
Noname manuscript No.
(will be inserted by the editor)

Robust min-max regret covering problems

Amadeu A. Coco · Andréa Cynthia Santos ·
Thiago F. Noronha

Received: date / Accepted: date

Abstract This article deals with two min-max regret covering problems: the min-max regret
Weighted Set Covering Problem (min-max regret WSCP) and the min-max regret Maxi-
mum Benefit Set Covering Problem (min-max regret MSCP). These problems are the robust
optimization counterparts, respectively, of the Weighted Set Covering Problem and of the
Maximum Benefit Set Covering Problem. In both problems, uncertainty in data is modeled
by using an interval of continuous values, representing all the infinite values every uncer-
tain parameter can assume. This study has the following major contributions: (i) a proof
that MSCP is Σ2

p-Hard, (ii) a mathematical formulation for the min-max regret MSCP, (iii)
exact and (iv) heuristic algorithms for the min-max regret WSCP and the min-max regret
MSCP. We reproduce the main exact algorithms for the min-max regret WSCP found in the
literature: a Logic-based Benders decomposition, an extended Benders decomposition and
a branch-and-cut. In addition, such algorithms have been adapted for the min-max regret
MSCP. Moreover, five heuristics are applied for both problems: two scenario-based heuristics,
a path relinking, a pilot method and a linear programming-based heuristic. The goal is to
analyze the impact of such methods on handling robust covering problems in terms of solution
quality and performance.

Keywords Robust optimization · Covering problems · Heuristics · Exact methods ·
Uncertainties

1 Introduction

Robust Optimization (RO) is a methodology to deal with data uncertainty where the vari-
ability of the data is represented by deterministic values [1,39]. It emerged in the late sixties
to deal with financial problems and has been applied, in general, as a way to self-protect
against undesirable impacts due to vague approximations or incomplete, imprecise, or am-
biguous data. Readers are referred to [1] and [38] for robust optimization theoretical issues,
and to [43] and [48] for operations research applications.

Many robust counterparts of classical NP-Hard optimization problems have been studied
in the literature [2,43,47,53]. These problems bring several challenges regarding the design of
algorithms and formulations, since the complexity to compute the cost of a single solution is at

Amadeu A. Coco
Normandie Université, UNIHAVRE, UNIROUEN, INSA Rouen, LITIS, Le Havre, France.
E-mail: amadeuac1@gmail.com

Andréa Cynthia Santos
Normandie Université, UNIHAVRE, UNIROUEN, INSA Rouen, LITIS, Le Havre, France.

Thiago F. Noronha
Computer Science Department, Federal University of Minas Gerais, Belo Horizonte, Brazil.

mailto:amadeuac1@gmail.com

2 Amadeu A. Coco et al.

least equal to the computational complexity of its classical version. Moreover, the formulations
using some RO criteria, such as the min-max regret, may have an exponential number of
constraints due to the linearization of the objective function nested operators. On the other
hand, covering problems are one of the most studied combinatorial optimization problems
[12,28], and investigating their robust counterparts is a recent trend to address uncertainties
in such problems [9,17,18,19,29,40,42,47].

The min-max regret robust criterion is applied in this study since it is one of the most used
RO criterion [1]. The uncertain data are modeled by means of a continuous interval, where
any realization of a single value for each uncertain parameter is considered as a scenario that
can happen. Whenever the deterministic counterpart is a minimization problem, the regret
of a feasible solution X in a scenario s is the difference between the cost of X and the cost
of an optimal solution in s. The regret slightly differs if the deterministic counterpart is a
maximization problem. In this case, the regret is given by the difference between the cost of
an optimal solution in s, and the cost of X. In both cases, the objective of a min-max regret
problem is to find a solution in which the maximum regret is minimized.

This article is dedicated to two min-max regret covering problems: the min-max regret
Weighted Set Covering Problem (min-max regret WSCP) and the min-max regret Maximum
Benefit Set Covering Problem (min-max regret MSCP). Given an interval of costs associ-
ated with all facilities, the min-max regret WSCP consists in selecting a set of facilities to
be opened, in such a way that all neighborhoods are covered by at least one facility. The
aim is to minimizing the maximum regret. The min-max regret MSCP looks for opening a
set of capacitated facilities, to cover all neighborhoods by using at least one facility, while
minimizes the maximum benefit regret. The benefit is the sum of the inhabitants number on
all neighborhoods serviced by a facility.

