
Trees and Forests

Andréa Cynthia Santos, Christophe Duhamel, and Rafael Andrade

Contents

Introduction . 2
Basic Features for Trees and Forests . 5

Data Structures for Trees . 8
Encodings for Trees . 9

A Lagrangian Heuristic for DCMST . 11
Problem Formulation . 11
A Subgradient Procedure for DCMST Problem . 13
A Greedy Heuristic for DCST . 15
Improving DCSTs with a Local Search . 16
A Lagrangian Heuristic for DCMST . 17

Evolutionary Heuristic for a Generalization of BDMST. 18
Problem Definition . 20
An NSGA-II for Bi-MDCST . 21

Conclusion . 23
Cross-References . 24
References . 24

A.C. Santos (�)
ICD-LOSI, UMR CNRS 6281, Université de Technologie de Troyes, Troyes Cedex, France
e-mail: andrea.duhamel@utt.fr

C. Duhamel
LIMOS-UBP, UMR CNRS 6158, Université Blaise Pascal, Aubière Cedex, France
e-mail: christophe.duhamel@isima.fr

R. Andrade
Departamento de Estatística e Matemática Aplicada, Centro de Ciências, Universidade Federal do
Ceará, Fortaleza, Brasil
e-mail: rca@lia.ufc.br

© Springer International Publishing AG 2016
R. Martí et al. (eds.), Handbook of Heuristics,
DOI 10.1007/978-3-319-07153-4_49-1

1

mailto:andrea.duhamel@utt.fr
mailto:christophe.duhamel@isima.fr
mailto:rca@lia.ufc.br

2 A.C. Santos et al.

Abstract

Trees and forests have been a fascinating research topic in Operations Research
(OR)/Management Science (MS) throughout the years because they are involved
in numerous difficult problems, have interesting theoretical properties, and cover
a large number of practical applications. A tree is a finite undirected connected
simple graph with no cycles, while a set of independent trees is called a forest.
A spanning tree is a tree covering all nodes of a graph. In this chapter, key
components for solving difficult tree and forest problems, as well as insights
to develop efficient heuristics relying on such structures, are surveyed. They
are usually combined to obtain very efficient metaheuristics, hybrid methods,
and matheuristics. Some emerging topics and trends in trees and forests are
pointed out. This is followed by two case studies: a Lagrangian-based heuristic
for the minimum degree-constrained spanning tree problem and an evolutionary
algorithm for a generalization of the bounded-diameter minimum spanning tree
problem. Both problems find applications in network design, telecommunication,
and transportation fields, among others.

Keywords
bi-objective heuristic • DBMST • DCMST • forest • heuristics • Lan-
grangian heuristic • tree

Introduction

Trees and forests have been a fascinating topic in Operations Research (OR)/Mana-
gement Science (MS) throughout the years because they are the core of difficult
problems, have interesting theoretical properties, and cover a large number of
practical applications. Their interest remains intact due to the technical and scientific
challenges and the rich diversity of applications using such structures. For instance,
several applications have been recently addressed: people tracking is modeled
as a minimum cost arborescence problem by [32]; cluster-based topologies with
connecting requirements are defined as a minimum spanning tree (MST) to improve
wireless sensor network lifetime in [51]; peer-to-peer distributed interactions are
studied by [39] as a spanning tree, where end-to-end delays are minimized; reliable
telecommunication networks have been investigated by [54], in which redundancy
is added to spanning trees by introducing k-cliques .k � 2/; and difficult MST
problems have been investigated including uncertain data [35], new variants for
optical multicast network design [55], or even multiobjective MST versions [52,56].

Let G D .V;E/ be a finite, undirected, connected, and simple graph with a
set V of vertices and a set E of edges, where n D jV j and m D jEj. A tree
T D .V 0; E 0/ is a connected subgraph of G with no cycles, such that V 0 � V and
E 0 � E. Whenever V 0 D V , the corresponding tree defines a spanning tree of G.
An arborescence is a special directed tree with a root node r . Moreover, a forest
is a set of disjoint trees F D fT1; T2; : : : ; Tlg. An example of graph G0 is given

Trees and Forests 3

a b c
1

2 3

4 5 6

1

2 3

4 5

1

2 3

4 5 6

d e1

2 3

4 5 6

1

2 3

4 5 6

Fig. 1 Examples of tree, spanning tree, arborescence and forest. (a) Graph G0. (b) Tree.
(c) Spanning tree. (d) Arborescence. (e) Forest

in Fig. 1a, followed by examples of a tree, a spanning tree, an arborescence, and
a forest of G0, respectively, in Fig. 1b–d where r D 1, and (e). In this chapter,
it is assumed familiarity with basic graph definitions such as connected graphs,
connected components, subgraphs, paths, cycles, edges incident to nodes, node
degree, etc.

The basic minimum spanning tree (MST) problem is defined in a weighted graph
G, where a cost cij � 0 is associated with every edge Œi; j � 2 E. It aims at
finding a spanning tree T of G such that its total cost is minimized. The number
of possible MSTs for a graph is very high with up to nn�2 for complete graphs
[12]. However, polynomial-time algorithms such as Prim’s, Kruskal’s, Boruvka’s,
and cycle elimination algorithm [14] are available to compute an MST. The general
idea of Prim’s algorithm is to extend an MST from an initial node i 2 V . At each
step it includes the cheapest-weight edge Œi; j � 2 E such that one of its extremities
belongs to the tree, while the other one does not. Thus, the connected component is
extended until all nodes i 2 V belong to the solution. Kruskal’s algorithm performs
forest merging as follows. Initially, each vertex is a tree. Then, at each iteration, the
cheapest edge connecting two forests is selected, and the two forests are merged.
Boruvka’s algorithm is quite similar to Kruskal’s algorithm, except that, at each
iteration, the cheapest edge connecting each forest to another one is selected. Then
the merges are done accordingly. Both Kruskal’s and Boruvka’s algorithms can be
developed with asymptotic complexity of O.m log n/, as well as Prim’s algorithm
using binary heaps. Moreover, Prim’s algorithm complexity can be improved to
O.m C nlogn/ by using Fibonacci heaps; see [14] for details. The cycle elimination
algorithm scans the graph using a depth-first search (DFS) strategy. The edge Œi; j �
is added to the tree whenever a vertex j 2 V not yet visited is found from the current

4 A.C. Santos et al.

node i of the DFS. However, if j has already been visited, it means a cycle has been
found. In this case, the highest-weight edge from the found cycle is removed from
the incumbent partial solution. DFS complexity is O.m C n/. Thus, considering
a complete graph, the cycle elimination algorithm runs in O.mn/ since there are
O.m�n�1/ possible back edges and a cycle scan is done inO.n/. Several NP-hard
problems rely on an MST with additional constraints on nodes, on edges, or even
on the MST general structure. Thus, algorithms that compute an MST are usually
adapted for such NP-hard extensions in order to define basic heuristics and obtain
initial feasible solutions.

A large number of difficult problems rely on trees and forests. Studies [10, 22,
33, 41] provide a collection of such problems, along with their complexity analysis.
An example where constraints on the tree structure make the problem difficult is
the Steiner Tree problem [3, 24, 34, 38]. Given a subset N � V of Steiner nodes
(also referred as terminal nodes), the Steiner Tree problem consists in determining
a particular minimum tree covering N . Also, setting constraints on the nodes or on
the edges (paths) of an MST can transform the problem into an NP-hard problem.
For instance, the degree-constrained minimum spanning tree (DCMST) problem [4,
13,15] consists in finding an MST such that each vertex has a degree not larger than
a maximum given value k 2 N

�. The bounded-diameter minimum spanning tree
(BDMST) problem [26,40,52] is an example of a difficult problem where constraints
are imposed on the MST diameter, i.e., the diameter of a tree is the number of edges
in the longest path among any pair of vertices. Thus, the BDMST aims at finding
an MST where the unique path between any pair of nodes does not exceed a given
number of edges. Basic problems can also become difficult due to the nature of the
data. For instance, the Minimum Arborescence problem [20] is defined in a digraph
with real cost values associated with each arc. The objective is to find a minimum
cost arborescence. Thus, for problems involving trees and forests, adding constraints
or even changing few parameters or data can turn a P problem into an NP-complete
problem.

Key components for solving difficult tree and forest problems, as well as
insights to develop efficient heuristics relying on such structures, are surveyed
here. They are usually combined to obtain very efficient metaheuristics, hybrid
methods, and matheuristics. Section “Basic Features for Trees and Forests” is
dedicated to a number of basic heuristics, local searches, etc. Then, two applications
are described as examples, respectively, in sections “A Lagrangian Heuristic for
DCMST and Evolutionary Heuristic for a Generalization of BDMST”. Two different
strategies to handle the difficult constraints are presented in these sections. The
strategy used for DCMST consists of removing the difficult constraints and adding
them into the objective function, following a Lagrangian relaxation. Another
strategy is considered for the BDMST, where the difficult constraints are addressed
as a new criterion and a bi-objective genetic algorithm is used.

