′ .
According to the minmax relative regret criterion, the regret of P ′ in r ′ ((11− 1)/1 = 10) is
much larger than that of P ′′ in r ′′ ((100− 90)/90 = 0.11).

The remainder of this paper is organized as follows. First, related works are reviewed in
Sect. 2. Then, the first Mixed Integer Linear Programming (MILP) formulation and valid
inequalities for the minmax relative regret RSP is proposed in Sect. 3. Next, polynomial-time
heuristics are proposed in Sect. 4. Following, computational results are reported in Sect. 5.
Finally, concluding remarks are drawn in the last section.

2 Related works

The survey [1] is dedicated to computational complexity results for several robust optimiza-
tion problems, while the survey [17] is dedicated to RSP with interval data and RSP with
discrete scenarios. A general overview on robust optimization problems and applications,
as well as mathematical models for different versions of RSP, is found in [27]. A study on
exact algorithms, approximation algorithms and heuristics for several optimization problems,
including the RSP, is presented in [10].

The minmax regret RSP was shown to be NP-hard in [27]. A MILP formulation for this
problem was introduced in [22]. In [33], the authors proposed a branch-and-bound algorithm
based on a combinatorial relaxation of the robust constraints. This work was extended in [32]
by using a Benders decomposition algorithm based on the same relaxation. Both algorithms
solved instances in random graphs with up to 4,000 nodes and real instances with up to 2,500
nodes.

The works [3,16] investigate instances that can be solved in polynomial or pseudo-
polynomial time for classic robust optimization problems. A pseudo-polynomial algorithm
is proposed in [24] for the minmax regret RSP. It works on series-parallel multidigraphs and
has computational complexity of O(m · |Su |2), where |Su | stands for the number of arcs in
the shortest path from s to t in the scenario where the arc costs are set to ui j . 2-approximation
algorithms for a wide class of minmax regret optimization problems are presented in [12].
For the minmax regret RSP, a 2-approximation algorithm with worst case complexity of
O(m+n log n) is proposed in [24]. An improved version of this algorithm is given in [25] for
series-parallel multidigraphs with approximation factor of (1+ε) and worst case complexity
of O(q(n, n/ε)), where q is a bivariate polynomial function and ε is a value in the range [0, 1].

Preprocessing techniques for the minmax regret RSP are proposed in [11,22]. The gen-
eral idea is to remove dominated arcs, called of weak-arcs, i.e., those arcs that do not belong
to an optimal solution. An algorithm to eliminate weak-arcs is introduced in [22] for par-
ticular graphs such as acyclic, planar, and layered graphs. In [11], the author extends the
preprocessing proposed in [22], by eliminating vertices and by applying other strategies to
deduce weak-arcs. The procedure to eliminate vertices consumes O(n3) in the worst case,
and it eliminates vertices not appearing in any shortest path between the origin and the des-
tination. Moreover, the authors present strategies using the minimum spanning tree to detect
weak-arcs, and they have computational complexity of O(m · n2) in the worst case.

The minmax relative regret RSP was introduced in [27]. In [2], the author proved that
this version of RSP is NP-hard on acyclic digraphs, and proposed an integer non-linear
formulation for the minmax relative regret RSP. Finally, as far as we know there is no exact
algorithms or linear integer formulation for this version of RSP in the literature.

The contributions of this work to the literature are the following. We propose the first
integer linear programming formulation for minmax relative regret, as well as valid inequal-
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ities. We also added cycle elimination constraints to this formulation and perform compu-
tational experiments on the classic acyclic Karasan instances and on a new set of instances
based on digraphs with cycles. Moreover, we develop heuristics with emphasis on providing
efficient and scalable methods for solving the minmax relative regret RSP, based on Pilot
method [15,43] and Random-key Genetic Algorithms [4,21]. The ideas and principles applied
in these heuristics can be generalized to build new heuristics for other robust optimization
problems.

3 Mixed integer linear programming formulation for the minmax relative regret RSP

A MILP formulation for the minmax regret RSP was proposed in [22]. The authors proved that
the worst scenario for a path P can be obtained by setting costs cr

i j = ui j for all (i, j) ∈ P ,
and cr

i j = li j for all (i, j) ∈ A \P . Using this result, the MILP formulation was defined with
decision variables yi j = 1 if arc (i, j) ∈ A belongs to the solution, and yi j = 0 otherwise.
Moreover, auxiliary variables xi ≥ 0, for all i ∈ V , keep the cost of the shortest path from
the source s to node i in the worst case scenario of the path induced by variables yi j . The
corresponding MILP formulation is defined by Eqs. (1)–(6).

min z =
∑

(i, j)∈A

ui j · yi j − xt subject to: (1)

∑

( j,k)∈A

y jk −
∑

(i, j)∈A

yi j =
⎧
⎨

⎩

1, if j = s
−1, if j = t
0, otherwise

∀ j ∈ V (2)

x j ≤ xi + li j + (ui j − li j )yi j ∀(i, j) ∈ A (3)

xs = 0 (4)

yi j ∈ {0, 1} ∀(i, j) ∈ A (5)

xi ≥ 0 ∀i ∈ V (6)

The objective function (1) minimizes the regret at the destination node t . Constraints (2)
are the classic flow conservation constraints and ensure the path connectivity from nodes s to
t . Inequalities (3) link variables y and x and determine an upper bound on the regret at node
j . These constraints together with the objective function ensure the maximum regret to be
minimized. Equation (4) sets xs to zero. The domain of the variables y and x are defined in
(5) and (6), respectively. This formulation can be efficiently solved by commercial solvers as
CPLEX for some benchmarks. For example, random instances with up to 900 vertices and
a real instance, from the road network of Stuttgart, with 2,490 vertices are solved in a few
seconds in [33]. Instances with up to 1,000 vertices are solved to optimality, and CPLEX
solver runs out of memory for those varying from 10,000 to 20,000 vertices, with gaps within
2–9 % [36].