Previous studies are found in the literature for the min-max regret WSCP [17,47]. For
instance, the study [7] is motivated by a probabilistic version of WSCP that was applied
to health care management. Since there are uncertainties in the emergency medical services
demands, the authors integrated the stochastic WSCP (PSCP) [8] with a general facility
location problem (FLP) [45]. Let ω ∈ (0, 1) be a constant, this problem, referred here as
PSCP-FLP, aims to open a set of Emergency Medical Services (EMS) and to designate a
set of vehicles to each EMS such that the expected cost is minimized and each constraint is
ensured with a probability of at least ω. The PSCP-FLP can be transformed into the min-max
regret WSCP by assigning a cost interval to open each EMS, changing the objective function
to the one applied to min-max regret problems, and setting ω = 1.

For the second problem addressed here, the min-max regret MSCP, preliminary results
were presented in [19]. The benefit of each column is modeled as an interval of continuous
values, and the objective is to select a subset of columns (facilities) that covers all the lines
(neighborhoods) without violating a capacity constraint, and such that the maximum regret
of using the chosen columns is minimized. The interest of investigating two min-max regret
covering problems together is to analyze their difficulty, using similar methods.

The MSCP and the min-max regret MSCP are inspired by an application of locating field
hospitals after large-scale disasters, such as the earthquakes that hit Kathmandu, Nepal in
April 2015. It also applies to setting up vaccination centers in a crisis like the one of the
COVID-19. MSCP models these type of applications as follows. A set of field hospitals must
be placed among a set M of predefined candidate sites, such that a capacity T ∈ N∗ is not
exceeded. Given a set N of neighborhoods, a site j ∈M is said to cover a neighborhood i ∈ N
if and only if the distance dij between the barycenter of neighborhood i and j is smaller than

a maximum distance d̂. Considering |N | and |M | respectively as the number of lines and

columns, a matrix {aij} of size |N | × |M | is defined as follows: aij = 1 if dij ≤ d̂, and aij = 0
otherwise. One may note that each column of aij corresponds to a potential site to open a

field hospital, while the lines stand to neighborhoods. We assume that d̂ is such that there
is at least one covering of N with a capacity less than or equal to T , as in this application
no neighborhood may not be left without aid. The objective is to maximize the sum of bj
for all selected sites, where bj is the population living up to d̂ distance-units away from the
site j ∈ M . This objective function aims at attending the most densely populated areas in

Robust min-max regret covering problems 3

practical applications, since they are more likely to have more people needing aid after a
large-scale emergency. A direct extension of this problem is the min-max regret MSCP, where
uncertainties are associated with the number of inhabitants requiring medical care, which is
unknown in emergencies. These uncertainties can be modeled as an interval [lj , uj] for each
site j ∈M , representing the minimum and the maximum number of people requiring aid. The
objective is to minimize the maximum regret of inhabitants without access to field hospitals.
Modeling this application employing RO, in particular, the min-max regret objective function,
prevents solutions with high regret, which are not suitable in a crisis context.

This study extends the previous work and brings several contributions. First, the main
exact algorithms for the min-max regret WSCP found in the literature [46] are reproduced,
i.e. a Logic-based Benders decomposition (LBD), an Extended Benders decomposition (EB)
and a Branch-and-Cut (B&C). In addition, five heuristics are proposed for the min-max regret
WSCP: two scenario-based heuristics [17], a path relinking (PR) [33], a pilot method (PM)
[52] and a linear programming-based heuristic (LPH) [2]. The main contributions regarding
the min-max regret MSCP concerns the proof that min-max regret MSCP is Σ2

p-Hard, by
showing that it is a generalization of the min-max regret Knapsack problem [24]; the adap-
tation of two exact methods (EB and B&C) and three heuristics (PR, PM and LPH). In
addition, one exact method (LBD) and two heuristics (SBA and AMU) are reproduced. To
the best of our knowledge, this is the first study dedicated to compare a number of exact
and heuristic methods for min-max regret covering problems. It is worth mentioning that the
developed methods can be generalized to other min-max regret optimization problems, by
simply exchanging the algorithm that solves the corresponding deterministic counterpart.