Trees and Forests 5

Heuristics

Constructive Improvement

Expansion Fusion Restoration Local search

Lagrangian

Fig. 2 A classification of heuristics for trees

Basic Features for Trees and Forests

Several heuristics, local searches, operators, different encodings, and perturbations
are available in the literature to build trees and forests. They are very often combined
to produce sophisticated methods. The most common heuristic structures are clas-
sified as shown in Fig. 2. The idea of this classification is not to cover all available
heuristics for trees and forests, but to introduce the most used strategies having
a strong potential to derive other heuristics for various difficult problems. There
are two major classes of heuristics: constructive and improvement heuristics. The
former includes edges or nodes at each iteration to obtain a feasible solution. The
latter starts with an initial solution (e.g., a spanning tree), not necessarily feasible,
and try to improve it in order to obtain better feasible solutions. Constructive and
improvement heuristics are presented below, in such a way they can be adapted and
applied to different difficult problems on trees and forests, where nodes, edges, or
structural additional constraints are considered.

Constructive heuristics generate a feasible solution iteratively, using mainly two
strategies: tree expansion and tree fusion. In the tree expansion strategy, one node
is added at a time by means of an edge e D Œi; j � 2 E, where one extremity
of e belongs to the solution under construction and the other extremity does
not. Thus the partial incumbent solution is always a connected component. Tree
expansion heuristics are usually implemented using Prim’s algorithm. Examples of
tree expansion heuristics are the One Time Tree (OTT) [1] and randomized greedy
heuristic (RGH) [47] developed for the BDMST. Fusion heuristics start from initial
disconnected forests and try to connect them by adding an edge e D Œi; j � 2 E at a
time. Thus a partial solution contains several connected components and Kruskal’s
algorithm can be adapted and applied [37], see section “A Greedy Heuristic for
DCST”. The way new edges/vertices are selected for inclusion in partial solutions
(e.g., constructive heuristics) or for removal from a solution (e.g., improvement
heuristics), after evaluating the objective function, has a strong impact on the final
solution quality. The most common ways to select edges/vertices are greedy, semi-
greedy, and random. They can also be handled considering a single criterion or

6 A.C. Santos et al.

multi-criteria. Without loss of generality and considering a minimization function, a
greedy criterion selects the edge/vertex insertion that leads to the smallest increase
in the objective function. One way to handle a semi-greedy criterion is to build a
list of good candidates to enter the solution, not necessarily the best ones, and make
a random choice from this list. Another idea frequently found in the literature is to
consider a normalized ratio between the cost and the impact on difficult constraints,
e.g., a ratio between the edge cost and the additional increase in the diameter for the
BDMST. Various criteria can also be addressed using a priority order instead of a
ratio. For instance, one can use a second optimization criterion to select one edge,
e.g., the impact on difficult constraints, whenever several edges with the smallest
costs occur.

Improvement heuristics start from a solution, not necessarily feasible, and try to
obtain a feasible solution by exchanging edges in the tree (resp. in a forest) with
edges outside the solution. They can be roughly classified as restoration and local
search heuristics. The restoration heuristics try to transform solutions in feasible
ones by minimizing violations. A classical example of restoration heuristics is
Lagrangian heuristics which have appeared with the pioneering works of [29, 30].
They have been broadly applied to a number of difficult problems relying on trees
and forests [5, 16, 42]. The general idea is to relax difficult constraints and transfer
them to the objective function, keeping a simple problem that is refined until a good
solution to the overall problem is obtained. Consider a generic NP-hard optimization
problem given by Z D fmin cx W Ax � b; Bx � d; x 2 f0; 1gt g,
where A and B are matrix with rational coefficients and with dimensions r � t
and s � t , respectively; b, c, and d are rational vectors, and x 2 f0; 1gt are
integer variables. Let fmin cx W Bx � d; x 2 f0; 1gt g be an easy problem
that can be solved in polynomial time, and Ax � b be the difficult constraints.
Thus, Lagrangian multipliers � 2 R

r
C are associated with the difficult constraints

and added into the objective function. The Lagrangian problem (LP) is given by
LP D fmin cx C �.b � Ax/ W Bx � d; x 2 f0; 1gt g which is a lower
bound on Z. The best lower bound is given by LP.��/ D maxfLP.�/; � � 0g,
called dual Lagrangian problem. The dual Lagrangian problem can be solved by
using, for example, the subgradient methods of [21] or the volume algorithm of [7]
or even by computing the Lagrange multipliers approximately using the multiplier
adjustment method [9]. Theoretical results to determine the conditions stating when
a Lagrangian relaxation can be better than a linear relaxation are provided by
[28]. Obviously, the mathematical formulation and the decomposition will strongly
impact the quality of solutions produced using Lagrangian relaxation. This kind of
restoration heuristic has an interesting property: at each iteration dual and primal
solutions can be built.

Local searches are very sophisticated improvement heuristics which contribute
to producing very good local optima (eventually global optima). The most common
local search moves, broadly applied to trees, are the edge drop move and the edge
insertion move [18, 40]. Given an initial feasible solution for a difficult problem
relying on a tree, the edge drop move consists of removing an edge from the tree.
This produces two distinct connected components which are reconnected using an

Trees and Forests 7

a b c
1

2 3

4 5 6 7

1

2 3

4 5 6 7

1

2 3

4 5 6 7

Fig. 3 Example of an edge drop move. (a) Tree. (b) Disconnecting 1 and 3. (c) Reconnecting 3
and 5

a b c1

2 3

4 5 6 7

1

2 3

4 5 6 7

1

2 3

4 5 6 7

Fig. 4 Example of an edge insertion move. (a) Tree. (b) Connecting 5 and 6. (c) Disconnecting 1
and 3

edge not in the tree. The greedy and semi-greedy criteria and multi-criteria can be
used to chose the edge to enter the tree. Figure 3 illustrates an example, where
Fig. 3a is a feasible initial solution. Then edge Œ1; 3� is removed as shown in Fig. 3b,
generating two separate connected components. Consider Œ3; 5� as the edge which
produces the best improvement possible. Thus it enters the solution following a
greedy strategy as shown in Fig. 3c.

On the other hand, in the edge insertion move, an edge is first inserted in the
tree. By definition of a tree, it necessarily results in a cycle. Then, an edge may
be removed from the cycle. Figure 4 depicts an example for this move. A feasible
solution is presented in Fig. 4a. In the sequel, edge Œ5; 6� is introduced and the cycle
f5; 6; 3; 1; 2; 5g is formed as shown in Fig. 4b. Suppose that removing edge Œ1; 3�
will produce the highest gain in the objective function. Thus this edge is dropped
following a greedy strategy as depicted in Fig. 4c.

A number of variations on the edge drop and edge insertion moves are found
in the literature. These moves are also referred as 1-opt since one edge in the
incumbent solution is replaced by another one that does not belong to the solution.
When applied to trees, two strategies are available to perform such a 1-opt move:
either first dropping an edge or first inserting an edge. This may lead to different
final solutions. The k-opt generalizes the 1-opt move by replacing k edges from an
incumbent solution. This move is formalized in section “A Lagrangian Heuristic for
DCMST.”

8 A.C. Santos et al.

Data Structures for Trees

Choosing the right data structure for representing and manipulating a solution
is a critical task since it directly impacts the complexity of basic operations.
They include both building and modifying a solution. Two mapping functions are
associated with the data structures: how to store the information from a given
tree (encoding) and how to obtain a tree out of the information (decoding). In
this section, a basic direct representation is presented as well as several data to
handle additional constraints on the trees. In section “Encodings for Trees,” other
representations are presented, along with the way to obtain the associated tree.
Several insights are given regarding their use in evolutionary algorithms.

Let G D .V;E/ and s 2 V be, respectively, a graph defined as before and an
arbitrary root vertex [14]. The following data structure can be used for directed and
undirected trees, depending on the root node which can be artificial or not. The
predecessor j of a vertex i in a tree is the first vertex in the path from i to s. By
definition of a tree, j is unique and only depends on the choice of s. A successor j
of a vertex i is a vertex whose predecessor is i . One of the simplest ways to store
the information of a tree in a fixed-size data structure is to use the predecessors.
This direct representation keeps the predecessors in a vertex-indexed vector pred .
Thus pred.i/ is the predecessor of vertex i or, alternatively, the edge between i and
pred.i/. The root has no predecessors; then pred.s/ D ;. Such a structure allows
an O.1/ access to each predecessor and to each edge connecting the subtree rooted
at i with the rest of the tree. It also allows a scan of all edges of a tree in O.n/.