A mixed integer non-linear formulation for the minmax relative regret RSP is proposed
in [2]. The constraints are those from (2) to (6), presented above for the minmax regret RSP,
and the objective function is that of (7).

min
∑

(i, j)∈A ui j yi j−xt

xt
(7)

We observe that precautionary measures need to be taken when applying the model
proposed in [2] to graphs with cycles. Due to the objective function (7), it might be
possible to reduce the regret of a loopless path by adding subcycles to this path. Fig-
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Fig. 1 Example of graph with
cost defined in an interval with
nonnegative values

ure 1 illustrates such situation, where s and t are respectively the origin and the des-
tination. If subcycles are forbidden, then for this example, two paths exists from s
to t : P1 = {(s, 1), (1, t)} and P2 = {(s, 2), (2, t)}, respectively with robust costs(

20165−120
120 = 167.04

)
and

(
20120−165

165 = 120.94
)

. The formulation (2)–(7) allows a path

P ′ = {(s, 1), (1, s), (s, 2), (2, t), (t, 1), (1, t)}, which is larger than P1 and P2 together, but
has a smaller robust cost equal to

( 60388−20120
20120 = 2.0014

)
. The regret of P ′ is artificially

smaller than those of P1 and P2, because the arcs in all paths from s to t are in P ′. Thus, the
corresponding arc costs in the worst case scenario r ′ of P ′ are in their corresponding upper
bound. This increases the cost of the shortest path Sr ′ and artificially decreases the relative
regret of P ′. Therefore, we only consider loopless paths in the rest of this paper and enforce
the subcycle elimination constraints.

Section 3.1 presents a linearization to (7), while the subcycles elimination constraints are
given in Sect. 3.2. Valid inequalities that strengthens the linear relaxation of the resulting
formulation are shown in Sect. 3.3.

3.1 Linear formulation

The objective function (7) has been linearized inspired by work [8], for the case where
li j , ui j ∈ N. First, without loss of generality, we rewrite the objective function as

min

∑
(i, j)∈A ui j yi j

xt
− xt

xt
=

∑

(i, j)∈A

ui j
yi j

xt
− 1 (8)

Next, we introduce variables zi j ∈ R, together with constraints (9)–(11), to ensure that
zi j = yi j

xt
, for all (i, j) ∈ A.

zi j ≤ yi j ∀(i, j) ∈ A (9)

zi j ≥ 1

xt
− (1− yi j ) ∀(i, j) ∈ A (10)

zi j ∈ R ∀(i, j) ∈ A, (11)

Note that constraints (10) remain nonlinear. They can be linearized with the introduction
of variables wl , for all l ∈ {L , . . . , U }, such that wl = 1 if and only if xt = l, and wl = 0
otherwise. The lower bound L to the value of xt is defined as the cost of the shortest path
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from s to t in the scenario where the arc costs are set to cl
i j = li j , and the upper bound U to

the value of xt is defined as the cost of the shortest path from s to t in the scenario where the
arc costs are set to cu

i j = ui j . Therefore, the number of wl variable is equal to U − L . Then,
we replace constraints (10) by constraints (12)–(15).

zi j ≥
∑

l∈{L ,...,U }

1

l
·wl − (1− yi j ) ∀(i, j) ∈ A (12)

∑

l∈{L ,...,U }
wl ≥ 1 (13)

∑

l∈{L ,...,U }
l · wl = xt (14)

wl ∈ {0, 1} ∀l ∈ {L , . . . , U } (15)

Finally, we can rewrite the nonlinear objective function (7) as the linear objective function
(16), and a MILP formulation for the minmax relative regret RSP can be defined by Eqs.
(2)–(6), (9), (11)–(16). The number of constraints in this formulation is O(|A|), while the
number of variables is O(|A| +U ).

min
∑

(i, j)∈A

ui j zi j − 1 (16)

3.2 Subcycle elimination constraints

The subcycle elimination constraints proposed in [30] have been successfully applied for
a number of problems in the literature [13,38], and we have adapted them for the minmax
relative regret RSP. In the context of the minmax relative regret RSP, such constraints establish
a topological order for each visited node in the robust path from s to t , and thus eliminate
subtours.

The constraints (17)–(19) make use of variables ti , ∀i ∈ V , which determine the order
vertex i appears in the robust path. Restrictions (17) ensure that if arc (i, j) ∈ A is chosen in
the path, i.e. if yi j = 1, then ti < t j . M is set to |V | since a path from s to t without cycles has
up to |V | nodes. Equality (18) sets that the origin s has ts = 0. Finally, the domain of variables
ti are defined in (19),∀i ∈ V \{s}. For example, given a path P = {(s, 1), (1, s), (s, 2), (2, t)},
whenever arcs (s, 1) and (1, s) are simultaneously considered, the corresponding constraints
(17) assume respectively ts − t1 ≤ −1 and t1 − ts ≤ −1. But, these inequalities cannot be
simultaneously satisfied. Thus, in such a way, subcycles are eliminated.