The remainder of this paper is organized as follows. Related works are discussed in Sec-
tion 2. In the sequel, the min-max regret covering problems are formally defined in Section 3,
followed by the description of the proposed exact and heuristic algorithms in Section 4.
Computational experiments are reported in Section 5, while concluding remarks are given in
Section 6.

2 Literature review

This section provides a literature review on covering, facility location, and robust optimiza-
tion problems related with min-max regret WSCP (Section 2.1) and min-max regret MSCP
(Section 2.2). Let us assume the following notation from now on: {aij} is a matrix with a
line-set N and a column-set M .

2.1 Studies related to min-max regret WSCP

The deterministic counterpart of the min-max regret WSCP is the well-known Weighted Set
Covering Problem (WSCP) [27]. Let {aij} be a matrix with |N | lines and |M | columns, such
that aij = 1 if the column j ∈ M covers the line i ∈ N , and aij = 0 otherwise. Moreover,
each column j ∈ M has an associated cost cj . WSCP consists in finding a column-subset
X ⊆M with the minimum cost, such that every line in N is covered by at least one column
in X. This problem is NP-hard [32], and exact and heuristic algorithms are found in [4,12].
Practical applications of WSCP are found, among others, in scheduling of railway crews [11]
and in locating bus stops for new routes [50].

The min-max regret WSCP was introduced by [47], and is an NP-hard problem. These
authors proposed a linear formulation, exact methods based on Benders decomposition and
branch-and-cut (B&C), a Genetic Algorithm (GA) and a hybrid heuristic (GA coupled to
an extended Benders decomposition) for min-max regret WSCP. Computational experiments
showed that B&C had the best performance among the exact methods, and the hybrid heuris-
tic produced the best upper bounds among the heuristics. In [17], a scenario-based heuristic
(SBH) and a Path-Relinking (PR) method were developed. Numerical experiments reported
that PR found better solutions than SBH, and that both outperformed the heuristics from
the literature.

4 Amadeu A. Coco et al.

The Probabilistic Set Covering Problem (PSCP), introduced in [8], is a generalization of
WSCP. Let N , M and {aij} be as previously defined. Let also λ ∈ (0, 1) be a constant and
ξ be a {0, 1}-random vector. PSCP consists in finding a subset X ⊆ M with minimum cost,
such that every line in N is covered by at least ξ columns in X with a probability of at least
λ. This problem is NP-hard [8], and exact and heuristic algorithms were proposed in [8], [49]
and [55].

The NP-Hard Budget Uncertainty Weighted Set Covering Problem (BU-WSCP) is a gener-
alization of WSCP proposed in [29], that applies the robust optimization criterion introduced
by [10]. Let {aij}, N and M be as defined above and λ be as described in PSCP. Let also
[lj , uj] be the cost interval associated with each column j ∈ M , S be the scenario-set, and
a scenario s ∈ S be an assignment of a cost csj ∈ [lj , uj] for every column j ∈ M . Given a
scenario s ∈ S with k ≤ |M | columns set in uj and a subset of scenarios υ ∈ S that contains
all scenarios in which k or less columns are fixed in uj . The BU-WSCP aims at finding a
subset X ⊆ M with the minimum cost sum in s, such that every line in N is covered by at
least one column in X with a probability of at least λ and X is feasible for all scenarios in υ.
A polyhedral study, integer linear formulations, and cutting-plane methods were presented in
[29] and [40].