Additional redundant data may be useful to perform tree manipulation and to
allow efficient checking operations. One such data is the list of all the direct
successors of a vertex. It can be explicitly defined as a list of vertices for each
vertex, as well as be implicitly stored by adding two attributes to each vertex i : its
first successor succ.i/ and next.i/, the next successor for pred.i/. For instance, if
the direct successors of vertex a are fb; c; dg, the first successor of a is b D succ.a/.
The successors of a are as follows: c D next.b/, d D next.c/ and next.d/ D ;.
This encoding shares similarities with the forward star structure presented in [2]
for graphs, and the implicit list can be made bidirectional by adding an attribute
prev.i/ to each vertex which stores the previous successor in the list of pred.i/.
This way, O.1/ operations such as successor insertion or deletion are ensured. The
number of direct successors nb_succ.i/ can be kept as well.

Successor and predecessor structures allow managing several operations such as
finding a cycle for edge insertion moves, finding the cheapest-weight costs for edge
drop moves, and, with a few additional information, addressing difficult constraints
like degree and diameter constraints. For instance, the depth.i/ of a vertex i is
equal to the number of edges in the unique path from a given root vertex s to i . It
can be used for checking hop and diameter constraints.

Scanning a cycle created by adding an edge Œi; j � 2 E into a spanning tree can be
done efficiently using the predecessor structure. First, each node in the path i ! s is
set as visited. The same is done in the path j ! s, stopping as soon as a given vertex

Trees and Forests 9

k has already been visited. Thus k belongs to both paths i ! s and j ! s. Getting
the edge with the highest cost can be done by keeping the edge with the highest
cost found when scanning the path i ! s (resp. j ! s) at each visited node. A
modified DFS or breadth-first search (BFS) starting at i and stopping as soon as j
is found could also be used. However, this would require more sophisticated tree
data structures to obtain O.n/ complexity as for the predecessor vector. This way,
the edge insertion move can be performed in O.n/.

Another useful data can be defined to quickly check if a vertex belongs to a
subtree. Let f irst.i/ and last.i/ be two indexes associated with each vertex i .
A DFS is applied on the tree, starting from s. Then f irst.i/ stores the DFS vertex
counter the first time i is visited and last.i/ gets the DFS vertex counter when the
DFS leaves the subtree of i . Thus, vertex j belongs to the subtree of vertex i if and
only if first.j / 2 Œfirst.i/; last.i/�. Besides, the number of vertices in the subtree
of i , i included, is size.i/ D last.i/ � first.i/ C 1. This information can be used
to check for special cases in edge insertion moves, if one extremity belongs to the
subtree of the other one. The same idea can be used to check if a tree is feasible
in the capacitated MST [18, 22]. A demand Di is associated with each vertex i and
the sum of the demands in any subtree must not exceed a capacity Q. A demand
counter is used instead of a vertex counter in the DFS.

The edge drop move requires reconnecting two trees disconnected after an
edge Œi; j � has been removed. Without loss of generality, suppose i is the prede-
cessor of j , i.e., i D pred.j /. First, all the vertices are set as unvisited. Then, all
vertices in the subtree of j (included) are set as visited by performing a DFS or
a BFS, using the list of successors presented before. Getting the lowest cost edge
reconnecting the two trees can be done in O.m/ by finding the smallest edge in
E with one extremity visited and the other one unvisited. This last operation is the
most expensive and the edge drop move is in O.m/.

As mentioned before, the depth of a vertex from the root in a tree can be used
to check hop and diameter constraints. For the root vertex, depth.s/ D 0. A simple
DFS or BFS starting from s is sufficient to compute the depth of each vertex inO.n/.
They may require an artificial vertex 0 playing the role of center, depth.0/ D 0.
The artificial vertex connects the central vertex whenever D is even and one of the
extremities for a central edge ifD is odd. Let L D D=2 resp. L D .D�1/=2 be the
maximum depth allowed for a node, respectively, when D is even resp. odd. Thus,
whenever an artificial vertex is used, a diameter limit D on the tree corresponds to
a depth limit LC 1 for each vertex from vertex 0. Checking the degree is simpler;
one may just add the number of successors and predecessors for each vertex.

Encodings for Trees

The tree representation given in the section “Data Structures for Trees” can be used
for most constructive heuristics and for moves in local searches and metaheuristics.
However, evolutionary algorithms (EAs) usually require additional properties on
the representation, and several other tree encodings have been proposed. In EAs,

10 A.C. Santos et al.

operations are mostly done on encodings (the chromosomes) rather than on the
solutions. These usually consist of crossovers and mutations in order to make the set
of encodings (the population) evolve. Selection is done to obtain the best elements.
It requires the evaluation of each element through the construction of the associated
solution, named decoding.

Several properties on the encoding/decoding, i.e., the mapping between encod-
ings and solutions, are needed to fully benefit from the design of EAs: (i) the time
and space complexities for those operations should be as low as possible, (ii) any
encoding should correspond to a feasible solution, (iii) the decoding should be
unbiased, (iv) there should be at least one encoding leading to each optimal solution,
(v) any offspring obtained from crossover and mutation should be valid, and (vi) the
offsprings should share as much similarities as possible with their parents.

According to those criteria, the predecessor structure presented before offers a
O.n/ complexity for encoding/decoding. However, a random vector of predecessors
is very unlikely to be feasible. Classical crossovers and mutations also generate
infeasible offsprings and a repair operator is required. On the other hand, there
always exists one encoding for each optimal solution and the feasible offsprings
inherit a lot of similarities from their parents.

Another classical representation is the Boolean edge-indexed vector. The status
of each edge (used/unused) is stored in the solution. Thus it follows the binary
encoding paradigm suggested in the early versions of genetic algorithms (GAs).
However, a random vector is highly unlikely to be feasible and crossovers and muta-
tions seldom produce feasible offsprings. Thus the repair operator is mandatory,
unless defining dedicated crossovers and mutations.

Prüfer sequences have also been used to encode trees. They were introduced
in [45] to prove the Cayley’s theorem [12] and there is a bijection between the
set of spanning trees and the set of Prüfer sequences. They are basically repetition
vectors of size n� 2 in which each vertex i appears degree.i/� 1 times. Encoding
and decoding can be done in O.n logn/. There is no need for repair operator since
every sequence corresponds to a feasible spanning tree. However, while appealing,
this representation suffers from several drawbacks [23], especially with respect to
property (vi) since a small change in the sequence might lead to a complete different
solution.

Random keys [8] have also been used and are quite popular. A random key is
a weight in Œ0; 1�. For trees, one random key is associated with each edge, leading
to a real-valued vector of size m. The decoding first consists of sorting the edges
according to their random key and then applying a Kruskal-based constructive
heuristic. Thus, it is done in O.m logm/. It always leads to a feasible spanning
tree and does not require a repair operator.

All the encodings suffer from shortcomings with respect to the properties (i)–(vi)
mentioned before [46]. Moreover, they may not be able to handle sparse graph
or additional constraints on the tree structure. Aside from random keys, a good
alternative seems to be edge-set encoding [46]: the edges of the tree are directly
stored in a variable-length vector. Thus, this is an explicit variable-size encoding
whose encoding/decoding can be done in O.n/. It is less biased toward special

Trees and Forests 11

a

1

(1)

2

(1)

3

(3)

4 (2)

1 2

33

2

4

b

1

2 3

4

1 2

2

c

1

2 3

4

2

3

4

Fig. 5 Example of a tree with degree constraints. (a) A graphG. (b) MST ofG. (c) A DCST ofG

trees than random keys. It has been shown to be quite effective for solving NP-hard
extensions of MST, provided dedicated crossovers and mutations are used.

A Lagrangian Heuristic for DCMST

The use of Lagrangian relaxation in heuristic procedures has been proved to be quite
a powerful tool for solving certain problems, especially DCMST. A Lagrangian
heuristic (LH) involves a small number of ingredients that can be implemented effi-
ciently: (i) determining Lagrange multipliers and evaluating Lagrange subproblems,
(ii) obtaining feasible solutions from the Lagrange multipliers, and (iii) improving
feasible solutions by a local search. The main advantages of an LH are that it is
simple to implement, solutions of good quality can be obtained in a reasonable
computational time, and lower bounds (LB) and upper bounds (UB) are available at
each iteration. In addition, an LH can be used to obtain starting incumbent solutions
in more complex exact algorithms.

Let G D .V;E/ be a graph defined as before. Costs ce 2 R
C are associated with

each edge e 2 E, and a maximum degree dv 2 N
� is associated with each node

v 2 V . The DCMST problem consists in finding a minimal cost spanning tree T of
G such that the degree constraints are ensured for each node.