The complete formulation considered here for the minmax relative regret is given by the
objective function (16) and constraints (2)–(6), (9), (11)–(19).

ti − t j + Myi j ≤ M − 1, ∀(i, j) ∈ A (17)

ts = 0 (18)

0 ≤ ti ≤ M ∀i ∈ V \ {s} (19)

3.3 Valid inequalities

Given the lower bound L and the upper bound U for the value of xt defined above, it follows
that

∑
(i, j)∈A ui j yi j − xt

U
≤

∑
(i, j)∈A ui j yi j − xt

xt
≤

∑
(i, j)∈A ui j yi j − xt

L
.
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We have that

∑

(i, j)∈A

ui j zi j − 1 =
∑

(i, j)∈A ui j yi j − xt

xt

in an optimal integer solution for the MILP formulation described above. Therefore, the
inequalities (20)–(21) are valid for this formulation. Although (20)–(21) are redundant in
the integer formulation, they are a stronger link between variables zi j , yi j , and xt , which
improves (i) the lower bound of the corresponding linear relaxation and (ii) the performance
of the corresponding CPLEX branch-and-bound algorithm.

∑

(i, j)∈A

ui j zi j − 1 ≥
∑

(i, j)∈A ui j yi j − xt

U
(20)

∑

(i, j)∈A

ui j zi j − 1 ≤
∑

(i, j)∈A ui j yi j − xt

L
(21)

The resulting formulation for the minmax relative regret is given by the objective function
(16) and constraints (2)-(6), (9), (11)-(21). These constraints not only improve the linear
relaxation by imposing a lower bound to the value of the objective function, but also by
strengthening the link between variables zi j , yi j , and xt .

4 Heuristics for RSP

In [24,25], three approximated solutions were proposed for the minmax regret RSP. The first,
called AM, fixes the cost of all arcs to their respective mean value (i.e. (li j + ui j )/2) and
returns the shortest path in this scenario (called the Median Scenario). Algorithm AM is a
2-approximation algorithm [25]. The second, called AU, fixes the cost of all arcs to their
corresponding maximum value (i.e. ui j ) and returns the shortest path in this scenario (called
the Upper Scenario). The third, called AMU, returns the best solution found by AM and
AU. Therefore, AMU is also 2-approximative [25]. No experimental results are presented to
address the performance of these heuristics on the average case.

A Simulated Annealing heuristic inspired by [26] was proposed in [36] for the minmax
regret RSP. It is called here SA-RSP. The parameters of SA-RSP are (i) the initial temperature
t0 ∈ R, (ii) the final temperature t f ∈ R, (iii) the temperature decreasing rate β (with
0 < β < 1), and (iv) a value λ ∈ N that sets the number of accepted solution before decreasing
the temperature. Initially, SA-RSP runs the AU heuristic to obtain an initial feasible solution.
Then, the procedure performs the four following steps at each iteration. First, it selects a
subset A′ ⊂ A at random. Next, it runs the AU heuristic in the graph G ′ = (V, A′) in
order to obtain a candidate solution P ′. Then, P ′ is accepted if cost (P ′) < cost (P) or

else if e
−Δ

t < θ , where cost (P) and cost (P ′) are the cost of paths P and P ′, respectively,
Δ = cost (P ′) − cost (P), θ ∈ [0, 1[ is a randomly generated number, and t is the current
temperature of the simulated annealing. Following, t = t ∗β, if λ solutions had been accepted
since the last update took place. Finally, the procedure stops if t ≤ t f , and the best solution
found so far is returned.

We propose below new heuristics for the minmax relative regret RSP. First, a constructive
heuristic based on the Pilot Method metaheuristic is described in Sect. 4.1. Then, a genetic
algorithm [4] is proposed in Sect. 4.2. These heuristics are compared with AMU [25] and
SA-RSP [36] in Sect. 5.
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4.1 Pilot method for RSP

Pilot method [15,43] is a metaheuristic that uses a greedy constructive (guiding) heuristic H
to build a new and more efficient heuristic H ′. The latter works as a traditional constructive
heuristic that iteratively inserts one element at a time in a partial solution. However, instead
of using a local greedy criterion to evaluate the cost of inserting an element in the solution,
the criterion used by H ′ consists in (i) inserting the element individually in the solution (ii)
executing the heuristic H until a feasible solution is found, and (iii) using the cost of this
solution as the greedy cost of inserting the element. At each iteration, these three steps are
executed for all candidate elements and the one with the best greedy cost is inserted on the
solution.

The Pilot method heuristic proposed for the minmax relative regret RSP is called PM-RSP.
The guiding heuristic used is based on the AM heuristic [24,25]. The pseudo-code of PM-
RSP is presented in Algorithm 1. It takes as input a graph G = (V, A), the lower bound li j ,
the upper bound ui j , to the cost of each arc (i, j) ∈ A, the origin s ∈ V and the destination
t ∈ V . The partial solution P ′ (also called guiding solution) and best known feasible solution
P∗ are initialized in line 1. The loop in lines 2-15 is performed while P ′ is not a path from s
to t , i.e., while node t is not inserted in P ′. The node u that was last inserted in P ′ is identified
in line 3. The loop in lines 4-10 is performed for each node v ∈ δ+(u), where δ+(u) is set
of the successors of vertex u. In line 5, the Dijkstra’s algorithm is applied to get the shortest
path Pv from v to t in the scenario rm . Next, paths P ′ (between s and u) and Pv (between v

and t) are concatenated in line 6, forming the path P ′v (from s to t). The relative robust cost
of P ′v is used as the greedy cost of inserting node v in the solution P ′. Then, if the relative
robust cost of P ′v is smaller than that of P ′v∗ or else if the latter is not set yet (line 7), the node
v∗ ∈ δ+(u) with the smallest greedy cost and its respective path P ′v∗ are updated in line 8.
Afterwards, v∗ is inserted at the end of P ′ in line 11. PM-RSP returns the best solution found
throughout the heuristic P∗, which is not necessarily P ′. Therefore, the former is updated
in lines 12-13, and returned in line 16. The worst case complexity of PM-RSP is equal to

Input: G = (V, A), li j , ui j , s, t
Output: P∗
P ′ ← s and P∗ ← ∅1

P ′v ← ∅2

while P ′ is not a path between s and t do3
Let u be the last node inserted in P ′4

for v ∈ δ+(u) do5
Pv ← Dijkstra (v, t, G, rm )6

P ′v ← Concatenate (P ′, Pv)7

if cost (P ′v) < cost(P ′
v∗ ) or P ′

v∗ = ∅ then8
v∗ ← v and P ′

v∗ ← P ′v9

end10

end11

Insert v∗ at the end of P ′12

if cost(P ′
v∗ ) < cost(P∗) then13

P∗ ← P ′
v∗14

end15

end16
return P∗;17

Algorithm 1: Pseudo-code for PM-RSP
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|A| times the complexity of the Dijkstra’s algorithm, that is (O(|A| · (|A| + |V | · log |V |))).
Assuming that |A| ≤ |V | · log |V |, we have O(|A| · |V | · log |V |).