2.2 Studies related to min-max regret MSCP

The deterministic counterpart of the min-max regret MSCP is the Maximum Benefit Set
Covering Problem (MSCP) [19]. MSCP is also defined in a matrix {aij} with |N | lines and
|M | columns, such that aij = 1 if the column j ∈ M covers the line i ∈ N , and aij = 0
otherwise. Besides, each column j ∈ M is associated with a benefit bj and a weight wj .
MSCP consists in finding a column-subset X ⊆ M with the maximum benefit, such that
every line in N is covered by at least one column in X, and the sum of column weights in X
is not larger than a capacity T ∈ N∗. This problem is clearly NP-Hard, as finding any feasible
solution for MSCP is as hard as checking the existence of a T -cover in {aij} [32]. Analogously,
one can also see that this problem is NP-Hard as for aij = 1, for all i ∈ N and j ∈M , MSCP
reduces to the Knapsack problem with capacity T .

The Maximum Coverage Location Problem (MCLP) is also related to MSCP. It was
introduced by [14] and is defined in a matrix {aij} with a set N of lines and a set M of
columns, such that aij = 1 if the column j ∈M covers the line i ∈ N , and aij = 0 otherwise.
Given a constant C, MCLP consists in finding a column subset X ⊆ M , with |X| ≤ C,
that covers the maximum number of lines in N (not necessarily all of them). This problem is
NP-hard [32] and some interesting entry points on exact and heuristics for MCLP are found
in [20], [41] and [56]. MCLP has several practical applications, such as in nature reserve [15],
e-commerce [34] and bike-sharing systems [44]. MSCP, on the other hand, aims at selecting
a subset X ⊆ M , with

∑
j∈X wj ≤ T , such that every line in N is covered by at least one

column in X. The objective function seeks the subset X∗ with the maximum total benefit,
which corresponds to the sum of the selected columns’ benefit. The main difference between
MCLP and MSCP is that the former aims at finding the solution that maximizes the number
of lines covered, while the latter seeks the solution with the maximum benefit that covers all
lines in N , and does not violate the capacity constraint.

The Budget Uncertainty Dynamic Maximum Coverage Problem (BUDMCLP) [42] is a
generalization of MCLP. Let {aij}, N , M , and S be as formerly described. Let also H be a
constant corresponding to a time horizon, such that Q = {0, . . . ,H} is the set of time periods.
Given a demand interval [liq, uiq] associated with each row i ∈ N in a time period q ∈ Q, a
scenario s ∈ S is defined as an assignment of a demand dsiq ∈ [liq, uiq] for every row i ∈ N
and time period q ∈ Q, where S is the set of all possible scenarios. As MCLP, BUDMCLP
computes a subset X ⊆ M , with |X| not larger than a maximum cardinality C, that covers
a subset N(X) ⊆ N of lines. Given a constant uncertainty budget k ≤ |N |, Sk ⊆ S is defined
as the subset of scenarios that have at most k rows whose demands are different than liq. A
solution X is feasible only if the demands of the rows in N(X) can be satisfied in all scenarios
in Sk. The objective is to find the solution X that maximizes the sum of the demands of

Robust min-max regret covering problems 5

the rows in N(X) overall H time periods. This problem was proven NP-Hard in [42]. The
latter also developed a MILP formulation, and a hybrid metaheuristic combining a Variable
Neighborhood Search with a Linear Programming method.

The min-max regret p-center [3] is a generalization of the well-known p-center problem
[25]. Let {aij}, N , M be as formerly described, where N here denotes a set of customers
and M a set of facilities. Given a demand interval [li, ui] associated with each row i ∈ N ,
a scenario s ∈ S is defined as an assignment of a demand dsi ∈ [li, ui] for every row i ∈ N ,
where S is the set of all possible scenarios. The min-max regret p-center computes a subset
X ⊆ M of columns (facilities) not larger than a maximum cardinality p, such that each line
i ∈ N (customer) is served by exactly one column. A scenario s ∈ S is an assignment of
demands dsi ∈ [li, ui] for every customer i ∈ N , where S is the set of all possible scenarios.
The objective is to find a solution with the smallest maximum regret over all scenarios in S.
This problem is NP-hard [3], and the studies of [22,51] are entry points for facility location
problems under uncertainties, covering RO, stochastic programming and chance constraints,
together with the corresponding approaches.