Figure 5a illustrates an example of a graph G, in which edge costs are reported
in the middle of each edge and the maximum node degree constraints for spanning
trees of G are given in brackets near each node. An MST of G, with cost equal to
5, is given in Fig. 5b. One may note that this MST violates the degree constraint in
node 1. A feasible solution for the degree-constrained spanning tree (DCST) for G
is provided in Fig. 5c, with cost equal to 9.

Problem Formulation

In order to present a mathematical model for DCMST problem, let E.S/ � E be
the set of edges with both extremities in S � V . Let ı.v/ � E be the set of edges
adjacent to v 2 V . Binary variables xe , for all e 2 E, represent the characteristic
vector for a spanning tree of G, where xe D 1 if an edge e belongs to the solution,
and xe D 0 otherwise. The mathematical formulation is given from (1) to (4).

12 A.C. Santos et al.

.P / min
x2f0;1gm

X

e2E

cexe (1)

s:t:
X

e2E

xe D n � 1; (2)

X

e2E.S/

xe � jS j � 1; S � V; (3)

X

e2ı.v/

xe � dv; 8 v 2 V: (4)

An MST is defined from (1) to (3) and constraints (4) control the degree of each
vertex. These last constraints are the difficult ones. Thus they are relaxed in the LH
presented next. Note that when dv D 2, for all v 2 V , the problem is reduced
to finding a Hamiltonian path of minimum cost in G. Thus the DCMST is NP-
hard [22].

The role of Lagrange penalties or multipliers is to take into account violations
on some relaxed constraints. Given a tree T and for every node v 2 V , the amount
of node violation is the difference

P
e2ı.v/ xe � dv between its maximum degree

dv and its degree in T . In a DCST only nonpositive node violations are allowed.
Positive node violation is penalized by associating a nonnegative penalty �i with
each violated node i . In this case, every edge incident to i has its cost increased by
�i . When both end nodes i and j of an edge Œi; j � 2 E have positive penalties �i
and �j , respectively, the resulting Lagrange cost becomes cij C �i C �j .

Consider the MST in Fig. 5b. It violates the degree constraint of node 1 (three
edges are adjacent to this node and the maximum allowed is one). Figure 6 illustrates
an example of MSTs computed with edge costs modified by Lagrange multipliers,
where spanning trees of minimum cost are defined by solid lines in each graph. If a
penalty �1 D 10 is set and �i D 0 for i 2 V n f1g and an MST is computed for the
graph with modified edge costs, the spanning tree in Fig. 6a is obtained. The degree
constraint of node 2 is violated. Alternatively, if �1 D 10, �2 D 2, and �i D 0 for
i 2 V n f1; 2g, an MST on the modified graph is in Fig. 6b. It is also feasible for the
original graph G in Fig. 5a.

Thus, the idea is to determine the “best” set of Lagrange multipliers leading to
an MST on the graph with modified edge costs whose Lagrangian solution value is
equal to the value of an optimal DCMST. To do so, the Lagrangian problem .P�/

is defined by associating Lagrange multipliers � 2 R
n
C with constraints (4) and

bringing them to the objective function (1).

.P�/ min
x2f0;1gm

X

Œi;j �2E

.cij C �i C �j /xij �
X

i2V

�idi (5)

s:t: (2)–(3):

Trees and Forests 13

a

1

10

2

0

3

0

4 0G1 G2

2+10

2 + 10

4

1+10

33

b

1

10

2

2

3

0

4 0

1+10+2

2 +10

4+2

2+10

33+2

Fig. 6 Example of graphs with edge cost modified by Lagrange multipliers. (a) MST with �1D10.
(b) MST with �1 D 10; �2 D 2

For any � � 0, the solution value of .P�/ is a lower bound on the optimal solution
of .P /. Consequently, the solution of the problem .D/ is the best lower bound one
can get for the solution of .P /. Problem .D/ is the Lagrangian dual problem of .P /.

.D/ max
��0

min
x2f0;1gm

X

Œi;j �2E

.cij C �i C �j /xij �
X

i2V

�idi (6)

s:t: (2)–(3):

The MST on the graphG2 in Fig. 6b has a cost .3C5C12/�.10�1C2�1/ D 8.
This is a lower bound on the optimal DCMST value of the graph in Fig. 5a. It is
optimal since that solution is feasible for G and its original cost in G is 8.

A Subgradient Procedure for DCMST Problem

The classical subgradient (SG) method of Held et al. [31] is used to compute
Lagrange multipliers � iteratively for problem .P�/. At each iteration k of the
method, the idea is to find a direction sk and a step size tk to move from �k to a
new set of multipliers �kC1:

�kC1 D maxf0; �k C tks
kg (7)

sk is the subgradient of .P�k / with respect to the Lagrangian solution xk . Its
coordinates are given by

ski D
X

e2ı.i/

xke � di ; 8 i 2 V (8)

14 A.C. Santos et al.

Determining the step size tk requires an incumbent UB on the optimal solution
value of .P /, the Lagrangian value LBk referred to xk , and the norm of the
direction sk . It is defined as

tk D
˛.UB � LBk/

jjskjj2
(9)

where ˛ is a scaling factor. Initially ˛ D 2 and it is reduced (usually ˛ ˛=2)
after some iterations with no improvement on the best LB. Thus, convergence of the
SG algorithm is ensured. The number of iterations can be limited to a maximum
value determined according to the characteristic of the problem instances being
solved. If the Lagrangian solution is feasible for .P / and its Lagrangian value
is equal to UB, it is optimal and the algorithm stops. Further details on the SG
algorithm for DCMST problem can be found in [5].

As an example, the SG algorithm is applied to the graph G in Fig. 5a. Initially
�0 D 0 and the resulting graph G.�0/ has the same edge costs as in G. The
Lagrangian solution T 0 forG.�0/ is the MST ofG (Fig. 5b), and its Lagrangian cost
is LB0 D 5. The degree of nodes 1, 2, 3, and 4 in T 0 are 3, 1, 1, and 1, respectively.
The initial subgradient direction is .s0/t D .2; 0;�2;�1/. Figure 8 presents graphs
G.�k/ of each SG iteration k. The Lagrange edge costs are displayed near each
edge and Lagrange multipliers near each node. Moreover, Lagrangian solutions T k

ofG.�k/ are defined by solid lines. Lagrange multipliers are computed according to
Fig. 5 as follows: suppose the incumbent UBD 9 is given by the DCST in Fig. 5c,
as computed by heuristic in section “A Greedy Heuristic for DCST”. The new set
of Lagrange multipliers is .�1/t D .16=9; 0; 0; 0/. The corresponding graph G.�1/
leads to the Lagrangian solution T 1 in Fig. 7, in solid lines. The new direction s1

is carried forward in Fig. 8, column T 1. The SG algorithm iterates until iteration 4,
where the Lagrangian solution T 4 is a feasible DCST forG. The original cost of T 4

in G is 8 and its Lagrangian cost is LB4 D 596=75. As all edges of G have integer
costs, the optimal solution value must be integer. Therefore, the optimal solution
value UB� is such that d596=75e �UB� � 8. Thus T 4 is optimal and the algorithm
stops.

a

1

16
9

2

0

3

0

4 0

cost(T 1) = 7

34
9

34
9

4

25
9

33

b

1

16
9

2
4
5

3

0

4 0

cost(T 2) = 70
9

19
5

34
9

24
5

161
45

3

34
9

c

1
10
3

2
4
5

3

0

4 0

cost(T 3) = 39
5

16
3

16
3

24
5

77
15

319
5

d

1
10
3

2
32
25

3

0

4 0

cost(T 4) = 596
75

421
75

16
3

132
25

16
3

3107
25

Fig. 7 Example of iterations for the SG method. (a) G.�1/. (b) G.�2/. (c) G.�3/. (d) G.�4/

Trees and Forests 15

T 1

l

l l

ll

l l

l1 =

⎛
⎜⎜⎝
0
0
0
0

⎞
⎟⎟⎠+ 2(9−5)

9

⎛
⎜⎜⎝
2
0

−2
−1

⎞
⎟⎟⎠

≥0=

⎛
⎜⎜⎝

16
9

0
0
0

⎞
⎟⎟⎠

s1 =

⎛
⎜⎜⎝
0
1

−2
0

⎞
⎟⎟⎠

T 2

2 =

⎛
⎜⎜⎝

16
9

0
0
0

⎞
⎟⎟⎠+ 2(9−7)