The choice of the Pilot method metaheuristic to develop a heuristic for the minmax relative
regret RSP is motivated by its successful applications to many combinatorial optimization
problems (see [43] for a survey). Besides, Pilot method is a natural framework for developing
heuristics for robust optimization problems with interval data, because any efficient and well
known algorithm for the static optimization counterpart can be applied to the median or upper
scenario and used as the guiding heuristic for a PM heuristic to the robust counterpart.

4.2 Biased random-key genetic algorithm for RSP

Genetic algorithms with random keys, or random-key genetic algorithms (RKGA), were first
introduced by Bean [4] for combinatorial optimization problems for which solutions can be
represented as a permutation vector. Solutions are represented as vectors of randomly gen-
erated real numbers called keys. A deterministic algorithm, called a decoder, takes as input
a solution vector and associates with it a feasible solution of the combinatorial optimization
problem, for which an objective value or fitness can be computed. Two parents are selected
at random from the entire population to implement the crossover operation in the implemen-
tation of a RKGA. Parents are allowed to be selected for mating more than once in a given
generation.

A biased random-key genetic algorithm (BRKGA) differs from a RKGA in the way parents
are selected for crossover. In a BRKGA, each element is generated combining one element
selected at random from the elite solutions in the current population, while the other is a non-
elite solution. We say the selection is biased since one parent is always an elite individual
and because this elite solution has a higher probability of passing its genes to the offsprings,
i.e. to the new generation. A BRKGA provides a better implementation of the essence of
Darwin’s principle of “survival of the fittest”, since an elite solution has a higher probability
of being selected for mating and the offsprings have a higher probability of inheriting the
genes of the elite parent.

The BRKGA proposed for the minmax relative regret RSP (BRKGA-RSP) evolves a
population of chromosomes that consists of vectors of real numbers in the range [0, 1]
(called keys), which are randomly generated in the initial population. The fitness of the
chromosome is given by the cost of the solution found by a decoding heuristic that receives
as input the random-keys vector and outputs a feasible solution with its corresponding cost.
Each chromosome p has one key k p

i j ∈ [0, 1] for each arc (i, j) ∈ A, and the decoding

heuristic performs the following steps. First, it fixes the cost of all arcs to cp
i j = li j + (ui j −

li j ) · k p
i j , for all (i, j) ∈ A, i.e. to the scenario induced by the keys of p. This scenario is

called r p . Next, Dijkstra’s algorithm [14] is used to compute the shortest path P p between
s and t in the scenario r p . Then, the relative robust cost of P p is used as the fitness of the
chromosome.

The parameterized uniform crossover scheme proposed in [40] is used to combine two
parent solutions and produce an offspring solution. In this scheme, the offspring inherits each
of its keys from the respective key from one of its two parents with probability 0.5.

This genetic algorithm does not make use of the standard mutation operator, where parts
of the chromosomes are changed with small probability. Instead, the concept of mutants is
used. In each generation, a fixed number of mutant solutions are introduced in the population.
They are generated in the same way as the initial population. As with mutation, mutants serve
the role of helping the procedure escape from local optima.
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Fig. 2 Illustration of the transitional process between consecutive generations of the biased random-key
genetic algorithms

At each new generation, the population is partitioned into two sets: TOP and REST .
Consequently, the size of the population is |TOP| + |REST |. The best solutions are kept
in TOP while the others are placed in REST . As illustrated in Fig. 2, the chromosomes in
TOP are copied, without change, to the population of the next generation. The new mutants
are placed in a set called BOT . The remaining elements of the new population are obtained
by crossover with one parent randomly chosen from TOP and the other from REST . This
distinguishes a biased random-key GA of [19] from the random-key GA of Bean [4]. In the
latter both parents are selected at random from the entire population. Since a parent solution
can be chosen for crossover more than once in a given generation, elite solutions have a higher
probability of passing their random-keys to the next generation. In this way, |REST |− |BOT |
offspring solutions are created. The algorithm stops when a maximum number of generations
is reached. The relative sizes of sets TOP, REST , and BOT are parameters that must be tuned.
However, it was observed in [20,29,35,37] that the performance of this metaheuristic is not
significantly sensitive to the value of these parameters.

The choice of the BRKGA metaheuristic to develop a heuristic for the minmax relative
regret RSP is motivated by its successful applications to many combinatorial optimization
problems (see [19] for a survey). Besides, BRKGA is also a natural framework for develop-
ing heuristics for robust optimization problems with interval data, because the chromosomes
represent scenarios, instead of solutions. The specific solutions for a particular robust opti-
mization problem are obtained by the decoding heuristic that consists of any efficient and well
known algorithm for the static optimization counterpart, applied to the scenarios represented
by the chromosomes.

