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ABSTRACT
Disruptions in urban roads can significantly alter the quality of the transportation network
by generating more congestion, gas emission, noise, stress, etc. In some situations, it can
even break the path between some pairs of nodes in the road network (strong connectivity
in graph theory). To avoid this issue, traffic managers can temporarily change the orientation
of some streets (arc reversal). In this study, we propose bi-objective methods for solving the
bi-objective Unidirectional and bi-objective Multidirectional Road Network problems with
Disruptions and connecting requirements (resp. bi-URND and bi-MRND). In bi-URND, the
road network represents local networks such as city centers with narrow streets. In this case,
a simple graph is used to model the transportation network. A more general urban network
is addressed with bi-MRND by means of a multi-graph model. We propose an e-constraint
method to compute the Pareto-optimal fronts, using an up-to-date mathematical formula-
tion and an NSGA-II. Both bi-objective methods are compared with two metaheuristics (a
Biased Random Key Genetic Algorithm and an Iterated Local Search) proposed by Huang,
Santos, and Duhamel [ Huang, Y., Santos, A. C., & Duhamel, C. (2018). Methods for solving
road network problems with disruptions. Electronic Notes in Discrete Mathematics, 64, 175–
184. 8th International Network Optimization Conference - INOC 2017] and, including an
aggregation of the two objective functions. Results are presented for simulated and realistic
instances on Troyes city in France.
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1. Introduction

Most cities in the world are facing difficulties in
managing and improving their urban network infra-
structure. The impact on the daily life will become
more and more noticeable due to the concentration
of population in urban areas, which is already
higher than the rural one. The situation turns even
more difficult whenever disruptions happen on the
road network, either predictable (road works, main-
tenance, social events, etc.) or not (accidents, bad
weather conditions, disasters, etc.). They reduce the
traffic capacity and pass-rate in involved areas, caus-
ing congestion and possibly breaking travel paths
between some locations (loss of strong connectivity).
Traffic managers can change the orientation of
some streets (arc reversal), modifying thus the
vehicles flow in order to maintain the network
strong connectivity.

In this study, urban network management after
disruptions, addressing strong connectivity and arcs
reversals, is modelled and treated as bi-objective
Unidirectional and bi-objective Multidirectional
Road Network problems with Disruptions and con-
necting requirements (resp. bi-URND and bi-
MRND). The former often applies to road networks

in city centres, where almost all streets are one-way
and the network can hence be modelled as a simple
digraph. The latter corresponds to more general
road networks since it uses a multi-graph, i.e. a
graph with several arcs between any pair of nodes,
where streets can be bi-directional and have mul-
tiple lanes in each direction. A disruption on the
road network is defined as an unavailable arc in a
digraph. The following two objectives are considered
for both bi-URND and bi-MRND: minimising the
total travel distance between all points of the net-
work and minimising the number of arcs reversals.
The former aims at evaluating the global efficiency
of the network in terms of travel distance, while the
latter aims at reducing the inconvenience for the
drivers since it can disturb users habits.

Given a set B of disruptions and a simple loopless
bridgless connected digraph G ¼ ðN;AÞ; where N is
the set of nodes representing road intersections, and
A is the set of arcs standing for road segments. Let
us consider the auxiliary graph H ¼ ðN;A0Þ; with
A0 ¼ A n B; which corresponds to the network of
available roads for the traffic. Note that H may not
be strongly connected anymore. For the sake of clar-
ity, graph orientation means setting a direction for
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each edge of the graph. The bi-URND aims at
defining a new orientation for H in terms of arcs
orientation, which minimises simultaneously the
total distance between every pair of nodes ði; jÞ 2 N
and the number of arcs reversals, and such that the
final graph configuration is strongly connected.
Figure 1 depicts an example of different orientations
on an unidirectional road network with nine nodes
f0; 1; 2; 3; 4; 5; 6; 7; 8g and one blocked arc (4, 5).
Suppose G1 models this network with the blockage
illustrated in Figure 1(a). It is no longer strongly
connected due to the blocked arc. Figures 1-(b) and
1-(c) are two possible feasible orientations and arc
reversals are shown in bold. More precisely, a devi-
ation for the blockage (4, 5) can go through (4, 7,
8) and (5, 8) in the orientation of Figure 1-(b),
while another deviation is applied in Figure 1(c) via
(1, 2, 4) and (2, 5).

A similar notation can be used for the bi-MRND
in terms of graph. In this case, G is a connected
loopless bridgeless directed multigraph, where A is
the set of multiple arcs corresponding to lanes,
either one-way or two-way streets and A0 ¼ A n B is
the set of available arcs after disruptions. The bi-
MRND is a direct generalisation of the bi-URND,
since a more general network is addressed. The
objective functions and constraints remain similar,
but the model is more complex since it is set on a
multigraph. Thus, the model and methods need to
be adapted to address the generalisation to multi-
arcs. Illustrative orientations are given in Figure 2.
The network contains nine nodes
f0; 1; 2; 3; 4; 5; 6; 7; 8g and a single disruption (1, 4).
Suppose G2 models this network with the disruption
as depicted in Figure 2(a). Two feasible orientations

are shown in Figures 2-(b) and 2-(c) and arc rever-
sals are shown in bold. Bypasses of the blocked arc
(1, 4) can be done by the path (3, 4), (3, 0) and (0,
1) in Figure 2(b) and by the path (2, 4, 5) and (1, 2)
in Figure 2(c).

Regarding the complexity of bi-URND and bi-
MRND, orienting a graph such that the total dis-
tance between all-pairs of nodes is minimised is
NP-hard, see Chv�atal and Thomassen (1978), while
orienting a graph such that arcs reversals is mini-
mised and the graph is strongly connected is poly-
nomial, see Bang-Jensen and Gutin (2008). As a
consequence bi-URND and bi-MRND are NP-hard.

Several works in the literature focus on the fun-
damental characteristics of bi-URND and bi-MRND
such as the strong connectivity and the arc reversals,
as well as closely related problems like orientation
problems. Robbins (1939) proposes the seminal the-
orem on strong orientation: a simple graph admits a
strong orientation iff it does not contain a bridge.
Boesch and Tindell (1980) extend this theorem for
mixed multi-graphs, i.e. graphs that combine multi-
arcs and edges. �Ad�am (1963) states the conjecture
that there always exists an arc in a digraph whose
reversal decreases the number of elementary cycles.

