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In this study, the problem of building cluster-based topologies for Wireless Sensor Networks with several
sinks is considered. The optimization relies on different levels of decision: choosing which sensors are
masters and balancing the load among sinks. The topology associated with each sink is modeled as an
Independent Dominating Set with Connecting requirements (IDSC). Thus, the solution is a partition of a
given graph into as many IDSC as there are sinks. In addition, several optimization criteria are proposed
to implicitly or explicitly balance the topology. The network lifetime is improved since it benefits from a
clustered structure and the number of hops control. The former reduces the average amount of messages
to be sent and the latter improves the average energy consumption for messages to be sent. Different
combinations of criteria are proposed in lexicographical order. They are compared in terms of maximum
number of clusters per topology, of deviation between the smallest and the biggest number of clusters
considering all topologies, and of total number of clusters in the final topology. Two local searches, a two-
step local search and a Variable Neighborhood Descent, are developed. Each one is embedded into a
multi-start framework. Results are provided for instances with up to 10 000 sensors and up to five sinks.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

A Wireless Sensors Network (WSN) contains a set of sensors
which communicate to transmit information about specific
detections. A wide range of monitoring applications have already
been identified such as risk detection on industrial sites, protected
and reserve areas (Ferentinos et al., 2005), intelligent transporta-
tion (Tacconi et al., 2010; Tubaishat et al., 2009), and underwater
monitoring (Ibrahim et al., 2008). Designing a WSN involves two
main levels of decisions: operational and strategic. In the context
of WSN, the operational level is usually related to protocols, net-
work issues, communication policies, and traffic loads and their
distribution; while the strategic level addresses decisions able to
better cope with some issues like minimizing the energy con-
sumption, reducing the traffic, balancing the network load,
enhancing the reliability, maximizing the network lifetime, for
instance. In this study, we focus on a strategic and theoretical
optimization problem occurring in the design of WSN.

Let a topology be a logical structure responsible for the net-
work communication. Here, cluster-based topologies are con-
sidered in the design of WSN. A cluster is a set of sensors such that
each one plays a specific role of slave, master or bridge. A slave
collects and transmits data to the master, the master coordinates
s).
the cluster and a bridge is connected to at least two masters and
allows inter-cluster communication. Sinks manage the WSN. They
usually differ from other sensors and are typically more powerful.
Thus, a cluster-based WSN relies on a specific topology where
slaves send messages for their corresponding master, and each
message is sent on a path towards a sink. Such a path alternates
masters and bridges until arriving at a sink. Note that bridges are
optional in cluster-based topology. However, inter-cluster com-
munication with bridges globally consumes less energy than a
direct master to master communication. In general, clusters are
applied when data are highly-correlated (Vlajic and Xia, 2006),
since masters can gather similar messages and perform efficient
data compression. Thus, in cluster-based topologies, the total
number of messages sent on the network is reduced. Another
advantage of such a structure is that routing is simplified once a
path toward the sink alternates bridges and masters. In Ji et al.
(2014), the authors provide an interesting state of the art on data
aggregation and data collection. For the latter, some algorithms are
presented for tree networks and cell-based data collection. The
authors also review these techniques for applications sensitive to
accuracy, time complexity and reliability. An interesting study
investigating a mathematical model and decomposition for data-
gathering cluster-based WSN is found in Lin and Üster (2014). The
authors propose an exact model to select sinks and clusters over
time periods and solve it by means of a Benders decomposition,
using strengthened cuts. The approach is tested on instances with
up 250 nodes and 16 candidates sinks.
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Work of Santos et al. (2012) present a mathematical model and
algorithms to compute cluster-based topologies with a unique
sink. The problem is modeled as an Independent Dominating Set
problem with Connecting requirements (IDSC). This topology fol-
lows the IEEE 802.15.4 association procedure (Amendment of IEEE
Std 802.15.4, 2007) and is an emerging trend (Cipollone et al.,
2007). The mathematical formulation is based on trees and a
constructive heuristic, a local search and a Greedy Randomized
Adaptive Search Procedures (GRASP) metaheuristic are proposed.
Building cluster-based topologies with a single sink means that the
methods only have to take a decision on the role of each sensor
and ensure the final topology is connected. Then, the optimization
relies on minimizing the number of clusters and the average hops
(number of edges in the path towards the unique sink). The pri-
mary criterion is the minimization of the total number of clusters,
the secondary being the average number of hops. It is worth
mentioning the latter is not considered in the local search and
in GRASP.

This study proposes an extension of work (Santos et al., 2012).
Here, we consider multi-sink cluster-based topologies. Thus the
problem consists of assigning each sensor to exactly one sink, then
partitioning them into clusters. Hence two main levels of decision
are involved: balance the number of sensors assigned to each sink
and choose the role for each sensor. Both the model and the
methods to solve the problem are impacted and this results in the
following contributions: (i) the model proposed in Santos et al.
(2012) is generalized by considering multiple sinks. Instead of
having a unique level of decision (i.e. set the role of each sensors
subject to connecting requirements), two levels of decisions now
have to be handled: the first one consists in assigning each sensor
to a unique sink and the second in setting its role. One may note
the complexity of solving the problem is increased since it raises
the challenge of balancing the load between each sink, which in
our clustered model corresponds to balancing the number of
sensors assigned to each sink; (ii) several criteria are used in a
lexicographical order to balance the assignment of sensors to each
sink. Considering these levels of decisions, the following optimi-
zation criteria are investigated in this study: minimize the max-
imum (min max) number of clusters per topology, minimize the
total number of clusters (min sum) in the solution and minimize
the deviation (the difference between the largest and the smallest)
(min regret) number of clusters over all the topologies. These three
optimization criteria (min max, min sum, min regret) can also be
applied to the average hop distance. (iii) Some interesting insights
are raised by the computational experiments such as which cri-
teria are conflicting, giving directions for designing multi-objective
strategies. The methods also change significantly compared to the
work of Santos et al. (2012) due to the balancing. Thus, (iv) the
construction of a feasible solution handles the fact that sensors can
be the candidate to several sinks, and that each sink is extended in
parallel with each iteration. In addition, (v) dedicated neighbor-
hood structures are developed to improve the balancing, resulting
in two local searches: a two-step local search and a Variable
Neighborhood Descent (VND). In the former, each topology is first
improved independently using the ideas proposed in Santos et al.
(2012). Then, new moves are proposed in the second step in order
to balance the overall topology. A scalable multi-start framework
using either a two-step local search or a VND is proposed and
applied to WSNs with up to 10 000 sensors and up to five sinks.

The multi-sink version of the IDSC is referred here as m-IDSC. It
is also a NP-hard problem since it generalizes the IDSC (Clark et al.,
1991). Multi-sink topologies are adapted for particular applications
such as monitoring buildings, whenever the WSN contains a large
number of uniformly distributed sensors, as well as when WSNs
have a high traffic load. It allows the total network charge to be
divided and spread over the network. As a consequence, it can
significantly improve the network lifetime. An interesting alter-
native to multiple sinks consists of adding more sensors in areas
with higher traffic, e.g. close to the sink (Lian et al., 2006; Wu et al.,
2008). However, this strategy is not always convenient since it
requires an explicit – and manual – positioning of the new sensors
after the initial deployment. Moreover, it may induce unbalanced
sensing coverage on the overall network area. Besides, it would
require dedicated simulation tools to evaluate the a priori energy
consumption of a potential sensor and its optimization.

The reminder of this work is organized as follows: a biblio-
graphical review is done in Section 2. Then, the problem definition
is given in Section 3, followed by the proposed multi-start meta-
heuristic in Section 4. Computational experiments are provided in
Section 5. Finally, concluding remarks and perspectives are given
in Section 6.
2. Related works

Several works in the literature bury the optimization issues
into simulations which are done to solve operational issues, with
no formal definition of the corresponding optimization problem.
As a consequence, the proposed solutions may not properly handle
the core of the optimization problem since optimization is a
desired feature and not the main focus. Investigating the optimi-
zation problems involved in WSN allows to understand its com-
plexity and improve the control, the management and the design
of WSN.