5 Computational experiments

Computational experiments were performed on an Intel Core i7 machine with 2.67 GHz
clock and 4 GB of RAM memory, running Linux operating system. Two branch-and-bound
algorithms for the minmax relative regret RSP were implemented making use of ILOG
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Fig. 3 A Karasan graph with 8 nodes and 3 layers

CPLEX version 12.5 with default parameter settings. The first one based on (2)-(6), (9),
(11)-(19) is named CPLEX (V1), and the second one based on (2)-(6), (9), (11)-(21) is
named CPLEX (V2) and differs from the first by the valid inequalities (20) and (21). In both
cases, constraint (17) was lifted according to [13]. Heuristics AMU [25], SA-RSP [36], PM-
RSP, and BRKGA-RSP were implemented in C++ and compiled with GNU GCC version
4.6.3. The pseudorandom number generator used was the Mersenne Twister [28]. Besides,
BRKGA-RSP [42] was implemented on the C++ application programming interface for
biased random-key algorithms of [42]. Two sets of instances are used in the computational
experiments: Karasan instances [22] and the grid instances proposed in this paper. Both sets
are described below.

Karasan graphs were proposed in [22] and used in the computational experiments of
[22,31–33,36]. They are layered [41] and acyclic [9] graphs that are claimed to resemble
telecommunication networks. In a Karasan graph, all the C layers have the same number W
of nodes. There is an arc from every node in a layer c to every node in the layer c + 1, with
c ∈ {1, . . . , C − 1}. Besides, there is an arc from s to every node in layer 1, and an arc from
every node in layer C to t . A Karasan graph with 8 nodes (including s and t) and 3 layers is
displayed in Fig. 3. The interval data [li j , ui j ], for all (i, j) ∈ A, are set as following. First, a
random number θi j ∈ [1, θmax ] is generated for all (i, j) ∈ A, where θmax = 200. Then, li j

is set to U [(1−d) · θi j , (1+d) · θi j ], and ui j is set to U [li j , (1+d) · θi j ], where d = 0.9 and
U [a, b] denotes a random number uniformly selected in the interval [a, b]. The instances are
named as K-v-θmax -d-i-W , where K identifies the instance type, v is the number of nodes
between s and t , and i distinguishes different instances generated with the same parameter
values. The value of the above mentioned parameters θmax , d , and W are also displayed in
the instance name.

Grid graphs are based on a n × m matrix, where n is the number of rows and m is the
number of columns. Each matrix cell corresponds to a node and there are two bidirectional
arcs between each pair of nodes whose respective matrix cell are adjacent. The source node s
is defined as the upper left node and the target node t is defined as the lower right node. These
instances were introduced because they resemble street intersection in road networks, and
because they contain many cycles. An example of a 3× 5 grid is shown in Fig. 4. The value
of [li j , ui j ], for all (i, j) ∈ A, was generated the same way as for the Karasan instances. The
instances are named as G-n × m-i , where G identifies the instance type, n is the number of
rows, m is the number of columns, and i distinguishes different instances generated with the
same parameter values.

In the first experiment, we evaluate the impact of the valid inequalities (20) and (21)
by comparing the performance of CPLEX (V1) and CPLEX (V2) for small Karasan and
grid instances with 100 and 200 nodes. The maximum running time for both algorithms
was set to 7,200 s. The results of this experiment are displayed in Tables 1 and 2, respec-
tively. The instance name is displayed in column 1. The lower bound (lb) and the upper
bound (ub) to the value of the optimal solution obtained by CPLEX (V1) are given in

123



276 J Glob Optim (2014) 60:265–287

Fig. 4 An example of 3× 5 grid

columns 2 and 3, respectively. The integrality gap, the running time, and the number of
nodes evaluated in the branch-and-bound tree are reported respectively in columns 4 to 6.
The same data are displayed for CPLEX (V2) in the last five columns, respectively. It can
be seen that the valid inequalities (20) and (21) improved the linear relaxation lower bounds.
Regarding the Karasan instances (Table 1), one can see that the smaller is the number of
nodes per layer, the harder was the instance to solve. CPLEX (V1) found optimal solu-
tions for all instances but K-200-200-0.9-a-2, K-200-200-0.9-b-2, K-200-200-0.9-a-5, and
K-200-200-0.9-b-5 before 7,200 s, while CPLEX (V2) managed to solve the latter in addi-
tion to all the other instances solved by CPLEX (V1). The average relative integrality gap
of CPLEX (V1) was 20.19 %, while that of CPLEX (V2) was only 2.40 %. Regarding the
grid instances (Table 2), CPLEX (V1) solved all instances with 100 nodes but none with 200
nodes before 7,200 s, while CPLEX (V2) solved all instances with 100 nodes and half of
the instances with 200 nodes. Besides, CPLEX (V1) failed to find feasible solutions for four
(out of the 10) instances with 200 nodes before 7,200 s, while CPLEX (V2) found feasible
solutions for all instances. The average relative integrality gap of CPLEX (V1) for these
instances was 47.43 %, while that of CPLEX (V2) was only 2.52 %. These results suggest
that the grid instances proposed in this paper are harder to solve than the Karasan instances.
Besides, they indicate that CPLEX (V2) can efficiently be applied to small Karasan and grid
instances with up to 200 nodes.