5

⎛
⎜⎜⎝
0
1

−2
0

⎞
⎟⎟⎠

≥0=

⎛
⎜⎜⎜⎜⎝

16
9
4
5

0
0

⎞
⎟⎟⎟⎟⎠

s2 =

⎛
⎜⎜⎝
1
0

−1
−1

⎞
⎟⎟⎠

T 3

3 =

⎛
⎜⎜⎜⎝

16
9
4
5

0
0

⎞
⎟⎟⎟⎠+ 2(9− 70

9)
3

⎛
⎜⎜⎝
1
0

−1
−1

⎞
⎟⎟⎠

≥0=

⎛
⎜⎜⎜⎜⎝

10
3
4
5

0
0

⎞
⎟⎟⎟⎟⎠

s3 =

⎛
⎜⎜⎝
0
1

−2
0

⎞
⎟⎟⎠

T 4

4 =

⎛
⎜⎜⎜⎝

10
3
4
5

0
0

⎞
⎟⎟⎟⎠+ 2(9− 39

5)
5

⎛
⎜⎜⎝
0
1

−2
0

⎞
⎟⎟⎠

≥0=

⎛
⎜⎜⎜⎜⎝

10
3
32
25

0
0

⎞
⎟⎟⎟⎟⎠

s4 =

⎛
⎜⎜⎝
0
0

−1
0

⎞
⎟⎟⎠

Fig. 8 Updating Lagrange multipliers during the SG iterations shown in Fig. 7

1

2 3

4

1

2 3

4

1

2 3

4

1

2 3

4a b c d

Fig. 9 Example of Kruskal-based heuristic for DCST. (a) Initial. (b) First edge. (c) Second edge.
(d) Third edge

A Greedy Heuristic for DCST

Kruskal’s algorithm can be adapted [5] to compute DCSTs on a graph G D .V;E/.
It consists of (i) ordering the edges in E by nondecreasing edge costs; (ii) creating
a forest with jV j trivial trees Ci D fig, for all i 2 V ; and (iii) connecting all
disjoint trees (forests) by including one edge at a time, using the ordered list until a
spanning tree is obtained. A vertex is saturated if its degree matches the maximum
degree allowed. A tree is saturated if all its vertices are saturated. Then, an edge
Œu; v� 2 E is inserted in the solution if both u and v are not saturated and if they do
not belong to the same tree. Moreover, merging the two trees using Œu; v� must not
lead to a saturated tree, except if the resulting tree spans V .

16 A.C. Santos et al.

Consider the graph G in Fig. 5a and assume that the ordered list of edges is
fŒ1; 2�; Œ1; 4�; Œ1; 3�; Œ2; 4�; Œ3; 4�; Œ2; 3�g. Initially, each vertex is a trivial tree. The
first edge to be considered is Œ1; 2�. It is discarded as its inclusion would result in
a saturated tree. In the sequel, edge Œ1; 4� can be added since it does not saturate
vertices 1 and 4 nor create a cycle. Node 1 is saturated; thus, the third edge Œ1; 3�
is rejected. The fourth edge Œ2; 4� is also not accepted because it would result in
a saturated tree. The fifth edge Œ3; 4� is included, idem for the sixth edge Œ2; 3�.
Then the algorithm stops with a feasible DCST. Note that this heuristic stops with a
feasible solution for complete graphs only. Figure 9 presents this example with the
ordered list of edges defined above. Solid lines correspond to edges included, while
dotted lines correspond to discarded edges.

This heuristic can also be applied to graphs with modified Lagrange edge costs
during the SG and compute its cost on the graph G. Nevertheless, doing this every
SG iteration is time consuming. Finally, this heuristic can be used only when a
Lagrangian solution improves the best incumbent LB on the optimal solution of .P /.

Improving DCSTs with a Local Search

Given a graph G D .V;E/ and a spanning tree T of G, let E.T / be the set of
edges in T . Moreover, consider a given subset fe1; e2; � � � ; ekg � E.T / of the edges
belonging to T . If there is a subset of edges f Oe1; Oe2; � � � ; Oekg � E n E.T / such that
E.T / n fe1; e2; � � � ; ekg [fOe1; Oe2; � � � ; Oekg induces a spanning tree OT of G, then
OT is said to belong to a k-neighborhood of T , denoted by OT 2 Nk.T /, and that
T 2 Nk. OT /.

Consider kC1 connected components C1; C2; � � � ; CkC1 obtained after removing
k edges fe1; e2; � � � ; ekg � E.T / from a given spanning tree T . If f Ne1; Ne2; � � � ; Nekg �
E n E.T / is a minimum cost subset of k edges to reconnect the k C 1 compo-
nents C1; C2; � � � ; CkC1 forming a new spanning tree, then T [fNe1; Ne2; � � � ; Nekg n
fe1; e2; � � � ; ekg is called a k-opt edge exchange. Such a move corresponds to
applying k times an edge drop or an edge insertion move, as seen in section “Basic
Features for Trees and Forests”.

Figure 10 illustrates an example of a 2-opt edge exchange. Tree T 1 in Fig. 10b
is obtained from T in Fig. 10a by removing the edges Œ1; 4�; Œ2; 3� and adding the
edges Œ1; 3�; Œ2; 4� while keeping the feasibility of the resulting tree.

Determining the best k-opt edge exchange move among all
�
jE.T /j
k

�
combinations

of k edges ofE.T / is very time consuming. A reasonable trade-off between solution
quality and processing time is to limit k to 3. A greedy local search then iteratively
performs k-opt edge exchange moves, until reaching a local optimum.

Trees and Forests 17

a

1

2 3

4

21

3

2

4

3

b

1

2 3

4

1

2

4

2

33

Fig. 10 Example of a 2-opt edge exchange move. (a) Tree T . (b) Tree T 1

A Lagrangian Heuristic for DCMST

Using the components presented before, Algorithm 1 is a Lagrangian heuristic
for DCMST problem. Given a graph G D .V;E/, a feasible starting DCST
T � is computed by the heuristic in section “A Greedy Heuristic for DCST”. A
limit MaxI ter is set to the number of SG iterations. Basically, the subgradient
method (section “A Subgradient Procedure for DCMST Problem”) is used to update
Lagrange multipliers until the stopping criterion (number of iterations or optimal
solution) is met. At each iteration k, the classical Kruskal’s algorithm [37] computes
a Lagrangian solution T k on the graph G.�k/: T knMST .G.�k//. The Lagrangian
solution cost of T k (LagrCost.T k/) gives a lower bound LBk on the optimal
solution value. If it improves LB, the new value LBk is updated. Eventually, T k

is a DCST. In this case, a local search procedure (section “Improving DCSTs with a
Local Search”) is called to improve T k if the cost Cost.T k/ of T k in G improves
UB: T �nLocalSearch.T k/.

As mentioned before, halving ˛ after some SG iterations without any improve-
ment on LB guarantees the convergence of the subgradient procedure. Also, one can
work with a reduced instance G0 D .V;E 0/ of the problem, by considering only a
subsetE 0 � E of ordered edges required to obtain a feasible DCST for the problem,
by using the modified Kruskal’s algorithm from section “A Greedy Heuristic for
DCST.” Moreover, more sophisticated local searches and even metaheuristics can
be used instead of the local search presented in section “Improving DCSTs with a
Local Search”. For instance, variable neighborhood search (VNS), dynamic variable
neighborhood descent (VND), and absorption function [57] have been used in [4].
As the k-opt local search procedure is based on a greedy criterion, the Lagrangian
heuristic may not escape local optima. To overcome this issue, the authors in [4]
suggest to integrate a VNS and a dynamic VND, as well as absorption functions
of [57].

The LH presented here has been applied to a number of benchmark instances
from the literature: Euclidean And-inst, Hamiltonian Ham-inst, Shrd [36], M-graph
and R-graph instances, and the new Dr-inst and De-inst instances [15]. In addition,

18 A.C. Santos et al.

Algorithm 1: Lagrangian heuristic [5]
Data: a graph G D .V;E/, a DCST T �, a maximum number of iterations

MaxI ter ;
Result: a DCST of G;
initialization: k 0; �0 0; T 0 MST .G.�0//; LB LagrCost.T 0/;
UB Cost.T �/; while (LB<UB and k < MaxI ter) do

compute �kC1 by using Equation (7);
set T k MST .G.�k// and LBk LagrCost.T k/;
if (LBk > LB) then

LB LBk ;
end
if (T k is a DCST and Cost.T k/ <UB) then

T � LocalSearch.T k/;
UB Cost.T �/;

end
k k C 1;

end
return T �;

the solutions obtained by LH have been used as cutoff to speed up exact methods [4,
15] for DCMST problems.

Results obtained by LH have provided new average gaps of up to 0:188% and
6:230% for And-inst and Ham-inst instances, respectively. Moreover, it has solved
to optimality the Shrd, M-graph, and R-graph sets. After introducing the VNS,
optimality was reached for 23 out of 25 And-inst instances, 4 out of 15 Ham-
inst instances, and 8 out of 18 De-inst instances. Furthermore, optimal solutions
were obtained for all Dr-inst instances. Thus, LH has been shown to be a powerful
approach for DCMST problems.