Considering works about setting strong orienta-
tion in graphs, Roberts (1978) proposes to compute
a strong orientation on simple graphs by means of a
Depth-First Search (DFS)-based algorithm. Conte,
Grossi, Marino, Rizzi, and Versari (2016) propose
an algorithm for enumerating all strong orientations
in OðmÞ amortised time each for a given mixed
multi-graph with m edges. The closely related work
of Santos, Duhamel, and Prins (2013) considers the
Strong Network Orientation Problem (SNOP): it
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Figure 1. An example of a network with one blockage for URND.

Figure 2. An example of a network with one blockage for MRND.
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aims at setting a strong orientation for an undir-
ected graph minimising the total distance of the
trips, depending on a given traffic demand. SNOP
does not take into account the notion of disruptions
and arcs reversals, on the contrary of bi-URND and
bi-MRND. Moreover, two objectives are considered
simultaneously in these two problems, as previously
mentioned. This especially holds in decision making
systems where many criteria are often considered
simultaneously. The number of studies dedicated to
multiobjective optimisation is very large. Thus, we
provide the following entry points: Oliveira and
Ferreira (2000), Ehrgott and Gandibleux (2000),
Junior and Lins (2009), Zopounidis and Pardalos
(2010) and Zhou, Qu, Li, Zhao, Suganthan, and
Zhang (2011) for survey and books closely related
to network design problem; and, Santos, Lima, and
Aloise (2014) and De Sousa, Santos, and Aloise
(2015) for bi-objective network design applications.

The following previous studies on URND and
MRND were done, in chronological order. A first
mathematical model for bi-URND is proposed in
Huang, Santos, and Duhamel (2016a), and it is
solved using a commercial Mixed Integer Linear
Programming solver (MILP). The model was tested
over small grid graph instances with up to 36 nodes
and 60 arcs. Pareto-fronts were computed to up to
25 nodes. Graph theoretical issues were handled in
Huang, Santos, and Duhamel (2016b) in order to
simplify the use of multi-graphs and, as a conse-
quence, be able to handle more general urban net-
works. We showed that for the two objectives
considered in bi-MRND, any multi-graph can be
reduced to a 2-directed multi-graph, i.e. a multi-
graph with at most two arcs between any two nodes.
Scheduling disruptions in a multi-period time hori-
zon is done in Coco, Duhamel, and Santos (2019).
In Huang et al (2018), a Biased Random Key
Genetic Algorithms (BRKGA), see Gonçalves and
Resende (2011); Resende (2012), and an Iterated
Local Search, see Lourenço, Martin, and St€utzle
(2010), were developed. For the former, the Pareto
front is obtained by extracting all non-dominated
solutions found in the iterations of BRKGA. For the
latter, an aggregation of the two objective functions
is done. More recently in Huang, Santos, and
Duhamel (2019), an improved mathematical formu-
lation is proposed for URND and MRND. The two
objectives were addressed separately using a BRKGA
and an ILS.

This work extends our previous studies Huang
et al (2018, 2019), by applying efficient multiobjec-
tive methods. Precisely, the improved model of
Huang et al (2019) is used in an �-constraint
scheme and an NSGA-II (Deb, Pratap, Agarwal, and
Meyarivan (2002)) is adapted to the two problems.

The two metaheuristics BRKGA and ILS previously
applied in Huang et al (2019) are adapted to the
multiobjective context by using an aggregated
objective function. The goal is to analyse the per-
formance of classical multi-objective methods with
the adaptation of BRKGA and ILS. Moreover, all
the methods are evaluated using multi-objective
indicators like hypervolume, spread and number of
points in the Pareto-front.

It is worth mentioning that the formalisation of
URND and MRND in theoretical terms and the
proposed of methods help the overall understanding
of a relevant problem happening in an urban con-
text. These problems come from an undergoing col-
laborative project with the traffic management
centre of Troyes city in France.1 The software
enclosing our methods was awarded a “Le Monde
Smart City” European Prize of Innovation in the
Urban Mobility category in 2017.

The remaining of this article is organised as fol-
lows. Initially, in Section 2, the �-constraint exact
method is presented, together with the improved
model. Then, Section 3 is dedicated to the bi-object-
ive metaheuristics, where the bi-objective ILS and
the bi-objective BRKGA are detailed, followed by
the description of the NSGA-II. Numerical results
are presented in Section 4, before concluding
remarks in Section 5.

2. An e-constraint exact method

Solving a multiobjective optimisation problem
implies finding a set of solutions in the search space
using usually the Pareto concept proposed by Pareto
(1906). Let us S be the set of all feasible solutions in
a search space for a multiobjective problem. Given
two solutions s1 2 S and s2 2 S in a minimisation
problem, where s1 dominates s2, if for every criter-
ion zi, the cost ziðs1Þ � ziðs2Þ; and there is at least
one criterion zi such that ziðs1Þ < ziðs2Þ: The Pareto-
optimal front hence contains the nondominated sol-
utions (Chankong and Haimes, 1983).

For the sake of clarity, let us consider F a Pareto
front and F�; an optimal Pareto-front. The �-con-
straint method is based on the enumeration strategy
proposed by Haimes, Lasdon, and Wismer (1971).
This method relies on a precision parameter �>0;

which is used to iterate on the criterion turned into
a parametric constraint. When this criterion takes
integer values, � can be set to 1. This means the
search space is constrained by successively optimis-
ing one of the objectives by means of a mathemat-
ical model or a heuristic. The corresponding
solution value will be used to set the new bound.
The procedure stops when the sub-problem
becomes infeasible. In some cases, the extreme
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optimal solutions of the Pareto-front can be com-
puted and used as a stopping criterion. It is worth
mentioning that the Pareto optimal front F� is
built, whenever an exact method is used at each
step of the �-constraint method. Examples of appli-
cations for the �-constraint method are found in
B�erub�e, Gendreau, and Potvin (2009) and De Sousa
et al (2015).