In the second experiment, we compare CPLEX (V1) and CPLEX (V2) for large Karasan
and grid instances with up to 1,500 nodes. The maximum running time for both algorithms
was set again to 7,200 s. The results of this experiment are displayed in Tables 3 and 4,
respectively. The instance name is displayed in column 1. The lower bound (lb) and the
upper bound (ub) to the value of the optimal solution obtained by CPLEX (V1) are given
in columns 2 and 3, respectively. The integrality gap, the running time, and the number of
nodes evaluated in the branch-and-bound tree are reported respectively in columns 4 to 6.
The same data are displayed for CPLEX (V2) in the last five columns, respectively. It can
be seen that the valid inequalities (20) and (21) greatly improved the linear relaxation lower
bounds. Regarding the Karasan instances (Table 3), CPLEX (V1) solved only one instance,
while CPLEX (V2) managed to solve six (out of the 20) instances before 7,200 s. The average
relative integrality gap of CPLEX (V1) was 1,051.98 %, while that of CPLEX (V2) was only
16.68 %. Regarding the grid instances (Table 4), no instance was solved by CPLEX (V1) and
CPLEX (V2) before 7,200 s. However, the latter found integer feasible solutions for all 10
instances with an average gap of 18.78 %, while the former found no feasible solution for
instances in this set. The fact that CPLEX (V2) found solutions with almost 20 % average gap
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Table 5 Evaluation of the three versions of BRKGA-RSP for Karasan instances

Instance BRKGA-RSP (V1) BRKGA-RSP (V2) BRKGA-RSP (V3)

cost (%) t(s) cost (%) t(s) cost (%) t(s)

K-1000-200-0.9-a-5 61.51 315.87 61.50 298.38 61.49 281.74

K-1000-200-0.9-b-5 67.53 315.78 67.53 298.44 67.58 281.83

K-1000-200-0.9-a-10 93.44 426.74 93.51 402.29 93.38 380.48

K-1000-200-0.9-b-10 76.82 426.48 76.79 402.33 76.74 380.81

K-1000-200-0.9-a-25 65.07 797.40 65.07 727.43 65.07 711.62

K-1000-200-0.9-b-25 77.93 797.17 77.93 727.26 77.93 711.75

K-1000-200-0.9-a-50 68.09 1,487.05 68.09 1,387.13 68.09 1,339.12

K-1000-200-0.9-b-50 65.91 1,486.61 65.91 1,383.81 65.91 1,337.78

K-1000-200-0.9-a-100 84.21 2,882.54 84.21 2,683.23 84.21 2,593.59

K-1000-200-0.9-b-100 90.00 2,843.23 90.00 2,645.66 90.00 2,553.54

K-1500-200-0.9-a-5 53.01 905.38 53.01 856.77 52.85 809.79

K-1500-200-0.9-b-5 45.17 905.64 45.13 856.63 45.17 809.43

K-1500-200-0.9-a-10 57.52 1,152.59 57.52 1,089.43 57.53 1,030.40

K-1500-200-0.9-b-10 56.39 1,152.47 56.39 1,089.05 56.39 1,030.28

K-1500-200-0.9-a-25 52.88 2,051.09 52.88 1,936.81 52.88 1,842.47

K-1500-200-0.9-b-25 87.57 2,052.06 87.57 1,936.57 87.57 1,843.16

K-1500-200-0.9-a-50 59.26 3,814.90 59.26 3,583.54 59.26 3,463.09

K-1500-200-0.9-b-50 75.51 3,819.99 75.51 3,594.31 75.51 3,469.26

K-1500-200-0.9-a-100 81.25 6,968.95 81.25 6,561.32 81.25 6,304.12

K-1500-200-0.9-b-100 105.88 7,007.78 105.88 6,593.62 105.88 6,331.89

Average 71.25 2,080.49 71.25 1,952.70 71.23 1,875.31

within 7,200 s of running time motivates the study of heuristics for tackling the large instances
of minmax relative regret RSP. The following experiments evaluate the performance of the
heuristics proposed in this paper and compare their results with those of the main heuristics
in literature for RSP.

In the third experiment, three versions of BRKGA-RSP are evaluated for Karasan and grid
instances. Version V1 has |T O P| < |BOT | (with |T O P| = 0.1× p and |BOT | = 0.2× p),
version V2 has |T O P| = |BOT | (with |T O P| = |BOT | = 0.15 × p), and version V3
has |T O P| > |B OT | (with |T O P| = 0.2 × p and |BOT | = 0.1× p), where p = 100 is
the population size. For each version, we performed 20 runs for each instance with different
seeds for the pseudorandom number generator. The results are reported in Tables 5 and 6 for
Karasan and grid instances, respectively. The first column shows the name of each instance.
The second and third columns display respectively the average solution cost and running
time (in seconds) provided by BRKGA-RSP (V1). The same data is given for version V2
in columns 4 and 5, and for version V3 in columns 6 and 7, respectively. One can see that
the results of the three versions of BRKGA-RSP were similar for both Karasan and grid
instances. BRKGA-RSP (V3) had the smallest running times, due to the fact that the size of
set T O P is larger than that of the other versions. Therefore, the number of chromosomes
evaluated at each iteration of version V3 is smaller than that of the other versions, because
chromosomes in set T O P are copied without change.
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Table 6 Evaluation of the three versions of BRKGA-RSP for grid instances

Instance BRKGA-RSP (V1) BRKGA-RSP (V2) BRKGA-RSP (V3)

cost (%) t(s) cost (%) t(s) cost (%) t(s)