Here, the bibliographical review mainly focuses on the works
dedicated to optimization problems for WSN using multi-sink.
Rather than being exhaustive, we describe works strongly related
to our main concerns, i.e. to better understand the core of opti-
mization problems involved in a WSN. An interesting entry point
is found in Santos et al. (2012) for a state-of-the-art on WSN
optimization problems. Moreover, Abbasi and Younis (2007) sur-
vey WSN cluster algorithms and present a taxonomy of clustering
attributes. The multi-sink impact on energy consumption is
assessed by Cipollone et al. (2007) through simulations on specific
network topologies (i.e. trees routed at multiple sinks). In parti-
cular, the authors analyze the performance and the network life-
time whenever this kind of topology is applied. The network
lifetime is defined as the first time no path exists to send an event
to a sink, events being randomly generated in the simulation
scenario. The authors use the following two scenarios: sinks are
set uniformly into a grid and, second, sinks are located on the
border of a grid. The simulations aim at analyzing the network
lifetime, the reliability and the energy consumption. Results indi-
cate trees with fewer hops are more suitable. Obviously, reliability
may not be ensured since no secondary path exists whenever an
arc fails in a tree. Such an issue could be partially addressed in
cluster-based topologies with several bridges between each pair of
masters.

Some works focus on the optimal positioning of sinks by means
of optimization. Such problems belong to the well-known class of
location-allocation and location-relocation problems, which are
NP-hard. The main idea in such strategies is to define optimal
location for the sinks, which implies a strong hypothesis on the
global knowledge of the WSN topology. A case study for setting
WSNs in buildings is presented by Saad and Tourancheau (2009).
The authors propose a Mixed Integer Linear Programming for-
mulation to provide optimal positioning for mobile sinks. In the
instances, sensors are deployed in a grid. Experiments are pro-
vided on abstract grids with up to 100 sensors, up to four sinks,
and several sink location policies such as on the network border or
randomly over the grid. The network lifetime is defined as the first
time a sensor runs out of energy. Kim et al. (2005) also investigate
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the problem of finding optimal sink locations in a WSN, where the
optimization consists of using a network flow model to locate p
sinks in a WSN in order to maximize the network lifetime, while
routing data to the sinks. Two mathematical formulations are
presented: the first one considers a fixed number of sinks and the
second one sets an upper bound on the number of sinks. Results
are provided for WSNs with 20 nodes and up to five sinks. The
study (Friedmann and Boukhatem, 2007) focuses on finding an
initial optimal sink location and a repositioning strategy. A hill
climbing local search with random restarts is used to provide real-
time solutions. Experiments are presented for WSNs with 16
sensors and up to five sinks. The authors in Sitanayah et al. (2015)
also consider the deployment of sinks and relay nodes in a WSN.
The solution has to be robust against the failure of one node and
lengths of the communication path for each node towards a sink is
upper-bounded. GRASP-based heuristics are proposed to minimize
the deployment cost, either considering relay nodes or not. Both
variations are evaluated on instances with 100 nodes and 81
candidate relay nodes. The deployment of multiples sinks in order
to minimize the average distance of each sensor to its closest sink
is investigated in Vincze et al. (2007). The authors consider a
multi-hop communication, i.e multiple paths can exist from sen-
sors to the sinks and that each sensor sends messages to its closest
sink. A mathematical formulation is proposed along with two
algorithms: the first one considers a global knowledge of the
sensors distribution and is based on the k-means (Forgy, 1965)
algorithm, while the second one uses local information to ensure
at least 1-hop (path) from sensors to a sink. In the experiments,
sending and receiving a packet consumes 1 unit of energy and the
network lifetime is defined as the first time an active sensor
cannot communicate with the closest sink. Results are presented
for WSNs with 1000 sensors and 80 m radio range. Moreover, each
sensor has 10 000 units of initial energy power.

Another growing research area in optimization problems for
WSNs consists of coupling different levels of decisions and dif-
ferent criteria such as routing and clustering, routing and density
control, routing and load balancing, routing for mobile sinks with
coverage, and scheduling active sensors to cover target points. For
example, Elhabyan and Yagoub (2015) propose a Particle Swarm
Optimization (PSO) protocol for performing clustering and routing.
Communication between clusters does not use bridges. In addi-
tion, a model for energy consumption is also introduced. Results
are presented for networks with up to 500 sensors. Aioffi et al.
(2011) consider the optimization of mobile sink routes while
controlling sensors density. Such a problem is modeled as a cov-
ered min max selective vehicle routing problem and several
heuristic strategies are proposed such as GRASP and Iterated Local
Search (ILS). Results are reported for WSN with 600 sensors and
up to four mobile sinks. The mobile vehicle to collect data is not
necessarily terrestrial. For instance, Wichmann and Korkmaz
(2015) consider unmanned aerial vehicles which sets limits on the
turning radius. Thus, the authors first focus on computing a set of
Fig. 1. Example of Independent, Dominating and a
trips by means of genetic algorithms. Then, each trip is trans-
formed into a smooth trip by removing the sharp turns. The
delivery rate and average delays are analyzed for WSN with up to
200 gateways. Work (Kuila and Jana, 2014) focuses on two pro-
blems: the first consists of routing strategies with a trade-off
between the transmission range and the number of data forwards,
and the second relies on balancing energy by applying a cluster-
based topology. The cluster-based topology does not consider the
set of cluster heads as an independent set. This means two clusters
heads can be directly connected in the topology. As a consequence,
it can generate conflicts managing messages and also be a source
of redundancy. Moreover, a cluster head is a gateway, that is a
sensor with a larger battery. The authors propose a multi-objective
PSO working in a route first, cluster second strategy. Thus, route
information is used to decide about clusters, while trying to bal-
ance the load for cluster heads. Experiments are presented on
WSNs ranging from 200 to 700 sensors and 60 to 90 cluster heads.
In our work, we apply the opposite strategy: first we decide about
the network design structure, then the routing is done. Note that
an evolutionary algorithm for computing load balanced topologies
in WSN is proposed by Kuila et al. (2013), using a similar definition
of clusters as in Kuila and Jana (2014). Simulations on instances
with 400 sensors and 30 gateways showed the method performs
well in terms of load balancing and network lifetime. Load bal-
ancing together with mobile data gathering is studied by Zhao
et al. (2015), where the clustering is done in a distributed
approach and inter-clustering is performed without any bridge.
This means an initial configuration is done in order to determine
clusters. WSN ranging from 50 to 500 nodes is used in the com-
putational experiments. Work of Castaño et al. (2013) addresses
multiple sinks and aims at scheduling active sensors to cover a set
of target locations. The sinks are connected by means of a super
node and a target location is said to be covered if there is a path to
transmit data towards the super node. The lifetime corresponds to
the sum of the times assigned to each feasible cover. A decom-
position approach is proposed and solved using column genera-
tion coupled with heuristics to address the auxiliary problem.
Results are presented for WSNs with 50, 100, 150 and 250 sensors,
15 and 30 target locations, and up to 3 sinks.

A work closely related to the problem we consider has been
done by He et al. (2012). The authors have addressed the Load-
Balanced Connected Dominating Set (LBCDS) problem to compute
energy-efficient topologies for WSNs. They propose a Genetic
Algorithm whose efficiency is evaluated on medium-size WSNs
with up to 1000 nodes. The solutions obtained significantly
improve the balance and the network lifetime over existing
approaches for the Connected Dominating Set problem. Yet the set
of masters are not an independent set.
feasible cluster-based topology for one sink.
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3. Cluster-based topologies with several sinks

Let G¼ ðV ; EÞ be the communication graph associated with the
WSN. The set V of vertices contains the subset T of sinks. An edge
½i; j� belongs to E if and only if vertices i and j can perform bidir-
ectional communication. Fig. 1(a) presents an example of a com-
munication graph G¼ ðV ; EÞ. An independent set IDV is a subset
of vertices that are pairwise non-adjacent like the set of black
circles in Fig. 1(b). A dominating set DDV is a subset of V such that
every vertex vAV⧹D is adjacent to at least one vertex in D. As an
example, the set of black circles in Fig. 1(c) corresponds to a
dominating set. Bridges are displayed as gray circles.