Considering a bi-objective minimisation problem,
Figure 3 illustrates the way the �-constraint method
iteratively computes the Pareto-optimal solutions.
Solutions s1 and s2 are first computed by performing
a single-objective optimisation on z1 and z2 criteria,
respectively. Then, the extreme point s�1 is obtained
by optimising z2 criterion with the additional con-
straint z1ðsÞ ¼ z1ðs�1Þ: Then, by iteratively reducing
the upper-bound constraint on z2ðsÞ; the sub-prob-
lem computes all the Pareto-optimal solutions until
the extreme solution s�2 is found.

2.1. Mathematical formulation for bi-URND and
bi-MRND

The mathematical formulation used in the proposed
�-constraint method for bi-URND is defined from
(1) to (8). It makes use of the graph H previously
defined. In addition, a cost hij, corresponding to the
distance, is associated with every arc ði; jÞ 2 A0: Let
P ¼ fðo; dÞjo; d 2 N; o 6¼ dg be the set of all
(O)rigin-(D)estination pairs in H. Since H is
obtained from G by removing the disrupted arcs, it
may not be strongly connected anymore. In such a
case, the strong connectivity must be restored by
reversing arcs and any arc in A0 can be reversed.
Moreover, the strong connectivity of the new orien-
tation is ensured by sending a unit flow for each
OD pair ðo; dÞ 2 P: Furthermore, the proposed
model uses boolean variables xij 2 f0; 1g indicating
whether arc ði; jÞ 2 A0 is reversed (xij ¼ 1) or not
(xij ¼ 0). Variables f odij 2 IR define the flow from o
to d on the arc (i, j), taking into account its final
orientation. Assuming the arc (i, j) is used to send

flow from o to d, f odij >0 if the arc is not reversed
and f odij < 0 otherwise. In this way, flow conserva-
tion constraints hold on variables f. Variables yodij �
0 define the amount of flow from o to d going
through arc (i, j). Thus, they do not depend on the
orientation of the arc (i, j).

The bi-objective function is given in (1) for mini-
mising both the total travelling distance and the
number of arcs reversals. The flow conservation
constraints are shown in (2) and (3), using variables
f odij : Since the variables f odij take both the amount of
flow and the reversal state into account, the relation
between variables f odij ; yodij and xij are defined in
inequalities (4) and (5), which are a linearisation of
the nonlinear Equation (9). Variables are defined
from (6) to (8). This model contains OðjPj � jA0jÞ
constraints and variables.

minimize
c1 yð Þ ¼

P
o;dð Þ2P

P
i;jð Þ2A0 hijy

od
ij

c2 xð Þ ¼P
i;jð Þ2A0 xij

8><
>:

(1)

s.t. X
l: l;oð Þ2A0

f odlo �
X

l: o;lð Þ2A0
f odol ¼ �1 8 o; dð Þ 2 P; (2)

X
l: l;ið Þ2A0

f odli �
X

l: i;lð Þ2A0
f odil ¼ 0 8 o; dð Þ 2 P; 8i 62 o; df g;

(3)

�yodij � f odij � yodij 8 o; dð Þ 2 P; 8 i; jð Þ 2 A0; (4)

�2xij þ yodij � f odij � 2�2xij�yodij 8 o; dð Þ 2 P;8 i; jð Þ 2 A0;

(5)
xij 2 0; 1f g 8 i; jð Þ 2 A0; (6)

f odij 2 IR 8 o; dð Þ 2 P; 8 i; jð Þ 2 A0; (7)

yodij � 0 8 o; dð Þ 2 P; 8 i; jð Þ 2 A0: (8)

This mathematical model can be adapted to bi-
MRND by taking the lanes into account. It is suffi-
cient to set an index for each arc ði; jÞ 2 A0 such
that a multiple arc ði; jÞ 2 A0 corresponds to K cop-
ies (i, j), each with a different index, starting from 0
and going up to K – 1. This way, each arc in A0 is
uniquely defined by a triple (i, j, k), i being the ori-
gin, j the destination and k the index. Then, varia-
bles xij become xijk. Same for f odij and yodij which
become respectively f odijk and yodijk: The adaptation is
straightforward and does not alter the structure of
the formulation.

f odij ¼ yodij � 1�2xijð Þ 8 o; dð Þ 2 P; 8 i; jð Þ 2 A0: (9)

2.2. e-constraint applied to bi-URND and
bi-MRND

Given a solution s 2 S with respect to bi-URND or
bi-MRND. Let x(s) and y(s) define the x and y
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Figure 3. General schema of e-constraint method.
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variables associated with s, respectively. The domin-
ance rule is defined as follows. Considering two sol-
utions s1 2 S and s2 2 S; s1 dominates s2 (s1 � s2)
either if (i) c1ðyðs1ÞÞ < c1ðyðs2ÞÞ and c2ðxðs1ÞÞ �
c2ðxðs2ÞÞ or if (ii) c1ðyðs1ÞÞ � c1ðyðs2ÞÞ and
c2ðxðs1ÞÞ < c2ðxðs2ÞÞ: Then s2 is nondominated if no
such s1 exists, i.e. @s 2 Sjs � s2:

In the �-contraint, the computation of the
Pareto-optimal front F� for bi-URND starts by first
computing the extreme solitions s�1 and s�2 associated
with the optimal non-dominated solutions for c1ðyÞ
and c2ðxÞ criteria. This is done by solving successive
Mixed-Integer Linear Programs (MILP). The values
u2 and l2 stand respectively for the number of arc
reversals in s�1 and s�2: Thus, u2�l2 defines the inter-
val of variation in F� for the �-constraint method.
Since c2ðxðsÞÞ 2 N; setting c2ðxÞ as a parametric
constraint in the method with � ¼ 1 ensures all sol-
utions of F� will be found.

Given j the current value on c2 criterion, the
subproblem to be solved is given in Equation (10),
where S is the domain of feasible solutions defined
by constraints (2)–(8). In bi-URND, the bounding
constraint c2ðxðsÞÞ � j corresponds to Equation
(11).

minc1 y sð Þð Þ s:t:
c2 x sð Þð Þ � j
s 2 S

8<
:

9=
; (10)

X
i;jð Þ2A0

xij � j (11)

The same approach is used for bi-MRND except
that arcs are defined by a triple (i, j, k) where i and
j are, respectively, the origin and the destination,
and k is the index among all the arcs from i to j.
Thus, inequality (12) is used for bi-MRND instead
of (11). X

i;j;kð Þ2A0
xijk � j (12)

Details of this adapted method are given in
Algorithm 1. The initialisation of the method is
done in lines 1–5, where the extreme Pareto-front
solution s�1 (line 2), the Pareto optimal front F�
(line 4), and j (line 5) are set. Loop 6 to 10 corre-
sponds to reducing j iteratively until all non-domi-
nated solutions between s�1 and s�2 are obtained. The
optimal Pareto-front is returned in line 11.