G_6x60_a 42.52 22.66 42.48 21.57 42.47 20.53

G_6x60_b 50.09 22.47 50.07 21.41 50.05 20.35

G_7x70_a 58.78 41.89 58.78 39.76 58.78 37.67

G_7x70_b 53.51 41.86 53.51 39.76 53.51 37.66

G_8x80_a 46.69 77.01 46.69 72.95 46.66 69.24

G_8x80_b 52.75 73.06 52.75 69.18 52.75 65.50

G_9x90_a 50.54 124.68 50.47 118.19 50.53 111.81

G_9x90_b 51.86 122.96 51.86 116.45 51.86 110.10

G_10x100_a 57.09 203.41 57.14 193.04 57.09 182.42

G_10x100_b 47.45 196.88 47.45 186.82 47.44 176.70

Average 51.13 92.69 51.12 87.91 51.11 83.20

In the fourth experiment, two versions of SA-RSP are evaluated for Karasan and grid
instances. Version V1 has t f = 0.1 as reported in [36], while version V2 has t f = 0.01.
The smaller is the value of t f , the larger is the running time of SA-RSP, and the better are
the solution found by this heuristic. The other parameters were set to the same values as
described in [36], i.e. β = 0.94, λ = 25, and t0 = 1. For each version, we performed 20 runs
for each instance with different seeds for the pseudorandom number generator. The results
are reported in Tables 7 and 8 for Karasan and grid instances, respectively. The first column
shows the name of each instance. The second and third columns display the average solution
cost and running times (in seconds) of SA-RSP (V1), respectively. The same data is given for
version V2 in columns 4 and 5, respectively. It can be observed that, on average, the results
obtained by version V2 are slightly better than those obtained by version V1. However, the
average running time of the former is twice that of the latter. This suggests that no significant
increase in the solution of SA-RSP can be obtained by decreasing the value of t f even further.

In the last experiment, we compare the performance of the heuristics AMU [25], PM-
RSP, and the best versions of SA-RSP [36] (V2), and BRKGA-RSP (V3). We note that AMU
and PM-RSP are deterministic algorithms, while SA-RSP and BRKGA-RSP are stochastic
heuristics. The results are reported in Tables 9 and 10 for Karasan and grid instances, respec-
tively. The six instances solved at optimality by CPLEX (V2) before 7,200 s (see Table 3)
are indicated by an asterisk. The second and third columns display respectively the average
solution cost and running time (in seconds) provided by AMU. The same data is given for
SA-RSP [36] in columns 4 and 5, for PM-RSP in columns 6 and 7, and for BRKGA-RSP
in columns 8 and 9, respectively. The smallest average solution cost for each instance is
displayed in boldface.

Regarding the Karasan instances (Table 9), it can be observed that PM-RSP found better
solutions on average (71.99 %) than AMU (76.36 %) and SA-RSP (74.41 %) within an average
running time of 12.00 s. The best average result was obtained by BRKGA-RSP (71.23 %).
Besides, the latter found solutions as good as or better than the other heuristics in all but
instance K-1000-200-0.9-a-5. However, the average running time of the latter was 1,875.31 s.
Both PM-RSP and BRKGA-RSP heuristics proposed in this paper found the optimal solutions
for the six instances solved by CPLEX (V2) at optimality, while AMU and SA-RSP found
optimal solution only for four and three of these instances, respectively. Regarding the grid
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Table 7 Evaluation of the two
versions of SA-RSP for Karasan
instances

Instance SA-RSP (V1) SA-RSP (V2)

cost (%) t(s) cost (%) t(s)

K-1000-200-0.9-a-5 64.07 2.14 64.07 4.15

K-1000-200-0.9-b-5 78.12 2.12 78.12 3.90

K-1000-200-0.9-a-10 96.94 2.73 96.94 5.18

K-1000-200-0.9-b-10 82.56 2.98 82.56 6.48

K-1000-200-0.9-a-25 66.90 6.18 66.90 18.99

K-1000-200-0.9-b-25 78.54 5.37 78.54 12.47

K-1000-200-0.9-a-50 68.09 8.39 68.09 16.51

K-1000-200-0.9-b-50 65.91 8.33 65.91 16.38

K-1000-200-0.9-a-100 84.21 11.21 84.21 16.92

K-1000-200-0.9-b-100 91.50 11.22 90.75 16.98

K-1500-200-0.9-a-5 56.90 3.92 56.90 6.46

K-1500-200-0.9-b-5 48.61 3.91 48.61 6.36

K-1500-200-0.9-a-10 60.52 5.01 60.52 9.56

K-1500-200-0.9-b-10 59.38 5.09 59.38 9.47

K-1500-200-0.9-a-25 55.84 9.15 55.84 27.80

K-1500-200-0.9-b-25 94.90 10.13 94.90 30.34

K-1500-200-0.9-a-50 63.04 16.37 62.41 46.32

K-1500-200-0.9-b-50 87.34 20.77 84.08 56.14

K-1500-200-0.9-a-100 83.15 31.42 82.06 50.48

K-1500-200-0.9-b-100 110.25 21.97 107.35 38.39

Average 74.84 9.42 74.41 19.96

Table 8 Evaluation of the two
versions of SA-RSP for grid
instances

Instance SA-RSP (V1) SA-RSP (V2)

cost (%) t(s) cost (%) t(s)

G_6×60_a 49.45 2.84 49.45 4.98

G_6×60_b 54.09 2.90 54.09 5.18

G_7×70_a 61.00 5.45 61.00 9.60

G_7×70_b 57.42 5.31 57.42 9.42

G_8×80_a 49.46 9.38 49.46 16.97

G_8×80_b 54.31 9.26 54.31 16.61

G_9×90_a 57.83 17.23 57.83 34.78

G_9×90_b 56.04 15.32 56.04 28.95

G_10×100_a 69.39 26.35 69.39 53.94

G_10×100_b 54.10 29.74 54.10 65.48

Average 56.31 12.38 56.31 24.59

instances (Table 10), it can be observed that PM-RSP found again better solutions on average
(51.92 %) than AMU (53.42 %) and SA-RSP (56.31 %) within an average running time of
0.34 s. The best average result was again obtained by BRKGA-RSP (51.11 %). Besides, the
latter found solutions as good as or better than the other heuristics in all grid instances.
However, the average running time of the latter was 83.20 s.
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Table 9 Comparison between the heuristics proposed in this paper and the main heuristics in the literature
of RSP for Karasan instances

Instance AMU [25] SA-RSP [36] (V2) PM-RSP BRKGA-RSP (V3)

cost (%) t(s) cost (%) t(s) cost (%) t(s) cost (%) t(s)