Building a cluster-based topology according to Santos et al. (2009,
2012), Vlajic and Xia (2006) means that each vertex is given a specific
task: master, slave or bridge, the sink being a special (and pre-
defined) case of master. Thus, the set MDV of masters must be an
independent dominating set of V since it has to hold both properties.
Besides, each master has to be connected to the sink through a path,
hence the connecting requirement. Fig. 1(d) illustrates a feasible
cluster-based topology where the black square, the black circles, the
gray circles and the white circles respectively stand for sinks, mas-
ters, bridges and slaves. Moreover, the sinks are considered as mas-
ters and TDM. The set S¼ V⧹M of the remaining vertices are slaves
and bridges, the later corresponding to slaves connected to at least
two masters. Therefore, they can be implicitly deduced from S and
the two subsets M and S define a partition of G. Given such a par-
tition, the resulting topology is a subgraph in which only edges
connecting nodes in S with nodes in M are considered. The IDSC
problem deals with a single sink, i.e. jT j ¼ 1. It consists of building a
set M that minimizes the number of clusters and whose resulting
topology is connected.

The m-IDSC extends the IDSC by considering a set T of m41
sinks (hence m¼ jT j ). Thus, each vertex must be first assigned to a
sink. This means V has to be partitioned into subsets Vt, 8 tAT ,
which corresponds to the first level of decision. Once the nodes
have been assigned to a sink, an IDSC problem has to be solved for
each partition Vt. Moreover, for each Vt, tAT , the second level of
decision corresponds to the definition of the subsets Mt and St,
respectively the masters and the slaves/bridges for the sink t. For
the sake of clarity, the final topology with m sinks is referred here
as anm-topology, made ofm subgraphs Gt ¼ ðVt ; EtÞwhere Vt is the
corresponding set of sensors and Et is the set of edges. Here,
topologies are considered balanced if they have the same number
of clusters. A difference of up to one cluster is acceptable and
tolerated since it may not be possible for some sensor distributions
to design a full balanced m-topology.

The first level of decision plays an important role in the whole
optimization process. Fig. 2(a) illustrates a poor assignment, even if
the topologies are balanced, due to a large number of hops. This
induces more energy consumption when sending messages to the
sink, since more hops are used to route messages to a sink. Fig. 2
(b) shows a better structure with a fewer number of hops, while the
topologies remain balanced.

As mentioned before, the clustered model differs from the
model used in He et al. (2012) since no connection is allowed
between any two masters, and bridges are defined to ensure
connection between clusters and the sinks. Thus, the set of mas-
ters is also an independent set which makes the m-IDSC problem
more difficult than the LBCDS.

Two evaluations are used for the IDSC: the total number of
masters and the hop average. The former corresponds to the number
of clusters in the topology. The later defines the average distance of
each slave to its corresponding sink. Thus, it gives an estimation of
the energy consumption due to message transmission. Both values
have to be minimized, the former being used as primary criterion
and the latter as secondary criterion. Such an approach might lead to
highly unbalanced energy consumption among the sinks since the
m-IDSC problem involves several sinks. Thus the criteria have to be
adapted to the context of them-IDSC. Two values are now considered
in the optimization: (A) the number of clusters per topology and
(B) the average hop number per topology. They are subjected to the
three following optimization objectives: (1) minimizing the max-
imum value (A or B) per topology, (2) minimizing the sum of values
over the topology (A or B) and (3) minimizing the deviation (the
difference between the largest and the smallest) values over the m-
topology (A or B), which leads to six potential combinations for single
objective optimization criteria.

Several combinations of the possible evaluations have been
investigated. We present here the two most promising. Thus, the
solutions and the moves investigated will be evaluated by using
one of the following two combinations:

(A1-A2-B1) : The first (A1) aims at minimizing the max-
imum number of clusters per topology; the second, (A2) looks to
minimizing the total number of clusters over all topologies; and,
the third (B1) is used to minimize the maximum average hop per
topology. Thus, a solution is evaluated using the criteria in the
lexicographic order A1-A2-B1.

(A1-A3-B1) : The first (A1) aims at minimizing the max-
imum number of clusters per topology; the second (A3) looks to
minimizing the deviation of the number of clusters over all
topologies; and, the third (B1) is used to minimize the maximum
average hop per topology. In this strategy, a solution is evaluated
by the criteria in the lexicographic order A1-A3-B1.

The second combination (A1-A3-B1) is referred here as
“Balanced” as it explicitly uses the balancing strategy A3, while the
combination (A1-A2-B1) is referred as “Unbalanced”.
4. Multi-start heuristics for the m-IDSC problem

Multi-start heuristics are effective strategies for solving NP-hard
problems (Martí, 2003). They consist of building a feasible solution at
each iteration, which is then improved by a local search. This
sequence is repeated to get several solutions in the search space and
the incumbent solution is kept, characterizing a multi-start. Such a
framework is interesting in the WSN context since it requires few
parameters and their calibration remains quite light.
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Algorithm 1 provides a macroview of a multi-start heuristic
scheme, where S and Sn are respectively the incumbent and the
best solution. Variables are initialized in line 1. The loop of lines 2–
8 is repeated until the stopping criterion is met. A solution is built
and improved, respectively in lines 3 and 4. The best solution is
updated from lines 5 to 7. The optimization criteria used in the
Balanced and the Unbalanced strategies are respectively applied in
the lexicographic order (A1-A3-B1) and (A1-A2-B1), to
evaluate the solutions in the local search and when updating the
incumbent solution.

Algorithm 1. General multi-start framework.
1
2
3
4
5
6
7

Initialize S and Sn;

repeat
�

Build an initial solution S;

Apply a local search to improve S;

if S improves Sn then
j Update Sn;

end

�
�
�
�
�
�
�
�
�
�
�

until (stopping criterion is not met);
8

A greedy constructive heuristic and two local searches have
been developed for the m-IDSC problem. The general idea of the
constructive procedure is to expand a topology from each sink, by
Fig. 3. Example of a wrong decision.

Fig. 4. Example of a

Fig. 5. Example of a
adding one master at a time, and its available neighbors (a cluster)
at each iteration. The procedure stops when every sensor belongs
to a topology. A list of candidate nodes to become master is built
and updated throughout the process. The candidate is randomly
chosen in this list. Such a generation is tailored for the multi-start
procedure since the random choice allows us to build the initial
solution in different regions of the search space. A node can belong
to the neighborhood of several partial topologies and it may be
selected several times. To avoid any conflict (i.e. two or more sinks
ask for the same candidate) and inconsistency (i.e a node is
selected as a master in two or more topologies), information is
kept to identify so far if a candidate is still available or not.

The greedy heuristic tries to keep the m-topology balanced by
inserting one cluster for each topology, at each iteration. Balancing
is not guaranteed, since decisions are taken locally. This especially
holds when a node is candidate for several topologies. Moreover,
wrong decisions may block the expansion of a topology. For
instance, the list of candidates in Fig. 3 is fa; b; cg, dotted circles
being the available sensors to enter the m-topology. Choosing
node a blocks the expansion of the other topology.