3. Bi-objective metaheuristics for bi-URND
and bi-MRND

We propose three heuristics to handle the two object-
ive functions focused in bi-URND and bi-MRND. ILS
and BRKGA are originally designed for single-objective
problems. However, it can be easily adapted to address

bi-objective problems, using an aggregated function.
The reason for adapting such methods is due to their
efficiency on single-objective applications, and also
since the modifications remain simple and can be done
without deteriorating their main advantages. In add-
ition, one of the more successful metaheuristics for
multi-objective problems, NSGA-II has also been
developed. These methods are detailed in this section.

Algorithm 1 ��constraintðG; �Þ
1: Input
2: H graph (simple or multiple) with initial

orientation
3: � precision
4: Output
5: F� Pareto optimal front of G
6: s1  minfc1ðyðsÞÞjs 2 Sg
7: s�1  minfc2ðxðsÞÞjc1ðyðsÞÞ ¼ c1ðyðs1ÞÞ; s 2 Sg
8: s2  minfc2ðxðsÞÞjs 2 Sg
9: F�  fs�1g
10: j c2ðxðs�1ÞÞ
11: repeat
12: s minfc1ðyðsÞÞjc2ðxðsÞÞ � j��; s 2 Sg
13: F�  F� [ fsg
14: j c2ðxðsÞÞ
15: until j ¼ c2ðxðs2ÞÞ
16: return F�

3.1. ILS adapted to bi-URND and bi-MRND

ILS has been proposed by Lourenço, Martin, and
St€utzle (2003) and several successful applications have
been presented in Lourenço et al (2010). Differing
from population-based algorithms like BRKGA, this
method improves a single feasible initial solution by
iteratively applying a local search followed by a per-
turbation. When a predefined stopping criterion is
reached, ILS outputs the incumbent solution found
during the process. The method contains three major
components: a constructive algorithm to generate the
initial feasible solution, a local search procedure and a
shaking operator for the perturbation.

An aggregate objective function using a weighted-
sum approach is defined as in Equation (13), in order
to handle bi-URND and bi-MRND using the ILS,
referred to as bi-ILS. Given a solution s, a weighting
parameter a 2 ð0; 1Þ; and the objective values of
c1ðyðsÞÞ and c2ðxðsÞÞ: The objective functions are eval-
uated and normalised, and then aggregated into one
objective value faðsÞ: The parameter a is set in the
interval (0, 1). One may note that if a¼ 0, only
c2ðxðsÞÞ is optimised. On the contrary, if a¼ 1, the
optimisation is performed for c1ðyðsÞÞ:
min
s2S

fa sð Þ ¼ ac1 y sð Þð Þ þ 1�að Þc2 x sð Þð Þ a 2 0; 1ð Þ
(13)
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The construction of a feasible initial solution is
done as follows. Initially, a random weight is
assigned to every node the graph H. Then, a DFS-
based strong orientation algorithm is applied. As
shown in Roberts (1978), a DFS algorithm can be
used to generate strong orientation for graphs. The
weights allow to generate different orientations. The
weights are used to define the order of node visits
in the DFS. First, the initial orientation of the given
graph is removed such that every edge has to be ori-
ented. At each step of the algorithm, given the cur-
rent node i 2 H0; the set Ri of reachable neighbour
nodes, i.e. all the nodes that are connected to i by
an edge ½i; j�; is built. Then, the node j 2 Ri with the
largest weight is selected, the edge ½i; j� is oriented
from i to j and the method iterates.

The local search used in ILS is the Variable
Neighbourhood Descent (VND) developped by
Mladenovi�c and Hansen (1997). In our VND, the
current solution is improved by iteratively moving
to the next neighbourhood using a first improve-
ment strategy. The search stops whenever no
improvement is found. Three neighbourhood struc-
tures N k; k ¼ 1:::3; are used in the VND. A move
in N 1 consists in reversing all the arcs of a cycle. In
N 2; all the arcs incident to a node are reversed and
a single arc is reversed in N 3: Moves in N 1 do not
break the strong connectivity, on the contrary of
N 2 and N 3: Thus, for these last two neighbour-
hoods, only strong connected neighbour solutions
are considered. Finally, two shaking functions are
developed for the perturbation. Given the current
solution, the first shaking reverses the direction of a
cycle while the second shaking changes the direc-
tions of all the arcs. The first one is used in the first
half of ILS iterations and the second one is used in
the second half.

The Pareto front F is held by a meta-process
that runs bi-ILS with different values of a distrib-
uted uniformly in (0, 1). During each run, F is
updated every time an improving solution s is
found: (i) s is inserted into F if it is nondominated
in F and (ii) all the dominated solutions F ; i.e.
fs0 2 Fjs � s0g are removed from F : A post-proc-
essing step is added to each run of bi-ILS. It tries to
iteratively reverse back the reversed arcs, while the
orientation remains strongly connected. This step is
used to reduce as much as possible the value
c2ðxðsÞÞ since the tree structures N 1;N 2 and N 3

are not designed towards c2ðxðsÞÞ optimisation.

3.2. BRKGA adapted to bi-URND and bi-MRND

BRKGA has been proposed by Gonçalves and
Resende (2011) and Resende (2012). It is an exten-
sion of Random Key Genetic Algorithm (RKGA)

from Bean (1994), a variant of GA. Both BRKGA
ans RKGA use a vector of random keys in ½0; 1� to
represent an individual in their population. Thus, a
decoder is used in order to transform this vector
into a feasible solution, depending on the specifica-
tion of the given problem. In this way, the problem-
specific parts are kept in the decoder, hence isolated
from the algorithmic scheme of BRKGA.