Evolutionary Heuristic for a Generalization of BDMST

In this section, another way to handle difficult constraints is described for a
generalization of the BDMST. The difficult constraints of the problem are defined
on the paths of the tree rather than on the nodes as for DCMST. BDMST is defined
in a connected and undirected graphG D .V;E/, where costs cij � 0 are associated
with each edge Œi; j � 2 E. Consider T as a spanning tree of G. By MST definition,
there is a unique path Pij in T between any pair of nodes i; j 2 V . Thus,
given �ij the number of edges in the path Pij , the diameter D of T is defined as
D D maxf�ij W 8i; j 2 V; i ¤ j g. The BDMST consists in finding an MST such
that its diameter does not exceed a given k 2 N

�, i.e.,D � k. This problem belongs
to the NP-hard class whenever 3 < k < n � 1 [22].

Trees and Forests 19

a

1

2 3

4

1 20

412

8

2

b

1

2 3

4

1

2

4

c

1

2 3

4

1

2

12

Fig. 11 Example of a tree with diameter constraints. (a) A graph G. (b) MST ofG (c) A BDMST
of G

An example is shown in Fig. 11 for k D 2, considering the graph given in
Fig. 11a. The MST is presented in Fig. 11b. It violates the diameter since D D 3.
The optimal BDMST solution is provided in Fig. 11c, where the longest path has
two edges .D D 2/.

Several works are found in the literature for BDMST such as mathematical
formulations [25,27,53], exact methods [26,43,44], and heuristics [40,47,49]. Yet,
optimality has not been proved for an important benchmark of instances proposed
by [47], containing complete graphs whose size varies from 50 to 1000 vertices.
Thus, an original strategy is to investigate the search space of this problem by
using bi-objective approaches to compute the Pareto front. The idea is to drop the
difficult constraints, i.e., diameter, and to consider them as a new criterion. Then a
bi-objective optimization problem is solved. Thus the total tree cost and the diameter
are minimized simultaneously. The problem remains difficult since the goal is to
determine a Pareto front. However, the multiobjective strategy is interesting since
every spanning tree is feasible and efficient algorithms are available to compute
them. Moreover, in recent years, several advances have been done in solving mul-
tiobjective (bi-objective) problems using heuristics and metaheuristics. In addition,
bi-objective heuristics do not depend on a good mathematical formulation. Another
key point is that it is possible to bound the values for each criteria for problems
relying on trees such as BDMST.

Bi-objective optimization for MSTs has already been investigated considering
two cost objective functions. For example, a branch-and-bound was proposed
in [56] and a two-phase enumeration was introduced in [48, 58]. Bi-objective
metaheuristics are also used for two cost objective functions as in [6, 59]. A
multiobjective evolutionary algorithm (MOEA) for the network design problem is
presented in [59] to minimize the infrastructure cost and the maintenance cost, while
a multiobjective greedy randomized adaptive search procedure (GRASP) is applied
in [6] to find MST with two costs. Using this idea to handle difficult constraints
seems to be more recent, in particular for the BDMST. Works [17, 50, 52] are
dedicated to multiobjective strategies for the BDMST, referred as the bi-objective
minimum diameter-cost spanning tree (bi-MDCST) problem. One of the most
efficient multiobjective heuristics developed for bi-MDCST is the nondominated
sorting genetic algorithm (NSGA-II), presented in the sequel.

20 A.C. Santos et al.

Problem Definition

Without loss of generality, applying bi-objective heuristics for a problem P like
the bi-MDCST implies the minimization of two objective functions fmin f1.x/;

min f2.x/ jx 2 X g. X is the feasible solution space of P and f .x/ is the vector
of objective functions. For the bi-MDCST, ff1.x/; f2.x/g denote the cost and the
diameter, respectively. Then a set of compromise solutions with respect to the two
objective functions has to be obtained instead of a single solution as for the classical
BDMST.

The concept of dominance is used to define the set of compromise solutions,
usually called Pareto front. Considering two bi-MDCST solutions x and y, x
dominates y if and only if the following conditions hold:

�
fk.x/ < fk.y/ 9k 2 f1; 2g and
fk.x/ � fk.y/ 8k 2 f1; 2g

(10)

A Pareto solution x� is optimal whenever it is not dominated by any solution
in X . The Pareto-optimal front is composed of the Pareto-optimal solutions
(nondominated). The bi-MDCST seeks a set of Pareto-optimal spanning trees T of
G where f1 and f2 are simultaneously minimized. Figure 12 presents three solutions
for bi-MDCST, considering the graph of Fig. 11a. The cost and the diameter for T1,
T2, and T3 are, respectively, f29; 2g, f14; 3g, and f24; 2g. Solution T1 is dominated
by T3 due to the cost. However, solutions T2 and T3 are not dominated by each other
since T2 has a smaller cost than T3, while T3 has a smaller diameter than T2. One may
note that solutions T2 and T3 are not Pareto-optimal because they are, respectively,
dominated by the MST depicted in Fig. 11b of value {7,3} and the solution shown
in Fig. 11c of values {15,2}.

For bi-MDCST, an obvious LB on the cost can be obtained by computing an MST
on the graph. The diameter of this solution also provides an UB on the diameter. In
addition, for complete graphs, the star is also a trivial LB on the diameter. The
minimal cost of a star in the graph can provide an UB for the cost. Spanning trees of
diameters D 2 f2; 3g can be computed in polynomial time as shown in [52]. Those

a b c

1

2 3

4

1 20

8

1

2 3

4

2

4

8

1

2 3

4

4

8

12

Fig. 12 Example of solutions for bi-MDCST. (a) Solution T1. (b) Solution T2 (c) Solution T3

Trees and Forests 21

LB on the diameter may not necessarily exist on general graphs. However, checking
if a graph contains at least one such spanning tree can be done in polynomial time.

An NSGA-II for Bi-MDCST

The NSGA-II has been proposed by [19] and is one of the metaheuristics available
to compute Pareto fronts for multiobjective optimization problems. This method has
been applied to a number of multiobjective optimization problems for the past ten
years. Moreover, it uses simple and efficient operators to manage the Pareto front
convergence. Such operators are added to a classical genetic algorithm (GA), which
is very popular in the scientific literature. The two special multiobjective operators
are the ranking and the crowding distance. These two operators are computed for
each solution and are responsible to manage the Pareto front convergence. Both the
ranking and the crowding distance are associated with each solution. Given a target
solution T , the ranking contains the number of solutions that dominate T . Thus,
the lower the ranking, the better the solution. Fronts are then defined by solutions of
same ranking. Given a front of M solutions, the crowding distance w is computed
following Equation (11), where sc.j / and pr.j / are, respectively, the value which
precedes j in w and the value which follows j in w. For any (nondegenerate) front
with more than one solution, zmax

m ¤ zmin
m . The bi-MDCST involves two objectives

m D 1; 2; thus, zmax
m and zmin

m are the maximum and the minimum objective function
values, which need to be properly normalized. The crowding distance is a kind of
Manhattan distance between two solutions from the same front. Then, the higher
the crowding distance is, the more distant the two solutions are. As a consequence,
solutions with larger crowding distance are preferred since they belong to less
covered areas.

wj D
MX

mD1

zsc.j /m � zpr.j /m

zmax
m � zmin

m

!
(11)

The algorithm performs the following steps: (1) generate the initial population
(set of solutions), (2) compute and order the population using the ranking and
crowding distance, (3) select the first half elements of the population, and (4)
generate the remaining elements using genetic operators and go to step (2). These
steps are repeated until stopping criteria are met and are detailed below. In addition,
a local search can be applied to each new solution in the population, i.e., before
moving to step 2. In the vocabulary of GA, the use of a local search within a GA is
referred as a memetic algorithm (MA). The idea of generating all 2n solutions and
ordering them before cutting n solutions avoids cutting good solutions.

Given a graph G D .V;E/, a solution for bi-MDSCT (also referred as chro-
mosome in the GA vocabulary) can be encoded using a vector of size n containing
the direct predecessor of a vertex in the tree. A population can be generated using
any heuristics (greedy, randomized, etc.) or even randomly generated spanning trees

22 A.C. Santos et al.

(step 1). The work [53] suggests an initial population of size 2n which contains (i)
two specific solutions, an MST of G and a spanning tree of diameter D D 2 or
D D 3, if it applies; (ii) half of the population obtained randomly; and (iii) the
remaining solutions computed using a randomized version of Prim’s algorithm (i.e.,
the vertex entering the solution is randomly selected from a list of good candidates).