K-1000-200-0.9-a-5 64.07 0.01 64.07 4.15 61.36 2.80 61.49 281.74

K-1000-200-0.9-b-5 74.13 0.01 78.12 3.90 68.86 2.83 67.58 281.83

K-1000-200-0.9-a-10 96.94 0.01 96.94 5.18 99.78 3.50 93.38 380.48

K-1000-200-0.9-b-10 82.56 0.01 82.56 6.48 77.23 3.46 76.74 380.81

K-1000-200-0.9-a-25 66.90 0.01 66.90 18.99 67.36 5.64 65.07 711.62

K-1000-200-0.9-b-25 78.57 0.01 78.54 12.47 80.14 5.64 77.93 711.75

K-1000-200-0.9-a-50* 68.09 0.04 68.09 16.51 68.09 8.19 68.09 1,339.12

K-1000-200-0.9-b-50* 65.91 0.03 65.91 16.38 65.91 8.17 65.91 1,337.78

K-1000-200-0.9-a-100* 84.21 0.05 84.21 16.92 84.21 13.15 84.21 2,593.59

K-1000-200-0.9-b-100* 100.00 0.05 90.75 16.98 90.00 12.98 90.00 2,553.54

K-1500-200-0.9-a-5 56.68 0.01 56.90 6.46 53.31 8.56 52.85 809.79

K-1500-200-0.9-b-5 47.87 0.01 48.61 6.36 46.74 8.54 45.17 809.43

K-1500-200-0.9-a-10 60.52 0.02 60.52 9.56 58.19 10.02 57.53 1,030.40

K-1500-200-0.9-b-10 59.20 0.02 59.38 9.47 56.39 10.03 56.39 1,030.28

K-1500-200-0.9-a-25 53.88 0.04 55.84 27.80 52.88 14.79 52.88 1,842.47

K-1500-200-0.9-b-25 89.34 0.04 94.90 30.34 87.57 14.74 87.57 1,843.16

K-1500-200-0.9-a-50* 63.46 0.05 62.41 46.32 59.26 20.76 59.26 3,463.09

K-1500-200-0.9-b-50 79.59 0.06 84.08 56.14 75.51 20.62 75.51 3,469.26

K-1500-200-0.9-a-100* 81.25 0.1 82.06 50.48 81.25 32.85 81.25 6,304.12

K-1500-200-0.9-b-100 105.88 0.11 107.35 38.39 105.88 32.67 105.88 6,331.89

Average 76.36 0.03 74.41 19.96 71.99 12.00 71.23 1,875.31

Table 10 Comparison between the heuristics proposed in this paper and the main heuristics in the literature
of RSP for grid instances

Instance AMU [25] SA-RSP [36] (V2) PM-RSP BRKGA-RSP (V3)

cost (%) t(s) cost (%) t(s) cost (%) t(s) cost (%) t(s)

G_6x60_a 44.24 0.01 49.45 4.98 43.03 0.11 42.47 20.53

G_6x60_b 54.09 0.01 54.09 5.18 53.83 0.10 50.05 20.35

G_7x70_a 61.00 0.01 61.00 9.60 59.68 0.18 58.78 37.67

G_7x70_b 54.95 0.01 57.42 9.42 53.96 0.16 53.51 37.66

G_8x80_a 49.46 0.01 49.46 16.97 48.02 0.32 46.66 69.24

G_8x80_b 54.31 0.01 54.31 16.61 52.75 0.26 52.75 65.50

G_9x90_a 51.38 0.01 57.83 34.78 50.77 0.47 50.53 111.81

G_9x90_b 56.04 0.01 56.04 28.95 52.32 0.45 51.86 110.10

G_10x100_a 59.22 0.01 69.39 53.94 57.30 0.73 57.09 182.42

G_10x100_b 49.50 0.01 54.10 65.48 47.50 0.66 47.44 176.70

Average 53.42 0.01 56.31 24.59 51.92 0.34 51.11 83.20
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These results suggest that PM-RSP has the best cost-benefit ratio among of the heuristics
studied in this paper, as it can find solutions almost as good as those of BRKGA-RSP, with
considerably less computational effort. The former can find good solutions in considerable
less time than the latter, because instead of relying on the evolutionary processes to identify
the good solutions, the former relies on the AM based heuristic to guide search for good
solutions.

6 Concluding remarks

In this work, we proposed the first integer linear programming formulation for minmax
relative regret, as well as valid inequalities and metaheuristics. Experiments were performed
on the classic instances based on Karasan graphs, and on new instances based on grid graphs.
The CPLEX branch-and-bound algorithm based on this formulation found optimal solutions
for most of the small Karasan and grid instances with up to 200 nodes. Besides, it also provided
integer feasible solutions as good as or better than the best algorithms in the literature of RSP
for the large Karasan and grid instances with up to 1,500 nodes. The grid instances proposed
in this paper showed up to be harder to solve than the Karasan instances found in the literature.

In addition, we developed heuristics with emphasis on providing efficient and scalable
methods for solving the minmax relative regret RSP. The biased random-key genetic algo-
rithm was faster than and found solutions as good as those of the CPLEX branch-and-bound
algorithm, on average. Moreover the Pilot method found solutions almost as good as those
of the latter but in considerably smaller running times.

The linearization method and the valid inequalities applied to the minmax relative regret
objective function of RSP can also be applied to other minmax relative regret robust opti-
mization problems. Besides, both the Pilot method and the genetic algorithm frameworks
proposed for RSP can be extended for other robust optimization problems by simply exchang-
ing the problem dependent guiding heuristic (in the case of the Pilot method) and the decoding
heuristic (in the case of the BRKGA).
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