Algorithm 2 illustrates the constructive procedure. Let N(i) be
the set of all direct neighbors of iAV , i.e. NðiÞ ¼ fjAV j ½i; j�AEg. Thus
jANðiÞ is said to be a neighbor of i. All other notations have already
been defined in Section 3. The m-topology is initialized (lines 1–7).
Initially, every node iAV is made available (line 1). Then, a sink
tAT is included in the topology, and Mt and Vt are respectively
updated (lines 3 and 4). The added nodes are set unavailable (line
5). The procedure sets slaves for each topology (line 7). One slave
is included and connected to a sink t at a time, and then set
unavailable. The first level of slaves plays a key role in providing a
more balanced m-topology. Inserting one slave at a time allows a
better balancing of the number of sensors in the initial m-topol-
ogy. The loop (lines 8–18) is repeated until all nodes have been
assigned. The candidate list refers to the nodes that can immedi-
ately become master. The candidate list associated with each sink
is updated (line 9). Only available nodes are considered.
move in N 2a .

move in N 2b .
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Algorithm 2. The randomized constructive heuristic.
1
2
3
4
5
6
7
8

Table 1
Results fo

m

2

3

4

10
Input: G¼ ðV ; EÞ, T

11
Output: m�topology¼ fGt ¼ ðVt ; EtÞ, Mt 8 tATg

12

13
8 iAV set i as available;

14
for t’1 to m do

�

15
16
17
Mt’ftg;
Vt’Mt ;

set t as unavailable;

�
�
�
�
�
�

18
end

update slaves ðGt ¼ ðVt ; EtÞ; St 8 tATÞ;

while ð( available nodesÞ do
r the Unbalanced (A1-A2-B1) strategy on the first test set.

n RCH MSþ2P

A1 A2 A3 B1 t(s) A1 A2 A3

100 7 13 1 4.33 0.06 6 12 0
150 7 14 0 5.67 0.07 7 13 1
200 7 14 0 6.00 0.09 7 13 1
250 8 15 1 3.43 0.09 6 12 0
300 8 15 1 4.67 0.10 7 13 1
350 8 15 1 4.57 0.12 7 13 1
400 8 15 1 2.86 0.15 7 13 1
450 8 15 1 3.33 0.18 7 14 0
500 8 16 0 3.71 0.21 7 14 0
550 8 15 1 4.33 0.25 7 13 1
600 8 15 1 3.43 0.29 7 13 1
650 8 16 0 2.86 0.36 6 12 0
700 8 16 0 3.71 0.37 7 13 1
750 8 15 1 2.86 0.42 7 12 2
800 8 16 0 3.14 0.48 7 13 1
850 8 16 0 2.86 0.53 7 14 0
900 8 15 1 3.43 0.60 7 13 1
950 8 15 1 4.29 0.65 7 13 1
1000 8 15 1 2.86 0.70 7 13 1

100 5 13 1 3.50 0.03 5 13 1
150 5 13 1 2.67 0.04 5 12 2
200 5 15 0 2.50 0.05 5 13 1
250 5 14 1 2.67 0.07 4 12 0
300 5 15 0 4.00 0.09 5 13 1
350 6 16 1 3.60 0.12 5 14 1
400 5 15 0 5.00 0.21 5 13 2
450 5 15 0 4.00 0.17 5 13 1
500 5 15 0 4.00 0.20 5 14 1
550 6 16 1 3.20 0.25 5 14 1
600 6 16 1 3.20 0.28 5 13 1
650 5 15 0 2.50 0.32 5 13 1
700 6 16 1 3.00 0.38 5 13 1
750 5 15 0 5.00 0.41 5 13 1
800 5 15 0 3.50 0.46 5 13 1
850 6 16 1 3.50 0.52 5 15 0
900 6 17 1 3.20 0.59 5 14 1
950 6 16 1 6.00 0.62 5 14 1
1000 6 16 1 3.50 0.73 5 14 1

100 4 13 2 3.00 0.03 4 13 2
150 4 14 2 2.67 0.04 4 13 2
200 4 15 1 2.67 0.06 4 14 1
250 4 14 1 3.00 0.07 4 13 1
300 4 16 0 3.33 0.09 4 13 1
350 4 16 0 2.67 0.11 4 15 1
400 4 15 1 3.00 0.14 4 13 1
450 5 16 2 3.00 0.17 4 14 1
500 5 15 2 3.00 0.20 4 14 1
550 5 16 2 3.00 0.23 4 15 1
600 4 16 0 4.00 0.28 4 15 1
650 4 15 1 3.33 0.31 4 14 1
700 5 16 2 3.00 0.35 4 15 1
750 5 16 3 3.00 0.41 4 14 1
800 4 16 0 2.67 0.41 4 14 1
850 5 17 1 2.67 0.48 4 16 1
900 5 16 2 3.50 0.54 4 15 1
950 4 16 0 4.00 0.56 4 14 1
1000 5 16 2 2.67 0.63 4 14 1
update candidate list for all m�topology;
for t’1 to m do
select i from the candidate list of sink t;
Mt’Mt [ fig;
St’St [ fj j for all jANðiÞ and j is availableg;
Vt’Mt [ St ;

Et’Et [ f½i; j� j for all jANðiÞ and j is availableg;
set i and all available neighbors of NðiÞ as unavailable;

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

end

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
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end

return m-topology, Mt 8 tAT;
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MSþVND

B1 t(s) A1 A2 A3 B1 t(s)

3.60 0.07 6 12 0 3.60 0.18
4.00 0.06 7 13 1 4.00 0.41
3.60 0.10 7 13 1 3.60 0.75
4.40 0.15 6 12 0 4.40 1.13
2.80 0.19 7 13 1 2.80 1.58
4.00 0.21 7 13 1 4.00 2.27
2.80 0.24 7 13 1 2.80 2.91
3.33 0.30 7 13 1 3.60 3.88
3.33 0.37 7 14 0 3.33 5.23
3.00 0.39 7 13 1 3.00 6.37
4.40 0.46 7 13 1 3.60 6.87
3.60 0.50 6 12 0 3.60 7.79
3.33 0.58 7 13 1 3.33 9.37
2.67 0.63 7 12 2 2.67 11.76
2.80 0.71 7 13 1 2.80 13.51
3.00 0.80 7 14 0 3.00 14.66
3.00 0.85 7 13 1 3.00 16.57
4.67 1.06 7 13 1 4.67 19.78
2.80 1.07 7 13 1 2.80 21.34

3.50 0.04 5 13 1 3.50 0.19
3.00 0.06 5 12 2 3.00 0.37
3.33 0.09 5 13 1 3.33 0.69
3.33 0.12 4 12 0 3.33 1.06
5.00 0.14 5 13 1 5.00 1.61
4.00 0.17 5 14 1 4.00 2.13
3.50 0.21 5 13 2 3.50 3.29
3.33 0.25 5 13 1 3.33 3.50
3.00 0.28 5 14 1 2.67 4.53
3.00 0.35 5 14 1 3.00 5.89
4.00 0.43 5 13 1 4.00 7.31
4.00 0.47 5 13 1 4.00 9.09
3.33 0.52 5 13 1 3.33 9.54
0.67 0.64 5 13 1 0.67 14.21
2.67 0.61 5 13 1 2.67 13.75
2.50 0.69 5 15 0 2.50 16.83
2.67 0.77 5 14 1 2.67 20.07
5.00 0.86 5 14 1 5.00 19.24
2.67 0.90 5 14 1 2.67 22.58

3.00 0.04 4 13 2 3.00 0.29
3.00 0.06 4 13 2 3.00 0.35
3.33 0.09 4 14 1 3.33 0.67
2.00 0.13 4 13 1 2.00 1.15
4.00 0.19 4 13 1 4.00 1.61
2.67 0.17 4 15 1 2.67 2.05
3.00 0.21 4 13 1 3.00 2.66
3.00 0.30 4 14 1 3.00 4.40
2.67 0.36 4 14 1 2.67 4.79
3.33 0.33 4 15 1 3.33 5.07
3.33 0.39 4 15 1 3.33 6.20
2.67 0.46 4 14 1 2.67 8.15
4.00 0.52 4 15 1 4.00 9.54
2.00 0.67 4 14 1 2.00 12.33
2.67 0.65 4 14 1 2.67 14.09
2.00 0.63 4 16 1 2.00 14.27
2.67 0.95 4 15 1 2.67 19.42
3.00 0.82 4 14 1 3.00 17.59
2.67 0.96 4 14 1 2.67 23.67



Table 2
Results for the Balanced (A1-A3-B1) strategy on the first test set.

m n RCH MSþ2P MSþVND

A1 A2 A3 B1 t(s) A1 A2 A3 B1 t(s) A1 A2 A3 B1 t(s)