As mentioned above, the ranking and the crowding distance are computed
for each solution in the initial population (step 2). Then, these operators will be
responsible for the selection of solutions, following a multiobjective evolutionary
approach rather than directly considering their cost and diameter. The comparison
between two solutions T1 and T2 with respect to their ranking r1 and r2 and their
crowding distance w1 and w2 is as follows:

.r1 < r2/ or . .r1 D r2/ and .w1 > w2/ / (12)

T1 is said to be better than T2 whenever the condition (12) holds. In the following
(step 2), the population is ordered. Now, the algorithm proceeds to the selection
(step 3) by keeping the n best solutions for the next iteration. The n new solutions
to enter the population can be generated by the crossover proposed by [11] (step
3). One advantage of this crossover is that feasibility of new solution is ensured,
even for sparse graphs. The way to select the parents in the crossover can follow a
classical elitist strategy, i.e., one parent from the elite set and the other one randomly
selected from the remaining population. The crossover proposed by [11] works as
follows: given two solutions (parents) T1 and T2, a support graph G0 containing
all edges from T1 and T2 is built. Then, an MST is computed on G0 to obtain the
new solution. Figure 13 illustrates this crossover, considering the graph G shown
in Fig. 11a. The two parents T1 and T2 are, respectively, given in Fig. 13a and b.
The resulting support graph G0 is presented in Fig. 13c and the new individual is
provided in Fig 13d, for which Cost D 11 and D D 3.

The local search iteratively performs a 2-opt move until no improvement can be
done on the current solution. The 2-opt move uses the edge drop move previously
presented. A specific feature of the 2-opt move for bi-MDCST suggested by [52]
is that a move is accepted if and only if the diameter does not change and the cost

a b

1

2 3

4

1

2

12
1

2 3

4

1 20

8

c

1

2 3

4

1 20

8

1

2

12

d

1

2 3

4

1

8

2

Fig. 13 Example of the crossover operator. (a) Solution T1. (b) Solution T2. (c) Graph G0. (d)
MST of G0

Trees and Forests 23

is reduced. This means the local search will reach a local optima having the same
diameter as the current solution.

The main insights obtained in [17, 52] by applying the NSGA-II for bi-MDSCT
are summarized below. Three main sets of instances available in the literature for
the BDMST were used in the experiments. They were proposed by [25, 40, 47],
respectively. In addition, two test sets were proposed by [52] containing 9 and 11
instances, named Hamiltonian cycle and Hamiltonian path, respectively. Results
produced by NSGA-II were compared with available optimal values for the BDMST
from [26,53]. The NSGA-II for bi-MDCST manages to find some optimal diameter
values of the BDMST and it is very close in the other cases. The computational
time does not exceed the computational time spent by dedicated and sophisticated
methods for the BDMST. The Pareto-optimal fronts for the test sets used in [40,52]
are published on the site http://di.uern.br/dario/bi-mdcst-problem/.

Some interesting characteristics have been observed: (i) a significant difference
in tree cost occurs in the Pareto-optimal front between solutions with D D 2

and D D 3; (ii) since the instances from [40] have edges with similar cost, there
are several MSTs with different diameters; (iii) some diameters are not interesting
because the best corresponding solutions are dominated; and (iv) for the majority
of instances from the sets mentioned above, up to 15 target diameters exist. The
multiobjective approach has shown to be effective. It works consistently well and
can provide useful information about the search space and the Pareto front for bi-
MDCST problems.

Conclusion

Trees and forests are very rich topics, both in terms of theoretical and practical
issues. Integrating good ingredients in sophisticated heuristics is the first step to
produce good, competitive heuristics and even find new better results for NP-hard
problems relying on these structures. In this context, some basic components for
trees and forests are summarized in this chapter and two ways of addressing difficult
constraints (degree and diameter) are presented, with the hope it will inspire new and
fruitful research on these topics.

In terms of constructive heuristics, two basic ways have been addressed in the
literature: tree expansion and tree fusion. Concerning the improvement heuristics,
two main classes appear: restoration and local search. Some of these strategies use
tree properties such as the local searches based on k-opt moves. In fact, by definition
of a tree, removing an edge from a tree results in two connected components and
inserting an edge in a tree obviously creates a cycle. Thus even an 1-opt can be
considered two ways, either by first removing an edge or by first adding an edge.
Even if they basically are 1-opt moves, these may impact the way the search space
is explored.

Some key points are also provided in order to represent a tree in terms of
data structures. Encoding and decoding a tree can be done directly by means of
predecessor vectors indexed on the vertex or edge sets. It can also be done indirectly

http://di.uern.br/dario/bi-mdcst-problem/

24 A.C. Santos et al.

by using random keys. Additional data structures are also required to handle difficult
constraints such as degrees and diameter. The choice of data structures will mainly
impact the algorithm complexity. As a consequence, careful choices can save
running time.

Two different strategies to address difficult constraints have been presented. The
first, more classical, relies on a Lagrangian relaxation in which the constraints are
relaxed and integrated into the objective function using the Lagrangian penalties.
The second way consists of dropping the constraints, considering them as a new
criterion. The resulting bi-objective problem is then solved by multiobjective
approaches. The former presents the advantages of being simple to implement; it
obtains solutions of good quality in a reasonable computational time, and lower and
upper bounds are available at each iteration. A drawback is that it strongly depends
on the mathematical formulation and the chosen decomposition. The latter is far
less investigated in the literature, in particular for addressing difficult constraints.
It has the following advantages: it provides additional information about the search
space, and the computational time to obtain the Pareto front is very close to the
time spent applying sophisticated dedicated methods. Moreover, limits in the search
space can be computed and dominance rules can speed up the inspection of the
solutions. A drawback is that the problem remains difficult since it may involve
solving several NP-hard problems. However, facing NP-hard problems from a
multiobjective perspective remains an interesting direction for further research.

Cross-References

�Evolutionary Algorithms
�Multiobjective Optimization
�Variable Neighborhood Descent
�Variable Neighborhood Search

References

1. Achuthan NR, Caccetta L, Caccetta PA, Geelen JF (1994) Computational methods for the
diameter restricted minimum weight spanning tree problem. Australas J Comb 10:51–71

2. Ahuja RK, Magnanti TL, Orlin JB (1993) Network flows – theory, algorithms and applications.
Prentice Hall, Upper Saddle River

3. Álvarez-Miranda E, Ljubić I, Toth P (2013) Exact approaches for solving robust prize-
collecting Steiner tree problems. Eur J Ope Res 229(3):599–612

4. Andrade R, Freitas AT (2013) Disjunctive combinatorial branch in a subgradient tree algorithm
for the DCMST problem with VNS-Lagrangian bounds. Electron Notes Discrete Math
41(0):5–12

5. Andrade R, Lucena A, Maculan N (2006) Using Lagrangian dual information to generate
degree constrained spanning trees. Discrete Appl Math 154(5):703–717

6. Arroyo JEC, Vieira PS, Vianna DS (2008) A GRASP algorithm for the multi-criteria minimum
spanning tree problem. Ann Oper Res 159:125–133

http://link.springer.com/Evolutionary Algorithms
http://link.springer.com/Multiobjective Optimization
http://link.springer.com/Variable Neighborhood Descent
http://link.springer.com/Variable Neighborhood Search

Trees and Forests 25

7. Barahona F, Anbil R (2000) The volume algorithm: producing primal solutions with the
subgradient method. Math Program 87:385–399

8. Bean JC (1994) Genetic algorithms and random keys for sequencing and optimization. ORSA
J Comput 6(2):154–160

9. Beasley JE (1993) Lagrangean relaxation. In: Reeves C (ed) Modern heuristic techniques for
combinatorial problems. Wiley, New York, pp 243–303

10. Camerini PM, Galbiati G, Maffioli F (1980) Complexity of spanning tree problems: part I. Eur
J Oper Res 5(5):346–352

11. Carrano EG, Fonseca CM, Takahashi RHC, Pimenta LCA, Neto OM (2007) A preliminary
comparison of tree encoding schemes for evolutionary algorithms. In: IEEE international
conference on systems, man and cybernetics, ISIC, Montreal, pp 1969–1974

12. Cayley A (1889) A theorem on trees. Q J Pure Appl Math 23:376–378
13. Cerrone C, Cerulli R, Raiconi A (2014) Relations, models and a memetic approach for three

degree-dependent spanning tree problems. Eur J Oper Res 232(3):442–453
14. Cormen TH, Leiserson CE, Rivest R, Stein C (2009) Introduction to algorithms, 3rd edn. The