3 Robust covering problems

The min-max regret WSCP and the min-max regret MSCP are formally defined in Sections 3.1
and 3.2, respectively. In both problems, {aij} denotes a matrix with a line-set N and a column-
set M , such that aij = 1 if the column j ∈ M covers the line i ∈ N , and aij = 0 otherwise.
Moreover, in the min-max regret WSCP, the uncertain cost (resp. the uncertain benefit in
the min-max regret MSCP) of each column j ∈ M is associated with an interval [lj , uj]. A
scenario s ∈ S is an assignment of costs csj ∈ [lj , uj] (resp. benefits bsj ∈ [lj , uj] in the min-max
regret MSCP) for every column j ∈M , where S is the set of all possible values combinations
for the columns’ cost (resp. benefit in the min-max regret MSCP). Besides, we denote the set
of all possible scenarios by S.

3.1 The min-max regret WSCP

The min-max regret WSCP computes a solution X ⊆M , such that every line in N is covered
by at least one column inX. Let Γ ⊆ 2M be the set of feasible solutions, and ωs(X) =

∑
j∈X c

s
j

be the cost of a solution X ∈ Γ for the scenario s ∈ S, where csj is the cost of column
j ∈ M in s. The regret of a solution X ∈ Γ for a scenario s ∈ S is defined as the difference
ωs(X)− ωs(Y s), where Y s is the optimal solution for the scenario s, i.e. the regret of using
X instead of Y s if scenario s occurs. The min-max regret WSCP consists in finding a solution
X∗ ⊆ Γ with the smallest maximum regret over all scenarios, as shown in Equation (1).

X∗ = arg min
X∈Γ

max
s∈S

{
ωs(X)− ωs(Y s)

}
(1)

Despite there being infinitely many scenarios in S, given a solution X ∈ Γ , the scenario
s(X) where the regret of X is maximal can be computed in polynomial time for any min-
max regret robust optimization problem whose classical counterpart is a {0, 1} minimization

problem. In this case, s(X) is the scenario where c
s(X)
j = uj , for all j ∈ X, and c

s(X)
j = lj ,

for all j ∈ M \ X, i.e. s(X) is the scenario in which all columns in X have the largest
possible cost and all the other ones have the smallest possible cost. An example is given in
Figure 1. An instance of the min-max regret WSCP is shown in the Table 1(a), where a
solution X = {1, 3} is highlighted. The scenario s(X) is displayed in the Table 1(b), where
the optimal solution Y s(X) = {2, 4} is highlighted. In this case, the regret of X in s(X) is
ωs(X)(X)− ωs(X)(Y s(X)) = 3, where ωs(X)(X) = 8 + 4 = 12 and ωs(X)(Y s(X)) = 3 + 6 = 9.
It is worth mentioning that X is the optimal solution for the instance shown in Table 1(a).

6 Amadeu A. Coco et al.

1 2 3 4

1 1 1
2 1 1
3 1 1
4 1 1
5 1 1
6 1 1
7 1 1
8 1 1
9 1 1

[lj , uj] [5,8] [3,7] [3,4] [6,9]

(a)

1 2 3 4

1 1 1
2 1 1
3 1 1
4 1 1
5 1 1
6 1 1
7 1 1
8 1 1
9 1 1

csj 8 3 4 6

(b)

Fig. 1 An example of a min-max regret WSCP instance. The solutions X and Y s(X) are highlighted on
tables (a) and (b), respectively.

3.1.1 Mathematical formulation

The authors in [47] proposed a MILP formulation for the min-max regret WSCP. Let N , M ,
{aij} and [lj , uj] be as previously defined. Let each solution X ∈ Γ of the min-max regret
WSCP be associated with a characteristic vector of dimension |M |, such that X is represented
by a vector x, with xj = 1 if j ∈ X, and xj = 0 otherwise. Let Y and y be, respectively, a
feasible solution in Γ and its M -dimensional characteristic vector, where yj = 1 if j ∈ Y , and
yj = 0 otherwise. Additionally, let θ be a free variable. The MILP formulation is as follows.

min
X∈Γ

{ ∑
j∈M

ujxj − θ
}

(2)

s.t.∑
j∈M

aijxj ≥ 1 ∀i ∈ N (3)

θ ≤
∑
j∈M

ljyj +
∑
j∈M

yj (uj − lj)xj ∀Y ∈ Γ (4)

θ free (5)

x ∈ {0, 1}|M | (6)

The objective function (2) seeks to find the covering X ∈ Γ with the smallest maximum
regret. Inequalities (3) ensure that every line in N is covered by at least one column in M .
Constraints (4) and (5) assure that θ = ωs(X)(Y s(X)). The domain of variables x is defined in
(6). One may note that the size of constraint-set (4) grows exponentially with the cardinality
of M .