2 100 7 14 0 3.33 0.03 6 12 0 3.60 0.04 6 12 0 3.60 0.20
150 7 14 0 5.67 0.04 7 14 0 4.33 0.08 7 14 0 4.33 0.41
200 7 14 0 6.00 0.06 7 14 0 3.67 0.09 7 14 0 3.67 0.76
250 8 16 0 3.43 0.08 6 12 0 4.40 0.12 6 12 0 4.40 1.15
300 8 16 0 4.00 0.10 7 14 0 2.33 0.17 7 14 0 2.33 1.63
350 8 16 0 4.57 0.12 7 14 0 4.00 0.21 7 14 0 4.00 2.37
400 8 16 0 3.14 0.14 7 14 0 2.00 0.24 7 14 0 2.00 2.94
450 8 16 0 3.43 0.18 7 14 0 3.33 0.28 7 14 0 3.33 3.90
500 8 16 0 3.71 0.21 7 14 0 3.33 0.36 7 14 0 3.33 5.38
550 8 16 0 3.43 0.24 7 14 0 2.67 0.38 7 14 0 2.67 6.33
600 8 16 0 3.43 0.29 7 14 0 3.67 0.47 7 14 0 3.67 6.96
650 8 16 0 2.86 0.34 6 12 0 3.60 0.51 6 12 0 3.60 8.08
700 8 16 0 3.71 0.38 7 14 0 3.33 0.58 7 14 0 3.33 10.34
750 8 16 0 2.86 0.43 7 14 0 2.67 0.65 7 14 0 2.67 12.67
800 8 16 0 3.14 0.57 7 14 0 3.00 0.70 7 14 0 3.00 13.67
850 8 16 0 2.86 0.54 7 14 0 3.00 0.80 7 14 0 3.00 14.76
900 8 15 1 3.43 0.63 7 14 0 2.67 0.83 7 14 0 2.67 16.83
950 8 16 0 4.29 0.66 7 14 0 3.67 1.05 7 14 0 3.67 19.96
1000 8 16 0 3.14 0.71 7 14 0 2.67 1.03 7 14 0 2.67 21.66

3 100 5 15 0 3.00 0.04 5 15 0 3.00 0.04 5 15 0 3.00 0.20
150 5 15 0 3.00 0.07 5 15 0 3.00 0.06 5 15 0 3.00 0.39
200 5 15 0 2.50 0.10 5 15 0 2.50 0.09 5 15 0 2.50 0.70
250 5 15 0 3.00 0.12 4 12 0 3.33 0.11 4 13 0 2.67 1.08
300 5 15 0 4.00 0.10 5 15 0 2.50 0.17 5 15 0 2.50 1.63
350 6 18 0 3.60 0.12 5 15 0 3.50 0.18 5 15 0 3.50 2.16
400 5 15 0 5.00 0.14 5 15 0 3.00 0.22 5 15 0 3.00 3.25
450 5 15 0 4.00 0.17 5 15 0 2.50 0.28 5 15 0 2.50 3.54
500 5 15 0 4.00 0.21 5 15 0 2.50 0.30 5 15 0 2.50 4.56
550 6 18 0 2.80 0.26 5 15 0 3.00 0.35 5 15 0 3.00 5.87
600 6 18 0 3.20 0.28 5 15 0 3.00 0.41 5 15 0 3.00 7.33
650 5 15 0 2.50 0.34 5 15 0 2.50 0.47 5 15 0 2.50 8.72
700 6 18 0 2.80 0.38 5 15 0 3.00 0.52 5 15 0 3.00 8.93
750 5 15 0 5.00 0.41 5 15 0 1.00 0.63 5 15 0 1.00 12.80
800 5 15 0 3.50 0.47 5 15 0 2.50 0.61 5 15 0 2.50 13.08
850 6 18 0 3.20 0.52 5 15 0 2.50 0.66 5 15 0 2.50 16.38
900 6 18 0 2.80 0.59 5 15 0 3.00 0.77 5 15 0 3.00 21.03
950 6 18 0 4.40 0.63 5 15 0 3.00 0.85 5 15 0 3.00 19.15
1000 6 18 0 2.80 0.69 5 15 0 2.50 0.88 5 15 0 2.50 20.75

4 100 4 16 0 2.67 0.04 4 16 0 2.67 0.04 4 16 0 2.67 0.19
150 4 16 0 3.33 0.06 4 16 0 2.67 0.06 4 16 0 2.67 0.38
200 4 16 0 2.67 0.05 4 16 0 2.00 0.08 4 16 0 2.00 0.66
250 4 16 0 2.67 0.07 4 16 0 2.67 0.11 4 16 0 2.00 1.17
300 4 16 0 3.33 0.09 4 16 0 2.67 0.14 4 16 0 2.67 1.54
350 4 16 0 2.67 0.11 4 16 0 2.67 0.16 4 16 0 2.67 2.05
400 4 16 0 2.67 0.14 4 16 0 2.67 0.20 4 16 0 2.67 2.60
450 5 20 0 4.00 0.17 4 16 0 2.67 0.24 4 16 0 2.67 4.38
500 5 20 0 3.00 0.20 4 16 0 2.67 0.27 4 17 0 2.67 4.89
550 5 20 0 3.00 0.23 4 16 0 2.67 0.29 4 16 0 2.67 5.08
600 4 16 0 4.00 0.29 4 16 0 2.67 0.37 4 16 0 2.67 6.35
650 4 16 0 2.67 0.31 4 16 0 2.00 0.38 4 16 0 2.00 8.12
700 5 20 0 3.00 0.36 4 16 0 2.67 0.49 4 16 0 2.67 9.62
750 5 20 0 5.00 0.39 4 16 0 2.00 0.54 4 16 0 2.00 12.19
800 4 16 0 2.67 0.41 4 16 0 2.67 0.55 4 16 0 2.67 13.84
850 5 20 0 2.50 0.49 4 16 0 2.00 0.59 4 16 0 2.00 14.17
900 5 20 0 4.00 0.55 4 16 0 2.67 0.75 4 17 0 2.00 19.33
950 4 16 0 4.00 0.56 4 16 0 2.67 0.74 4 16 0 2.67 17.31
1000 5 20 0 3.50 0.63 4 16 0 2.00 0.75 4 16 0 2.00 23.60
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A node is randomly selected from the candidate list (line 11) to
become a master (line 12). Then, its available neighbors are
included in S (line 13). Gt ¼ ðVt ; EtÞ is updated (lines 14–15). The
added nodes become unavailable (line 16). The feasible m-topol-
ogy is returned by the procedure (line 19).

The solution built by the constructive procedure is then sub-
mitted to one of the two proposed local search procedures. The
first one performs two phases and uses a first improvement
strategy. In the first phase, a local optimization is done in each
topology to try to reduce its number of clusters. The second phase
is focused on balancing the number of clusters among all topolo-
gies. The second local search is a Variable Neighborhood Descent
(VND) (Mladenovic and Hansen, 1997).

The first phase of the two phases local search corresponds to
the procedure proposed in Santos et al. (2012) for the IDSC pro-
blem. It relies on the neighborhood structure N 1, in which a
move consists of transforming a bridge into a master and
updating the topology accordingly. Bridges are connected to at
least two masters. Thus, after applying such a move, the final
resulting topology necessarily contains less masters if it remains



Table 4
Overview of the deviation A3 on the first test set.

Method m A3 equals 0 A3 equals 1

Unbalanced Balanced Unbalanced Balanced

MSþ2P 2 6 19 12 0
3 2 19 15 0
4 0 19 17 0

MSþVND 2 5 19 13 0
3 2 19 15 0
4 0 19 17 0

Table 5
Overview of the total number of clusters A2 in the m-topology on the first test set.

Method m Unbalanced vs. Balanced

Better Similar Worse

MSþ2P 2 13 6 0
3 17 2 0
4 18 1 0

MSþVND 2 16 3 0
3 18 1 0
4 18 1 0
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connected. Criterion A3 is useless here since only one topology is
considered at a time.