MIT Press, Cambridge
15. da Cunha AS, Lucena A (2007) Lower and upper bounds for the degree-constrained minimum

spanning tree problem. Networks 50(1):55–66
16. da Cunha AS, Lucena A, Maculan N, Resende MGC (2009) A relax-and-cut algorithm for the

prize-collecting Steiner problem in graphs. Discrete Appl Math 157(6):1198–1217
17. de Sousa EG, Santos AC, Aloise DJ (2015) An exact method for solving the bi-objective

minimum diameter-cost spanning tree problem. RAIRO Oper Rech 49:143–160
18. de Souza MC, Duhamel C, Ribeiro CC (2003) A GRASP heuristic for the capaci-

tated minimum spanning tree problem using a memory-based local search strategy. In:
Resende M, de Sousa J (eds) Metaheuristics: computer decision-making. Kluwer, Boston,
pp 627–658

19. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

20. Duhamel C, Gouveia L, Moura P, Souza M (2008) Models and heuristics for a minimum
arborescence problem. Networks 51(1):34–47

21. Fisher ML (1981) The Lagrangian relaxation method for solving integer programming
problems. Manag Sci 27:1–18

22. Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-
Completeness. W.H. Freeman, New York

23. Gottlieb J, Julstrom BA, Raidl GR, Rothlauf F (2001) Prüfer numbers: a poor representation
of spanning trees for evolutionary search. In: Spector L, Goodman ED et al (eds) Proceedings
of the genetic and evolutionary computation conference (GECCO-2001). Morgan Kaufmann,
San Francisco, pp 343–350

24. Gouveia L, Leitner M, Ljubić I (2012) On the hop constrained Steiner tree problem with
multiple root nodes. In: Ridha Mahjoub A, Markakis V, Milis I, Paschos VangelisTh (eds)
Combinatorial optimization. Volume 7422 of lecture notes in computer science. Springer,
Berlin/Heidelberg, pp 201–212

25. Gouveia L, Magnanti TL (2003) Network flow models for designing diameter-constrained
minimum-spanning and Steiner trees. Networks 41:159–173

26. Gouveia L, Simonetti L, Uchoa E (2011) Modeling hop-constrained and diameter-constrained
minimum spanning tree problems as Steiner tree problems over layered graphs. Math Program
128:123–148

27. Gruber M, Raidl GR (2005) A new 0-1 ILP approach for the bounded diameter minimum
spanning tree problem. In: Hansen P, Mladenovic N, Pérez JAM, Batista BM, MorenoVega JM
(eds) The 2nd international network optimization conference, Lisbon, vol 1, pp 178–185

28. Guignard M (2003) Lagrangean relaxation. In: Cerdá MAL, Jurado IG (eds) Trabajos de
Investigación Operativa, vol 11, chapter2. Sociedad de Estadística e Investigatión Operativa,
Madrid, pp 151–228

26 A.C. Santos et al.

29. Held M, Karp RM (1970) The travelling-salesman problem and minimum spanning trees. Oper
Res 18:1138–1162

30. Held M, Karp RM (1971) The travelling-salesman problem and minimum spanning trees: part
II. Math Program 1:6–25

31. Held MH, Wolfe P, Crowder HD (1974) Validation of subgradient optimization. Math Program
6:62–88

32. Henschel R, Leal-Taixé L, Rosenhahn B (2014) Efficient multiple people tracking using
minimum cost arborescences. In: Jiang X, Hornegger J, Koch R (eds) Pattern recognition
lecture notes in computer science. Springer, Cham, pp 265–276

33. Ho J-M, Lee DT, Chang C-H, Wong K (1991) Minimum diameter spanning trees and related
problems. SIAM J Comput 20(5):987–997

34. Hwang FK, Richards DS, Winter P (1992) The Steiner tree problem. Annals of discrete
mathematics, vol 53. Elsevier, Amsterdam

35. Kasperski A, Zieliński P (2011) On the approximability of robust spanning tree problems.
Theor Comput Sci 412(4–5):365–374

36. Krishnamoorthy M, Ernst AT, Sharaiha YM (2001) Comparison of algorithms for the degree
constrained minimum spanning tree. J Heuristics 7(6):587–611

37. Kruskal JB (1956) On the shortest spanning subtree of a graph and the traveling salesman
problem. Am Math Soci 7:48–50

38. Leitner M, Ljubic I, Sinnl M (2015) A computational study of exact approaches for the bi-
objective prize-collecting Steiner tree problem. INFORMS J Comput 27(1):118–134

39. Li Y, Yu J, Tao D (2014) Genetic algorithm for spanning tree construction in P2P distributed
interactive applications. Neurocomputing 140(0):185–192

40. Lucena A, Ribeiro C, Santos AC (2010) A hybrid heuristic for the diameter constrained
minimum spanning tree problem. J Glob Optim 46:363–381

41. Magnanti TL, Wolsey LA (1995) Optimal trees. In: Monma CL, Ball MO, Magnanti TL,
Nemhauser GL (eds) Network models. Volume 7 of handbooks in operations research and
management science. Elsevier, Amsterda, pp 503–615

42. Martinez LC, da Cunha AS (2012) A parallel Lagrangian relaxation algorithm for the min-
degree constrained minimum spanning tree problem. In: Mahjoub AR, Markakis V, Milis
I, Paschos V (eds) Combinatorial optimization. Volume 7422 of lecture notes in computer
science. Springer, Berlin/Heidelberg, pp 237–248

43. Noronha TF, Ribeiro CC, Santos AC (2010) Solving diameter-constrained minimum spanning
tree problems by constraint programming. Int Trans Oper Res 17(5):653–665

44. Noronha TF, Santos AC, Ribeiro CC (2008) Constraint programming for the diameter
constrained minimum spanning tree problem. Electron Notes Discrete Math 30:93–98

45. Prüfer H (1918) Neuer beweis eines satzes über permutationen. Archiv für Mathematik und
Physik 27:141–144

46. Raidl GR, Julstrom BA (2003) Edge sets: an effective evolutionary coding of spanning trees.
IEEE Trans Evol Comput 7(3):225–239

47. Raidl GR, Julstrom BA (2003) Greedy heuristics and an evolutionary algorithm for the
bounded-diameter minimum spanning tree problem. In: Proceedings of the 18th ACM
symposium on applied computing, Melbourne, pp 747–752

48. Ramos RM, Alonso S, Sicilia J, Gonzalez C (1998) The problem of the optimal biobjective
spanning tree. Eur J Oper Res 111(3):617–628

49. Requejo C, Santos E (2009) Greedy heuristics for the diameter-constrained minimum spanning
tree problem. J Math Sci 161:930–943

50. Saha S, Kumar R (2011) Bounded-diameter MST instances with hybridization of multi-
objective ea. Int J Comput Appl 18(4):17–25

51. Santos AC, Duhamel C, Belisário LS, Guedes LM (2012) Strategies for designing energy-
efficient clusters-based WSN topologies. J Heuristics 18(4):657–675

52. Santos AC, Lima DR, Aloise DJ (2014) Modeling and solving the bi-objective minimum
diameter-cost spanning tree problem. J Glob Optim 60(2):195–216

Trees and Forests 27

53. Santos AC, Lucena A, Ribeiro CC (2004) Solving diameter constrained minimum spanning
tree problem in dense graphs. Lect Notes Comput Sci 3059:458–467

54. Shangin RE, Pardalos PM (2014) Heuristics for minimum spanning k-tree problem. Procedia
Comput Sci 31(0):1074–1083

55. Silva RMA, Silva DM, Resende MGC, Mateus GR, Gonçalves JF, Festa P (2014) An edge-
swap heuristic for generating spanning trees with minimum number of branch vertices. Optim
Lett 8(4):1225–1243

56. Sourd F, Spanjaard O (2008) A multiobjective branch-and-bound framework: application to
the biobjective spanning tree problem. INFORMS J Comput 20(3):472–484

57. Souza MC, Martins P (2008) Skewed VNS enclosing second order algorithm for the degree
constrained minimum spanning tree problem. Eur J Oper Res 191(3):677–690

58. Steiner S, Radzik T (2008) Computing all efficient solutions of the biobjective minimum
spanning tree problem. Comput Oper Res 35(1):198–211

59. Zhou G, Gen M (1999) Genetic algorithm approach on multi-criteria minimum spanning tree
problem. Eur J Oper Res 114:141–152

	Trees and Forests
	Contents
	Introduction
	Basic Features for Trees and Forests
	Data Structures for Trees
	Encodings for Trees

	A Lagrangian Heuristic for DCMST
	Problem Formulation
	A Subgradient Procedure for DCMST Problem
	A Greedy Heuristic for DCST
	Improving DCSTs with a Local Search
	A Lagrangian Heuristic for DCMST

	Evolutionary Heuristic for a Generalization of BDMST
	Problem Definition
	An NSGA-II for Bi-MDCST

	Conclusion
	Cross-References
	References