In our version of BRKGA for bi-URND and bi-
MRND, refereed to as bi-BRKGA, random keys are
set as a vector of weight associated with each node
of the given graph H. Then, the decoder works as in
the ILS, by using an adapted version of the DFS to
compute a strong orientation. The highest weights
impose the orientation of arcs. During a run of
BRKGA, the criterion c1ðyðsÞÞ is evaluated by com-
puting the shortest path between all pairs of nodes.
This step is done using the classical shortest path
algorithm of Dijkstra, see Cormen, Leiserson, Rivest,
and Stein (2009). The second criterion c2ðxðsÞÞ; i.e.
the number of arcs reversals, is computed by count-
ing the number of arcs whose direction differs from
their initial orientation. The aggregated function
faðsÞ (see Equation 13) is applied and the Pareto
front F evolves along with the iterations of the
BRKGA. Every time a so-far nondominated solution
s is found, F is updated in a way that (i) s is
inserted into F and (ii) all the dominated solutions
in N ;i.e. fs0 2 Fjs � s0g are removed from F :

3.3. NSGA-II

Multi-objective evolutionary algorithms (MOEA) are
an effective way to compute good approximations of
the Pareto-optimal front. Among them, adaptations
of GA have led to efficient algorithms such as the
Nondominated Sorting Genetic Algorithm (NSGA)
proposed by Srinivas and Deb (1994), based on the
ranking mechanism. In addition, a sharing method
with a technique is applied in order to keep diver-
sity in the population and in the distribution of
nondominated solutions. The other mechanisms of
the metaheuristic, such as the crossover and the
mutation, follow the guidelines of a classical GA.

Some drawbacks of NSGA have been identified
by the community, including the high complexity
due to the implementation of the nondominated
sorting, the lack of an elitist mechanism and the
dependence on the sharing parameter. In Deb et al
(2002), these disadvantages are well explained. They
are addressed in an enhanced approach, NSGA-II.
This improved method integrates a fast nondomi-
nated sorting with a lower complexity. The main
idea is, for every solution, to get the number of sol-
utions dominating others and to store all the solu-
tions dominated by others. The time complexity is
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proved to be OðMN2Þ where M is the number of
criteria and N is the population size. Yet, this new
approach requires a slightly higher storage space in
OðN2Þ: NSGA-II also replaces the sharing function
with a crowded-comparison operator that improves
the solutions distribution on the Pareto front as
well. Instead of sharing the fitness, a crowding dis-
tance is computed for every solution to indicate
whether it is located in a crowded region or not of
the current rank. The selection of the GA is then
guided by comparing the crowding distances in a
way that solutions in less crowded areas
are preferred.

The proposed NSGA-II for bi-URND and bi-
MRND uses the generic fast nondominated sort
with the ranking calculation and the crowding dis-
tance. Two encodings have been developed, one
based on weights associated with nodes and another
using weights associated with arcs. The first one is
similar to the idea used in the BRKGA, where the
vector of weights associated with nodes is used to
generate strong orientation by means of a DFS algo-
rithm. In the second encoding, a weight wij 2 ð0; 1Þ
is associated with each arc ði; jÞ 2 A0: Then, if wij <

0.5, the edge ½i; j� is oriented from the node with the
lower index to the node with the higher index, and
from the higher index to the lower index otherwise
(wij � 0:5). The first encoding was abandoned since
it leads to a lower performance in a NSGA-
II scheme.

One may note that generating a strong orienta-
tion using arcs does not ensure feasibility. Thus, a
penalisation is added in order to remove the need
for a repair function and to avoid the bias any rep-
aration could induce. The penalisation consists in
adding a large-enough predefined value each time
an OD pair is not connected. This way, infeasible
solutions are kept, but they are dominated automat-
ically by every feasible solution with the same num-
ber of arc reversals. Besides, they are removed from
the final Pareto front at the end of the run. The
algorithm used by this decoding is shown in
Algorithm 2. Its complexity is trivially OðmÞ with m
being the number of arcs.

Algorithm 2 ArcOrient(G, w)

1: Input
2: H graph (simple or multiple) to be oriented
3: w weight vector on arcs
4: Output
5: H with an orientation
6: for each ½i; j� 2 A0 do
7: a its node with smaller index
8: b its node with larger index
9: if wij < 0.5 then

10: orient ½i; j� from a to b
11: else
12: orient ½i; j� from b to a
13: end if
14: end for

The crossover applied in the NSGA-II is the one
proposed by Spears and Jong (1991), named para-
metrised uniform crossover. In this crossover, one
individual is always selected from the elite set, while
the other is randomly chosen in the population. The
probability of a solution inheriting the allele from
the elite individual is equal to 0.7 as suggested by
Gonçalves and Resende (2011). The number of
mutants and the elite set size follow the work of
Gonçalves and Resende (2011), where the recom-
mendation is to include a small number of mutants
into the population at each generation. This is set to
10% of the overall population. In Gonçalves and
Resende (2011), experiments indicate elite sets rang-
ing from 15% to 25% of the overall population tend
to produce a better performance of BRKGA. Here,
it is set to 20%.

4. Numerical results

Numerical experiments were addressed to evaluate
the computational performance of the proposed
exact method and the three bi-objective metaheuris-
tics, as well as their limits in terms of solution qual-
ity and running time. All the experiments are
performed on a machine with an Intel Core i7-
4710MQ CPU at 2.50GHz with 4 cores, 16GB
RAM under Windows 7. CPLEX version 12.6 is
used with default parameters and a time limit of 2 h
is set. All the procedures are coded in Cþþ and
compiled by Visual Cþþ version 11.0 (Visual
Studio 2012 Q1).

Simulated and realistic instances from Troyes city
in France are used in the experiments. The simu-
lated instances are grid graphs with a unit arc cost.
They include simple graph instances for bi-URND
and multigraph instances for bi-MRND. For the lat-
ter, multiple arcs are generated randomly such that
no more than 2 arcs exist between any pair of
nodes. In every instance, disruptions are selected on
a random basis and the number of disruptions
varies in f1; 2; 4; 6g: In addition, when generating
disruptions, we ensure that the resulting graph can
always admit a strong orientation, such that feasible
solutions should exist.