In the second phase of the local search, the general idea is to use a
neighborhood structure N 2 in order to transfer clusters among the
topologies to get a better balance. Thus, two topologies can be con-
sidered for a move if they differ by more than one in the number of
clusters. Otherwise transferring one cluster cannot improve the bal-
ance of the m-topology. Moreover, criterion A2 is useless here since
the total number of clusters does not change. Two subsets of moves
have been considered in N 2: the first one (N 2a) connects a master
from a topology to a bridge in another topology, and the second one
(N 2b) connects a master from a topology to a slave in another
topology. We have N 2a [ N 2b �N 2 and those moves are investi-
gated simultaneously when exploring N 2.

Let G1 and G2 be a pair of unbalanced topologies such that G2

has more clusters than G1, i.e. jM2 jZ jM1 j þ2. In a move from
N 2a, connecting a master iAG2 to a bridge jAG1 means some of its
slaves can change their task. They may become bridges in G1 and
some nodes considered as bridges in G2 may become slaves in G1.
Fig. 4 illustrates such a move. Fig. 4(a) shows the initial m-topol-
ogy and nodes “a”, “b” and “c” involved in the move. In Fig. 4(b),
the move has been performed. The cluster with the master “a” is
connected to a bridge in the other topology. Then, node “c”
becomes a slave and both topologies have the same number of
clusters.

In a move from N 2b, connecting a master iAG2 to a slave jAG1

implies j becomes a bridge. All other slaves are updated accord-
ingly as in the first move. Fig. 5 shows an example for the second
move. Fig. 5(a) and (b) display respectively the initial m-topology
and the resulting topology after the move. Nodes “a”, “b” and “c”
are involved in the move. In this case, the connection between “a”
and “b” implies “b” becomes a bridge.

The VND local search uses the same neighborhood structures as
the two phases local search, but in a different way. Only one
neighborhood structure N k is active in each iteration. Initially,
k¼1. Given a current solution S and the active neighborhood
structure N k, if an improving solution S0AN kðSÞ is found, it
becomes the new current solution and k is set to 1. Otherwise, the
Table 3
Methods comparison on the first test set.

Methods m A1 only A1-A2-B1

Better Similar Worse Better Similar Worse

Unbalanced strategy
RCH vs. MSþ2P 2 0 2 17 0 0 19

3 0 10 9 0 1 18
4 0 11 8 0 1 18

RCH vs. MSþVND 2 0 2 17 0 0 19
3 0 10 9 0 1 18
4 0 11 8 0 1 18

MSþ2P vs. MSþVND 2 0 19 0 0 17 2
3 0 19 0 0 18 1
4 0 19 0 0 19 0

Balanced strategy
RCH vs. MSþ2P 2 0 2 17 0 0 19

3 0 10 9 0 4 15
4 0 11 8 0 5 14

RCH vs. MSþVND 2 0 2 17 0 0 19
3 0 10 9 0 4 15
4 0 11 8 0 4 15

MSþ2P vs. MSþVND 2 0 19 0 0 19 0
3 0 19 0 0 18 1
4 0 19 0 0 17 2
current solution is left unchanged and k is increased. Thus, at the
end, the current solution S is a local optimum with respect to N 1

and N 2.
Algorithms 3 and 4 respectively illustrate the two-phases local

search and the VND. Given an initial solution S0, they use the first
improvement strategy (selection operator firstImproving()) when
exploring the neighborhoods N 1 and N 2. The comparison (bet-
terThan) between solutions relies on the given lexicographic
order.

Algorithm 3. The two-phases local search.
2
3
4
5
6
7
8

10
11
12
13
14
15
16
17
I
nput: G¼ ðV ; EÞ, initial solution S0

O
utput: solution S
S
’S0;
1
/
/ first phase: improve each topology
s
top’false;

w
�

hile ðstop¼ falseÞ do
�
�
�
�
�
�
�
�
�
�
�

if ð(S0AN 1ðSÞ j S0 betterThan SÞ then
j S’firstImprovingðN 1ðSÞÞ;
else
j stop’true;

end

e
nd
9
/
/ second phase: improve the balance
s
top’false;

w
�

hile ðstop¼ falseÞ do
�
�
�
�
�
�
�
�
�
�
�

if ð(S0AN 2ðSÞ j S0 betterThan SÞ then
j S’firstImprovingðN 2ðSÞÞ;
else
j stop’true;

end

e
nd

r
eturn S
18



Table 6
Results for the Unbalanced (A1-A2-B1) strategy on the second test set.

m n RCH MSþ2P MSþVND

A1 A2 A3 B1 t(s) A1 A2 A3 B1 t(s) A1 A2 A3 B1 t(s)

2 2000 153 304 2 18.03 0.36 128 255 1 19.37 27.14 128 255 1 19.37 27.42
3000 164 325 3 19.90 0.59 129 257 1 22.34 51.53 128 255 1 22.25 52.15
4000 168 331 5 15.95 0.87 130 260 0 18.64 93.88 130 260 0 18.47 95.49
5000 169 332 6 20.23 1.17 134 268 0 19.04 154.24 133 266 0 19.03 157.39
6000 169 336 2 14.40 1.58 135 270 0 13.58 232.35 135 269 1 14.58 240.51
7000 172 342 2 18.93 1.92 137 273 1 16.01 322.17 135 270 0 18.10 331.84
8000 176 349 3 23.01 2.35 140 279 1 20.00 420.76 139 277 1 24.91 439.11
9000 175 346 4 13.80 2.85 138 275 1 14.26 562.67 138 275 1 14.26 588.62
10 000 175 350 0 12.00 3.44 139 278 0 12.20 715.04 138 276 0 13.15 747.66

3 2000 105 312 2 19.16 0.36 88 262 1 28.74 22.55 88 262 1 28.74 35.74
3000 110 330 0 21.50 0.58 90 260 7 18.90 45.34 86 257 4 18.94 72.97
4000 111 330 2 17.64 0.84 90 269 1 27.37 76.29 89 267 2 20.77 128.34
5000 115 339 4 14.65 1.18 91 273 0 16.49 137.08 91 272 2 13.89 229.93
6000 116 345 2 15.15 1.51 93 279 0 16.33 204.93 92 277 1 15.05 344.99
7000 117 347 4 18.52 1.87 93 279 0 21.28 276.40 92 280 0 21.43 461.90
8000 118 344 6 15.13 2.33 93 279 0 15.91 384.16 93 277 1 16.00 658.48
9000 119 356 1 15.54 2.77 94 281 1 15.16 501.43 93 279 2 13.80 849.72
10 000 119 356 1 11.88 3.35 94 281 1 10.39 766.03 94 280 1 10.39 1105.46

4 2000 80 313 4 18.21 0.32 71 280 2 25.51 19.49 70 277 3 25.51 22.15
3000 84 329 4 12.98 0.57 67 266 1 13.69 39.78 67 266 1 13.69 42.27
4000 85 329 7 14.20 0.84 69 268 4 17.88 74.29 68 265 5 17.97 83.23
5000 87 337 4 12.07 1.13 73 271 11 11.14 134.86 71 268 11 11.20 141.48
6000 92 348 18 17.45 1.50 71 282 2 16.31 203.11 71 282 2 16.31 219.25
7000 89 345 9 21.37 1.94 72 282 3 22.34 266.79 71 278 6 21.41 301.13
8000 89 350 4 15.43 2.38 72 286 1 12.71 412.79 70 282 2 13.73 410.88
9000 91 355 5 23.57 2.74 73 287 2 23.97 538.58 72 286 1 23.60 500.10
10 000 92 357 6 9.88 3.32 72 286 1 9.92 675.11 71 286 1 10.12 689.23

5 2000 67 313 13 22.09 0.33 64 281 16 20.23 13.98 63 303 6 26.33 24.81
3000 69 327 10 16.09 0.55 58 282 2 18.04 33.60 54 266 9 19.15 59.58
4000 73 348 14 18.66 0.82 62 278 11 22.73 61.91 59 274 9 23.38 105.83
5000 69 341 2 10.12 1.15 56 277 1 11.09 112.97 55 275 2 11.96 183.82
6000 76 342 29 20.86 1.50 60 286 11 19.62 176.44 60 286 11 19.62 280.33
7000 76 357 14 23.07 1.91 60 287 12 23.63 241.80 60 287 12 23.63 414.60
8000 73 349 6 11.06 2.29 57 282 1 11.13 346.19 56 282 0 11.60 599.62
9000 77 365 17 16.16 2.72 59 293 1 18.66 419.92 59 293 1 18.66 469.93
10 000 72 354 3 14.32 3.29 58 284 3 11.19 562.71 56 283 2 11.06 652.36
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Algorithm 4. The VND local search.
1
2
3
4
5
6
7
8
9