3.2 The min-max regret MSCP

The min-max regret MSCP computes a solution X ⊆M , such that every line in N is covered
by at least one column in X, and the sum of the weights wj ∈ N∗ of the columns j ∈ X
is not greater than a capacity T ∈ N∗. Let ∆ ⊆ 2M be the set of feasible solutions, i.e., if
X ∈ ∆ then ∃j ∈ X : aij = 1, for all i ∈ N , and

∑
j∈X wj ≤ T . Let also ψs(X) =

∑
j∈X b

s
j

be the benefit of a solution X ∈ ∆ for the scenario s ∈ S, where bsj is the benefit of column
j ∈ M in s. The regret of a solution X ∈ ∆ for a scenario s ∈ S is defined as the difference
ψs(Y s) − ψs(X), where Y s is the optimal solution for the scenario s. The min-max regret
MSCP consists in finding the solution with the smallest maximum regret over all scenarios,
as shown in Equation (7). It is worth noticing that computing the regret of a solution in a
single scenario for min-max regret MSCP (resp. min-max regret WSCP) is NP-Hard, as an
instance of MSCP (resp. WSCP) must be solved in order to compute Y s.

X∗ = arg min
X∈∆

max
s∈S

{
ψs(Y s)− ψs(X)

}
(7)

Robust min-max regret covering problems 7

Theorem 1 Min-max regret MSCP is Σ2
p-Hard.

Proof The proof consists in showing that the min-max regret MSCP is a generalization of the
min-max regret Knapsack Problem (min-max regret KP), which was proven to be Σ2

p-Hard
in [24]. The min-max regret KP is a generalization of the well-known Knapsack Problem [21].
Let I be the set of items, the min-max regret KP computes a solution X ⊆ I, such that the
sum of the weights wj of the items j ∈ X is not greater than a capacity T . Let Φ ⊆ 2I be the
set of feasible solutions, where 2I denotes the power set of I, and ψs(X) =

∑
j∈X b

s
j be the

benefit of a solution X ∈ Φ for the scenario s ∈ S, where bsj is the benefit of item j ∈ I in s.
The regret of a solution X ∈ Φ for a scenario s ∈ S is defined as the difference ψs(Y s)−ψs(X),
where Y s is the optimal solution for the scenario s. As no information is known about which
scenario is happening, it is assumed that a solution is as good as its maximum regret over all
the infinitely many scenarios in S. Therefore, the min-max regret KP consists in finding the
solution with the smallest maximum regret over all scenarios, as shown in Equation (8).

X∗ = arg min
X∈Φ

max
s∈S

{
ψs(Y s)− ψs(X)

}
(8)

As can be observed from equations (7) and (8), the objective function of both the min-
max regret MSCP and the min-max regret KP are similar. Besides, for M = I, we have that
∆ ⊆ Φ ⊆ 2M , since all the subsets of columns in Φ respect the capacity constraint, but not
necessarily the covering constraints. When aij = 1, for all i ∈ N and j ∈ M , we have that
∆ = Φ, as in this case, all subsets of columns in Φ also satisfy the covering constraints. Thus,
any instance of min-max regret KP can be reduced to an instance of min-max regret MSCP,
where M = I, |N | = 1 and a1j = 1, for all j ∈M . Therefore, the latter is at least as hard as
the former. ut