The realistic instances were generated for bi-
MRND as follows. We extracted geographical data
from the Troyes urban network, a city in France
with about 61,000 inhabitants in 2015, using
OpenStreetMap 2. The original dataset from OSM
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consists of 4261 nodes and 614 ways including use-
less information in our context like buildings,
squares and internal ways in parking lots. A data
preprocessing procedure is applied in order to build
bridgeless graphs. Two graphs are used: one with 24
nodes and 43 arcs and another one with 58 nodes
and 155 arcs. Four scenarios of disruptions are
applied for each graph, resulting in 8 instances,
named “troyes-vd-k”, where d and k stand respect-
ively for the number of nodes and the number of
disruptions. Disruptions are randomly selected such
that the resulting graph does not contain bridges.
Figures 4 and 5 depict the addressed network mod-
elled by multigraphs. Figures 4(a) and 5(a) illustrate
the initial data, while Figures 4(b) and 5(b) show
the graphs resulting from the preprocessing phase.

Preliminary experiments on the parameters’ val-
ues were performed, followed by three experiments.
In the first experiment, we have tested the �-con-
straint method and the three metaheuristic methods
(NSGA-II, bi-BRKGA and bi-ILS) on small simu-
lated instances. In the second one, larger instances
are solved by the metaheuristics, since the exact
method can no longer handle such sizes. Third, the
metaheuristics are tested on instances corresponding
to the road network of Troyes.

To analyse the quality of Pareto fronts produced
by the proposed methods, three multiobjective met-
rics are used. The first metric is the number of
Pareto solutions in the first front. The second metric
is the hypervolume (Zitzler and Thiele, 1998) that
represents the size of the area dominated by the
given front in the solution space. The last one is the
spacing (Veldhuizen and Lamont (2000) and Zitzler,
Thiele, Laumanns, Fonseca, and da Fonseca (2003))
which allows to analyse the distribution of the solu-
tions on the given Pareto front. In all tables, values
in bold correspond to the best results.

In the preliminary experiments, the following
parameters were tested for each method. The multi-
plier on the number of nodes (RN) used to compute
the population size, the maximal number of genera-
tions (IN), the probability of crossover (qcN) and the
probability of mutation (qmN) were tested for the
NSGA-II. In bi-BRKGA, the key parameters are the
multiplier on the number of nodes (RB) used to set
the number of individuals in the population and the
number of generations without profit (JB). They cor-
respond to the population size and the stopping cri-
terion. In bi-ILS, the parameters are the number of
iterations without profit (JI) and the rate of vari-
ation on the weight parameter a, refer to as (DI).
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Figure 4. Troyes partial downtown road network modelled by graphs.

Figure 5. Troyes downtown road network modelled by graphs.
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For the sake of reproducibility and according to the
results from preliminary tests, the sets of chosen
parameter values for each metaheuristic are reported
in Table 1.

4.1. Results on small instances

Tables 2 and 3 report, respectively, the results for
bi-URND and bi-MRND obtained on the instances
with up to 25 nodes. The columns “Q”, “HV”, “SP”
and “t(s)” present, respectively, the number of solu-
tions in the Pareto front, the hypervolume (the
larger the better), the spacing (the smaller the bet-
ter) and the computational time in seconds. Note
that the objective values are normalised in the com-
putation of spacing, since the values of c1ðyðsÞÞ and
c2ðxðsÞÞ are not in the same scale.

Results in Table 2 indicate that bi-ILS can com-
pute a high quality approximation of the Pareto-
optimal fronts for bi-URND (simple graph instan-
ces). This is confirmed by the tiny gap of hypervo-
lume comparing with the Pareto-optimal fronts
constructed by the �-constraint method. The spacing
values seem also reasonable for a non-evolutionary
metaheuristic without any functions that ensure the
solutions distribution. Note that most solutions
found by bi-ILS on the final front are supported,
which may result from the aggregation of the two
criteria, whereas a few non-supported solutions are
also obtained thanks to the post-processing inte-
grated in the method. The other two metaheuristics,
bi-BRKGA and NSGA-II, can construct Pareto

fronts with more solutions than bi-ILS because of
the use of populations, especially on 5x5 instances.
The quality of their fronts are good as well, on par
with bi-ILS in general. Moreover, NSGA-II com-
putes Pareto fronts with a small spread on these
instances. All the three metaheuristics can approxi-
mate the Pareto-optimal fronts in less
than 2minutes.

The results for bi-MRND are reported in Table 3.
bi-BRKGA has a good performance in terms of
quality and time. It performs especially well in terms
of the spread, with leading spacing values on 7 out
of 8 instances. Besides, bi-ILS can still construct
Pareto fronts of high quality while it becomes sig-
nificantly more time-consuming than for bi-URND.
The behaviour of NSGA-II is similar to the experi-
ments on simple graph instances. It computes the
Pareto fronts with a number of solutions within a
reasonable time. However, starting from 6� 6
instances, the �-constraint method ran out of time
(2 h time limit set to CPLEX) due to the large num-
ber of variables in the mathematical model.

Examples of Pareto(-optimal) fronts constructed
by the four methods are illustrated in Figure 6 for a
bi-URND instances (Figure 6(a)) and a bi-MRND
instances (Figure 6(b)).

4.2. Results on large instances

The �-constraint method cannot handle instances
larger than 25 nodes due to the time and memory
limits. Thus, for every instance with more than 25
nodes addressed in this subsection, nondominated
solutions among all the solutions found by the three
metaheuristics are merged in order to build a set of
“Best Known Solutions (BKS)”, presented within the
column “BKS” in Tables 4 and 5. It can hence be
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Table 1. Chosen parameter values.
NSGA-II bi-BRKGA bi-ILS

RN IN qcN qmN RB JB JI DI

1.75 50 0.3 0.1 1.45 6 6 0.15

Table 2. Performance comparison of Pareto fronts for bi-URND (I).