10
Input: G¼ ðV ; EÞ, initial solution S0

Output: solution S
k’1;

S’S0;

while ðko3Þ do

if ð(S0AN kðSÞ j S0 betterThan SÞ then
S’firstImprovingðN kðSÞÞ;
k’1;

�
�
�
�
�

else
j k’kþ1;
end

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

end

return S;
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5. Computational experiments

Experiments were performed on a 3.00 GHz Intel Core Duo
with 8 GB of RAM. The algorithms were developed in ANSI C. Two
test sets have been generated to evaluate the metaheuristics. The
first one contains 19 instances ranging from 100 to 1000 sensors
(sinks included) randomly located in a 100� 100 m2 area with a
20 m radio range. Results are provided on this test set for 2–4
sinks. The second set contains 9 instances ranging from 2000 to
10 000 sensors (sinks included), randomly located in a 500� 500
m2 area with a 20 m radio range. Results are reported on this set
for 2–5 sinks.

Results obtained using the Balanced (A1-A3-B1) and the
Unbalanced (A1-A2-B1) optimization strategies are compared
in terms of the maximum number of clusters per topology, the
maximum deviation between the smallest and the biggest number
of clusters considering the m-topology and the total number of
clusters in the m-topology. The two proposed multi-start meta-
heuristics are also evaluated in terms of running time. The results
produced by the Randomized Constructive Heuristic (RCH) and the
two metaheuristics over a determined number of iterations are
presented. The multi-start with the two-phases local search and
the multi-start with the VND local search will be respectively
referred as MSþ2P and MSþVND.

The total number of iterations is used as stopping criterion. This
has been set according to the results obtained with the first test
set. In fact, 200 iterations seem to be a good compromise between
the running time and the quality of the computed m-topology.
Thus, 200 independent iterations using RCH and the metaheur-
istics have been performed on the two test sets.

Tables 1 and 2 present results using the first test set respec-
tively for the Unbalanced and the Balanced strategy. Column m
refers to the number of sinks and n to the number of sensors (sinks
included). For RCH and the two multi-start metaheuristics, A1
stands for the maximum number of cluster per topology, A2



Table 7
Results for the Balanced (A1-A3-B1) strategy on the second test set.

m n RCH MSþ2P MSþVND

A1 A2 A3 B1 t(s) A1 A2 A3 B1 t(s) A1 A2 A3 B1 t(s)

2 2000 153 304 2 18.03 0.35 128 255 1 19.37 27.43 128 255 1 19.37 27.39
3000 164 328 0 19.90 0.57 129 258 0 24.28 51.51 128 255 1 22.25 52.24
4000 168 335 1 18.59 0.86 130 260 0 18.64 93.19 130 260 0 18.47 95.52
5000 169 332 6 20.23 1.20 134 268 0 19.04 151.47 133 266 0 19.03 157.24
6000 169 336 2 14.40 1.56 135 270 0 13.58 231.02 135 270 0 13.58 239.73
7000 172 342 2 18.93 1.92 137 274 0 18.66 317.57 135 270 0 18.10 331.73
8000 176 349 3 23.01 2.44 140 280 0 24.76 416.94 139 278 0 20.03 435.78
9000 175 346 4 13.80 2.96 138 276 0 14.03 564.97 138 276 0 14.03 583.56
10 000 175 350 0 12.00 3.69 139 278 0 12.20 1104.68 138 276 0 13.15 747.02

3 2000 105 312 2 19.16 0.34 88 262 1 28.74 22.11 88 262 1 28.74 36.03
3000 110 330 0 21.50 0.59 90 268 1 26.61 44.56 86 257 4 18.94 73.58
4000 111 330 2 17.64 0.83 90 269 1 27.37 75.88 89 267 2 20.77 126.69
5000 115 339 4 14.65 1.15 91 273 0 16.49 136.78 91 273 0 16.49 224.22
6000 116 345 2 15.15 1.48 93 279 0 16.33 202.93 92 277 1 15.05 338.51
7000 117 347 4 18.52 1.88 93 279 0 21.28 276.33 92 280 0 21.43 487.46
8000 118 354 0 17.59 2.32 93 279 0 15.91 383.61 93 285 0 15.30 653.52
9000 119 356 1 15.54 2.81 94 281 1 15.16 501.25 93 280 1 13.80 856.20
10 000 119 356 1 11.88 3.33 94 282 0 10.65 660.54 94 282 0 9.83 1108.75

4 2000 80 319 1 16.41 0.33 71 280 2 25.51 20.81 70 277 3 25.51 30.08
3000 84 331 3 14.10 0.55 67 266 1 13.69 38.89 67 266 1 13.69 61.03
4000 85 329 7 14.20 0.84 69 272 2 17.85 76.17 68 275 1 19.12 117.50
5000 87 337 4 12.07 1.18 73 276 8 12.65 133.58 71 268 11 11.20 208.97
6000 92 348 18 17.45 1.51 71 282 2 16.31 205.62 71 283 1 14.97 319.22
7000 89 345 9 21.37 1.89 72 282 3 22.34 273.47 71 278 6 21.41 429.34
8000 89 350 4 15.43 2.34 72 286 1 12.71 384.52 70 283 1 13.33 628.42
9000 91 355 5 23.57 2.93 73 287 2 23.97 491.63 72 286 1 23.60 758.12
10 000 92 358 5 10.90 3.48 72 286 1 9.92 637.42 71 286 1 10.12 1049.47

5 2000 67 313 13 22.09 0.34 64 294 15 27.77 14.34 63 303 6 26.33 15.16
3000 69 330 6 14.31 0.56 58 282 2 18.04 34.32 54 266 9 19.15 38.30
4000 73 348 14 18.66 0.82 62 306 2 19.38 62.92 59 275 9 22.53 69.22
5000 69 341 2 10.12 1.13 56 277 1 11.09 112.36 55 275 2 11.96 135.74
6000 76 342 29 20.86 1.47 60 286 11 19.62 169.72 60 286 11 19.62 197.92
7000 76 357 14 23.07 1.85 60 287 12 23.63 239.57 60 287 12 23.63 281.62
8000 73 356 4 11.71 2.29 57 282 1 11.13 346.76 56 282 0 11.60 394.77
9000 77 371 6 14.46 2.70 59 293 1 18.66 421.77 59 296 1 14.97 470.11
10 000 72 354 3 14.32 3.25 58 289 1 13.50 563.51 56 287 1 13.11 655.44
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presents the total number of clusters in the m-topology and A3
gives the deviation between the biggest and the smallest number
of clusters in the m-topology. B1 corresponds to the maximum
average hop per topology. The running time in seconds to perform
the 200 iterations is reported in column t(s). For the first test set,
RCH and MSþ2P are really efficient and they perform 200 itera-
tions in less than 1 s. On the other hand, MSþVND is slower for
the first test set.

For the sake of clarity, a=b refers here to a instances out of b.
The Unbalanced strategy does not explicitly use a balance criter-
ion. Thus, deviations are sometimes worse, while the maximum
number of clusters per topology or the number total of clusters is
improved. This happens for the instance with 3 sinks and 400
nodes where A3 increases while A2 decreases. Although the
Unbalanced strategy implicitly provides balanced m-topologies for
18/19, 17/19, 17/19 respectively using 2, 3 and 4 sinks (A3 equals to
0 or 1). The Balanced strategy produces 19/19, 19/19 and 19/19
strictly balanced m-topologies (A3 equals 0) for the three methods.
In addition, RCH and the multi-start metaheuristics using the
Balanced strategy provide very good results for the A3 measure, in
spite of some increase on A1 or A2 (which does not exceed
3 clusters for A2) over the results from the Unbalanced strategy,
see results in Tables 1 and 2. This is an expected behavior since the
Balanced strategy explicitly uses an optimization criterion for this
purpose. In most of the cases, the total number of clusters A2 is
higher using the Balanced strategy.
A summary of the comparisons between methods, aggregated
on m, is shown in Tables 3–5. In Table 3, the first two columns
report the two methods compared and the number m of sinks.
Considering the Unbalanced or Balanced strategies, comparisons
on the final solutions are done on A1 criterion only or on the full
lexicographic order. Better (better), similar (similar) and worse
(worse) report how many times the first method provides
respectively better, similar or worse solutions than the second one.
Comparing the maximum number of clusters per topology A1
using the Unbalanced strategy, MSþ2P and MSþVND produce
better topologies than RCH for 17/19, 9/19 and 8/19, respectively
with 2, 3 and 4 sinks. RCH is able to compute the best solution for
2/19, 10/19 and 11/19 if only A1 is considered. MSþ2P and
MSþVND produce similar solutions on the A1 criterion. When
considering all the criteria in lexicographic order, MSþ2P and
MSþVND compute better solution for 19/19, 18/19 and 18/19,
while RCH is able to find the best solution for 0/19, 1/19 and 1/19.

Results for the Balanced strategy (Table 3) are quite similar to
the Unbalanced strategy. MSþ2P and MSþVND have also the
same level of performance, especially when considering only A1.
MSþVND is able to find a few better solutions than MSþ2P when
considering the lexicographic order. The difference happens on the
third criterion (B1), see Table 2. One can note that RCH is able to
find better results in the Balanced strategy than in the Unbalanced
strategy.

Table 4 provides a summary of the balancing (A3 value) for the
first test set, considering only MSþ2P and MSþVND. Results show



Table 8
Methods comparison on the second test set.

Methods m A1 only A1-A2-B1

Better Similar Worse Better Similar Worse

Unbalanced strategy
RCH vs. MSþ2P 2 0 0 9 0 0 9

3 0 0 9 0 0 9
4 0 0 9 0 0 9
5 0 0 9 0 0 9

RCH vs. MSþVND 2 0 0 9 0 0 9
3 0 0 9 0 0 9
4 0 0 9 0 0 9
5 0 0 9 0 0 9

MSþ2P vs. MSþVND 2 0 4 5 0 1 8
3 0 4 5 0 1 8
4 0 2 7 0 2 7
5 0 3 6 0 3 6

Balanced strategy
RCH vs. MSþ2P 2 0 0 9 0 0 9

3 0 0 9 0 0 9
4 0 0 9 0 0 9
5 0 0 9 0 0 9

RCH vs. MSþVND 2 0 0 9 0 0 9
3 0 0 9 0 0 9
4 0 0 9 0 0 9
5 0 0 9 0 0 9

MSþ2P vs. MSþVND 2 0 4 5 0 3 6
3 0 4 5 0 2 7
4 0 2 7 0 1 8
5 0 3 6 0 2 7

Table 9
Overview of the summation over A3 on the m-topology on the second test set.

Method m Unbalanced Balanced

MSþ2P 2 5 1
3 11 4
4 27 22
5 58 46

MSþVND 2 5 2
3 14 9
4 32 26
5 52 51
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Fig. 6. Evolution of MSþ2P running time for the second test set.
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how difficult is for the Unbalanced strategy to get m-topologies
with no deviation when the number of sinks increases. Table 5
refers to the A2 measure. While the Balanced strategy produced
balanced m-topologies for all instances, Unbalanced produces m-
topologies with a smaller total number of clusters. This probably
indicates a compromise between A2 and A3.

Tables 6 and 7 report the results for the Unbalanced and
Balanced strategies respectively on the second test set. The
meaning of the columns is similar to Tables 1 and 2. The settings
for generating this test set of instances differ, which explains why
results cannot be directly compared with results from the first test
set. However, the CPU time remains small for the RCH (usually less
than 2 s), while it increases for the two metaheuristics. This is a
direct consequence of the local searches time complexity. Never-
theless, the running time does not exceed 20 min to perform 200
iterations even for the largest instances with 10 000 sensors.

For both Tables 6 and 7, the two metaheuristics give similar
results with respect to criterion A1, i.e. maximum number of
cluster per topology. The difference between the Unbalanced and
the Balanced strategies happens for A2 and A3. However, each
time Balanced is worse than Unbalanced in terms of A3, it is better
in terms of A2. This result indicates when the number of sensors is
about 4000, the criterion A3 is not sufficient to get the topology
balanced. Thus, new strategies can be further investigated for
such cases.

Fig. 6 reports the evolution of MSþ2P running time with
respect to the number of sensors and the number of sinks. The
time consumption seems to grow nearly quadratically on the
number of sensors. MSþVNS CPU consumption also grows quad-
ratically. Moreover, the CPU time slightly reduces when the
number of sinks increases. One reason is that each topology has
fewer clusters and on average topologies are more balanced. Thus,
there are less move opportunities, which reduces the amount of
work in the local search.

A summary of the comparison between the methods is given in
Table 8. The meaning of each column is similar to Table 3. On the
contrary to the first test set, the second test set amplifies the
differences between the methods. The improvement done by
MSþ2P and MSþVND over RCH, especially with respect to A1, is
significant. The smaller the m is, the larger the difference is.
Moreover, MSþVND clearly produces better solutions than
MSþ2P and the difference in terms of computational time has
decreased. As a consequence, MSþ2P seems to be the best com-
promise for small instances (up to 1000 nodes) since MSþ2P and
MSþVND are equivalent in terms of solution quality but MSþ2P is
faster. On the other hand, MSþVND becomes more attractive for
larger instances since it produces better solutions and the differ-
ence in CPU time decreases.

Results also show balancing the m-topologies becomes critical
when the number of sinks increases. A summary of the impact of
Unbalanced and Balanced strategies on A3 is given in Table 9. It
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shows the Balanced strategy still produces better balanced
solutions.
6. Concluding remarks and perspectives

In this work, the m-IDSC problem has been investigated using
two optimization strategies which combine two levels of decision:
assigning sensors to a sink and balancing the m-topology.

A constructive randomized heuristic and two multi-start
metaheuristics have been developed, one coupled with a two-
phase local search and another with a VND. Results show the
efficiency of the proposed strategies. The running time remains
affordable in the context of WSNs with up to 1000 sensors. The
Unbalanced optimization strategy implicitly produces some
balanced m-topologies and it leads to solutions with a small total
number of clusters. On the other hand, the Balanced optimization
strategy produces strictly balanced m-topologies with a slightly
higher total number of clusters. Such results indicate a compro-
mise between the optimization goals needs to be established and
highlights the complexity of the problem.

To the best of our knowledge, the proposed strategies are the
first ones in the literature for the m-IDSC. A genetic algorithm has
already been proposed for the LBCDS which does not deal with
bridges in He et al. (2012). The multi-start metaheuristics are quite
simple and requires few parameters. Moreover, it consumes less
than one second to compute a m-topology for instances with up to
1000 nodes. As a consequence, a new topology can be quickly
computed whenever a region becomes unreachable in a repair
strategy. The low CPU requirement and the quality of the solutions
produced make our approach scalable and suitable for applications
in a centralized approach to design cluster-based topologies on-
the-fly. It can be used to compute the initial topologies as well as a
new topology in case of node failure. Besides, using clusters allows
the network lifetime to be improved since it benefits from the
clustered structure. Among the proposed methods, the MSþ2P is
better suited for instances with up to 1000 nodes, while MSþVND
becomes a valuable alternative beyond 1000 nodes.

As future works, the model can be extended to couple the
location problem (positioning sinks on the area) and the m-IDSC
problem in the context of WSN, and also to deal with coverage
over a set of targets. Moreover, other optimization strategies can
be investigated. In terms of algorithms, other metaheuristics can
be designed for the m-IDSC such as genetic algorithms. We are
actually developing a multiobjective-based metaheuristics for m-
IDSC.
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