Instance
e-constraint NSGA-II bi-BRKGA bi-ILS

Q HV t(s) Q HV SP t(s) Q HV SP t(s) Q HV SP t(s)

4� 4-b1 2 0.67 2.34 2 0.67 0.00 24.09 3 0.07 0.46 21.65 2 0.67 0.00 8.46
4� 4-b2 4 0.50 24.07 4 0.50 0.46 24.73 4 0.50 0.46 16.23 4 0.50 0.46 6.30
4� 4-b4 5 0.72 11.59 4 0.71 0.89 20.22 5 0.72 0.83 8.38 4 0.63 0.82 4.49
5� 5-b1 15 0.89 3769.28 11 0.80 0.94 62.21 12 0.80 1.78 87.32 9 0.87 3.97 42.28
5� 5-b2 13 0.90 1835.61 11 0.90 0.65 64.15 13 0.87 0.86 87.99 7 0.88 3.90 30.45
5� 5-b4 11 0.90 1021.64 7 0.84 4.24 59.34 10 0.84 0.59 77.75 8 0.89 1.27 25.69

Table 3. Performance comparison of Pareto fronts for bi-MRND (I).

Instance
e-constraint NSGA-II bi-BRKGA bi-ILS

Q HV t(s) Q HV SP t(s) Q HV SP t(s) Q HV SP t(s)

4� 4-b1-50 8 0.75 13.85 8 0.74 1.37 44.15 8 0.74 0.05 19.02 5 0.72 0.81 19.14
4� 4-b1-100 8 0.59 4.95 8 0.59 0.06 68.16 8 0.59 0.06 22.08 4 0.46 1.93 16.63
4� 4-b2-50 7 0.72 9.22 7 0.69 0.72 41.96 7 0.66 0.08 17.38 6 0.70 0.46 14.70
4� 4-b2-100 9 0.81 6.51 10 0.76 2.81 67.52 9 0.81 0.08 23.81 4 0.75 1.78 21.54
5� 5-b1-50 13 0.91 150.56 20 0.83 1.90 127.05 13 0.88 0.63 104.94 12 0.91 1.14 76.39
5� 5-b1-100 21 0.84 101.29 26 0.78 1.27 190.65 21 0.83 0.14 122.09 11 0.82 1.55 121.37
5� 5-b2-50 14 0.88 240.56 14 0.87 0.52 121.40 17 0.81 0.59 121.68 10 0.86 3.91 96.56
5� 5-b2-100 21 0.79 135.24 21 0.72 0.92 182.46 21 0.76 0.13 121.68 11 0.78 1.34 106.22
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used as the basis for the relative comparison of their
performance.

Regarding the bi-URND on 7� 7 and 8� 8
instances, results of the three metaheuristics are
shown in Table 4. bi-BRKGA and NSGA-II have
globally a good performance on the hypervolume,
comparing to the BKS. They can find good quality
fronts with a large number of solutions. Besides, the

spread performance of these two methods is satis-
factory and generally better than bi-ILS. In particu-
lar, NSGA-II consumes less time than the other two
methods. A possible explanation might be that
NSGA-II runs with a relatively small population and
less generations. On the other hand, the Pareto
fronts found by bi-ILS are very close to BKS on
these instances but with minor gaps in terms of
number of solutions. Figure 7(a) illustrates the
Pareto fronts constructed by the three metaheuris-
tics on the 8x8 bi-URND instance with 6
disruptions.

For bi-MRND (results reported in Table 5), bi-
ILS starts to consume more time when the problem
size is getting larger, particularly on the 8� 8
instances. Sometimes, it spends more than two
hours to construct a Pareto front while BRKGA and
NSGA-II can finish most of the tasks in less than
one hour. It seems that bi-ILS performs too many
runs with different values of a, whereas the number
of generations in bi-BKRGA and NSGA-II is rela-
tively small. In terms of front quality, bi-ILS still
has a significant lead over the two other metaheuris-
tics, since the values of hypervolume on the con-
structed Pareto fronts are higher for all the
instances presented in Table 5. In terms of solutions
distribution, bi-BRKGA has a better spacing on 6
out of 8 instances than bi-ILS and NSGA-II, while
bi-ILS also finds 2 fronts out of 8 instances that are
better distributed than the other two methods.
NSGA-II performs surprisingly worse than bi-
BRKGA and bi-ILS using this metric on these
instances. Figure 7(b) illustrates the Pareto fronts
constructed by the three metaheuristics on the 8x8
bi-MRND instance with 1 disruption.
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Figure 6. Pareto fronts for bi-URND and bi-MRND instan-
ces (5x5).

Table 4. Performance comparison of Pareto fronts for bi-URND (II).

Instance
BKS NSGA-II bi-BRKGA bi-ILS

Q HV Q HV SP t(s) Q HV SP t(s) Q HV SP t(s)

7� 7-b1 15 0.78 8 0.74 0.82 368 16 0.61 1.09 1369 11 0.74 2.30 703
7� 7-b2 19 0.83 20 0.58 1.82 367 17 0.76 1.75 1276 14 0.83 1.98 739
7� 7-b4 7 0.91 15 0.83 0.80 346 13 0.75 4.13 1100 7 0.91 1.50 587
7� 7-b6 14 0.87 13 0.72 3.70 362 24 0.74 3.56 1179 9 0.85 6.05 701
8� 8-b1 17 0.94 23 0.82 4.63 732 33 0.87 2.40 4556 15 0.93 3.80 2158
8� 8-b2 15 0.92 28 0.87 1.97 716 22 0.88 1.76 3474 10 0.86 5.61 2024
8� 8-b4 18 0.93 21 0.83 1.79 677 26 0.84 0.26 4894 17 0.91 3.45 1898
8� 8-b6 18 0.94 32 0.80 1.22 655 26 0.85 3.96 2840 17 0.94 1.20 1727

Table 5. Performance comparison of Pareto fronts for bi-MRND (II).

Instance
BKS NSGA-II bi-BRKGA bi-ILS

Q HV Q HV SP t(s) Q HV SP t(s) Q HV SP t(s)

7� 7-b1-25 22 0.87 24 0.73 2.05 534 31 0.78 1.14 1837 21 0.86 3.82 1725
7� 7-b1-75 32 0.90 37 0.82 1.75 854 50 0.84 0.53 1276 22 0.89 8.65 3604
7� 7-b2-25 19 0.84 27 0.67 1.59 535 26 0.67 1.93 1683 17 0.84 1.40 1442
7� 7-b2-75 24 0.92 35 0.83 1.47 861 46 0.85 0.55 1817 21 0.91 2.23 3741
8� 8-b1-25 15 0.91 22 0.68 4.56 1078 31 0.71 3.71 5029 14 0.90 4.29 4199
8� 8-b1-75 30 0.90 31 0.74 2.86 1718 61 0.79 0.67 8000 29 0.90 2.12 9476
8� 8-b2-25 19 0.85 25 0.71 3.76 1133 35 0.67 2.77 3772 16 0.84 2.63 3959
8� 8-b2-75 40 0.90 44 0.77 3.36 1732 55 0.82 1.38 5823 33 0.90 9.37 11697
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4.3. An application to a real urban network

Experiments have been done on the Troyes instan-
ces using the proposed methods. All the four meth-
ods: �-constraint, NSGA-II, bi-BRKGA and bi-ILS
are used to generate Pareto fronts on troyes-v24
instances, while the larger instances troyes-v58 are
tested only by the metaheuristics. Results are
reported in Tables 6 and 7.

Table 6 reports the results for the four methods
on the Troyes instances with 24 nodes. The exact
method consumes a relatively larger time compared
to the similar instance set of 5� 5 multigraphs. bi-
BRKGA performs well in terms of hypervolume.
However, unlike the behaviour observed on the
results for bi-MRND instances, bi-BRKGA does not

ensure a good spread of the fronts on these real
instances. Bi-ILS got high-quality Pareto fronts in
terms of both hypervolume and spacing within a
much shorter time than 5� 5 bi-MRND instances.
The Pareto fronts produced by NSGA-II are gener-
ally worse than those from bi-BRKGA and bi-ILS in
terms of the hypervolume. Yet, they are better in
terms of solutions distribution.

The results for the Troyes instances with 58
nodes are reported in Table 7, BRKGA dominates
the other two metaheuristics on the Pareto fronts
spread. Bi-ILS still produces good quality fronts but
requires more running time. This may not be a
drawback since bi-URND and bi-MRND are tac-
tical/strategical problems. It can find Pareto fronts
very close to the best-known fronts combining the
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Figure 7. Pareto fronts for bi-URND and bi-MRND instan-
ces (8x8).

Table 6. Performance comparison of Pareto fronts on troyes-v24 instances.

Instance
e-constraint NSGA-II bi-BRKGA bi-ILS

Q HV t(s) Q HV SP t(s) Q HV SP t(s) Q HV SP t(s)

troyes-v24-b1 8 0.86 108 8 0.86 0.36 73 9 0.85 4.81 82 6 0.85 0.83 68.05
troyes-v24-b2 11 0.86 263 13 0.78 0.29 70 12 0.85 1.49 100 7 0.84 0.79 61.07
troyes-v24-b4 7 0.88 100 13 0.66 0.89 68 8 0.87 2.21 97 7 0.86 0.48 51.73
troyes-v24-b6 9 0.86 291 8 0.84 0.49 61 9 0.83 2.17 51 8 0.85 0.56 45.76

Table 7. Performance comparison of Pareto fronts on troyes-v58 instances.

Instance
BKS NSGA-II bi-BRKGA bi-ILS

Q HV Q HV SP t(s) Q HV SP t(s) Q HV SP t(s)

troyes-v58-b1 17 0.90 21 0.50 7.35 1183 15 0.77 1.04 2230 17 0.90 1.10 4754
troyes-v58-b2 16 0.94 27 0.61 8.21 1205 19 0.84 1.14 1553 15 0.94 20.29 3413
troyes-v58-b4 17 0.88 13 0.40 8.08 1155 14 0.76 2.00 2525 15 0.88 2.22 3696
troyes-v58-b6 20 0.91 26 0.48 5.18 1138 24 0.81 0.76 2730 19 0.91 1.08 3121

Figure 8. Pareto fronts for the Troyes instances.
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solutions found by all the metaheuristics. The
spread of the constructed Pareto fronts are generally
reasonable except on the instance with two disrup-
tions. In addition, NSGA-II produces fronts whose
hypervolume is significantly lower, compared to bi-
BRKGA and bi-ILS, on all the four instances. Same
for the spacing, except for one instance where bi-
ILS computes a front with a very large spacing, due
to a solution far away from the others. Examples of
combined Pareto fronts can be found in Figure 8(a)
for a troyes-v24 instance and in Figure 8(b) for a
troyes-v58 instance. In the latter, we can clearly
observe that NSGA-II is inefficient on these instan-
ces with the current parameter settings, since there
is a relatively large gap between its fronts and the
ones built by the other two metaheuristics.

5. Concluding remarks

In this work, the bi-URND and bi-MRND problems
are addressed. They correspond respectively to the
specific situation in historical centers and in general
urban road networks. The total travel distance is
considered as the first optimisation criterion.
Reversals of arcs direction are introduced to handle
the issue of strong connectivity due to disruptions
and to help reducing the travel distance. The num-
ber of reversals should be limited and it is consid-
ered as the second objective.

Based on the bi-objective mathematical model, an
exact �-constraint method is adapted to construct
Pareto-optimal fronts for bi-URND and bi-MRND
instances. Moreover, a classical and efficient multi-
objective optimisation metaheuristic, NSGA-II, is
hence proposed. Two other metaheuristics, BRKGA
and ILS, are adapted to address the bi-objective
optimisation requirement. Numerical experiments
are performed on grid instances with up to 64 nodes
and 112 arcs for bi-URND and up to 64 nodes and
224 arcs for bi-MRND. The methods are also
applied on instances built from the real road net-
work of Troyes (France). Results show that bi-ILS is
able to produce high quality Pareto fronts in both
bi-URND and bi-MRND. In addition, it is less
dependent on the network configuration, either the
topology or the number of disruptions. bi-BRKGA
is a solid alternative, even if the fronts it computes
are slightly worse. NSGA-II, in its current setting,
does not converge well towards the optimal or best
Pareto front. It would be relevant to adapt bi-ILS to
other problems in order to check if its efficiency still
holds.

There is still room for improving the perform-
ance of the proposed metaheuristics, which can be
addressed in future works. Furthermore, additional
realistic constraints and criteria are being studied

for the application to general networks, such as arc
capacities, multimodal flows and scheduling disrup-
tions, in order to better capture the real context of
urban road network problems.

Notes

1. Innov’Action AGIR project (syst�eme d’Aide �a la
d�ecision pour la Gestion d’Interruptions Routi�ere)

2. An open-source Geographical Information System
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