Although there are an infinite number of scenarios in S, given a solution X ∈ ∆, the
scenario s(X) where the regret of X is the maximum can be computed in polynomial time
for any min-max regret robust optimization problem whose classical counterpart is a {0, 1}
maximization problem. In this case, s(X) is the scenario where b

s(X)
j = lj , for all j ∈ X,

and b
s(X)
j = uj , for all j ∈ M \ X, i.e. s(X) is the scenario in which all columns in X

have the smallest possible benefit and all other columns have the largest possible benefit.
The example of Figure 1 is also applied to the min-max regret MSCP, where an instance is
shown in the Table 1(a), with the cardinality T = 2, wj = 1 for all columns j ∈ M , and
a solution X = {1, 3} highlighted. Moreover, the scenario s(X) is displayed in Table 1(b),
where the optimal solution Y s(X) = {2, 4} is highlighted. In this case, the regret of X in s(X)
is ψs(X)(Y s(X))−ψs(X)(X) = 3, where ψs(X)(Y s(X)) = 8+4 = 12 and ψs(X)(X) = 3+6 = 9.
The solution X is optimal for the instance presented in Table 1(a).

3.2.1 Mathematical Formulation

The MILP formulation for the min-max regret MSCP, proposed in this work, is as follows.
Given N , M , {aij} and T as previously defined. We refer to bj as the benefit of selecting
column j ∈ M . When bj is uncertain, we denote bsj as the benefit of selecting the column
j ∈ M in the scenario s. Each solution X ∈ ∆ of MSCP and the min-max regret MSCP
is associated with a characteristic vector of dimension |M |, such that X is represented by a
vector x, with xj = 1 if j ∈ X, and xj = 0 otherwise.

The MSCP formulation is given by the objective function (9) and the constraints (10)
to (12). The objective function (9) aims at finding the solution X ∈ ∆ with the maximum
total benefit. Inequalities (10) ensure that every line in N is covered by at least one column
in M . Moreover, constraint (11) enforces that the capacity does not exceed T . The domain
of variables x is defined in (12). It is worth mentioning that the set ∆ of feasible solutions is

8 Amadeu A. Coco et al.

formulated by constraints (10) to (12).

max
∑
j∈M

bjxj (9)

s.t.∑
j∈M

aijxj ≥ 1 ∀i ∈ N (10)

∑
j∈M

wjxj ≤ T (11)

x ∈ {0, 1}|M | (12)

The min-max regret MSCP is a RO version of MSCP where the uncertainties are associated
with the benefits. It can be formulated by the objective function (13) and the constraints (10)
to (12), where ψs(Y s) = max

∑
j∈M bsjy

s
j is the total benefit of the optimal solution Y s of

MSCP for the scenario s and ys is the M -dimensional characteristic vector of solution Y s,
with ysj = 1 if j ∈ Y s, and ysj = 0 otherwise.

min
x∈∆

max
s∈S

{ψs(Y s)− ψs(X)} (13)

To provide a MILP formulation for this problem, we first rewrite the objective function (13)
as (14), in order to explicitly compute the values of ψs(Y s) and ψs(X).

min
x∈∆

max
s∈S

{
max
y∈∆

{ ∑
j∈M

bsjy
s
j

}
−
∑
j∈M

bsjxj

}
(14)

Let s(X), given in equation (15), be the scenario where the regret of X is the maximum.
Additionally, let Y and y be, respectively, a feasible solution in ∆ and its M -dimension
characteristic vector, where yj = 1 if j ∈ Y , and yj = 0 otherwise. The min-max regret

MSCP, s(X) is set to the scenario where b
s(X)
j = lj , when xj = 1, and b

s(X)
j = uj otherwise.

According to this result, the objective function (14) can be rewritten as (16), in such a way
that only the worst-case scenario s(X) is considered. In this case, the term (a) of (16) gives
the total benefit of the optimal solution in scenario s(X), while the term (b) gives the total
benefit of X in s(X).

s(X) = arg max
s∈S

max
y∈∆
{
∑
j∈M

bsjy
s
j} −

∑
j∈M

bsjxj

 (15)

min
x∈∆

{
max
y∈∆

{ ∑
j∈M

(uj + (lj − uj)xj)yj
}

︸ ︷︷ ︸
(a)

−
∑
j∈M

ljxj︸ ︷︷ ︸
(b)

}
(16)

Then, equation (16) is linearized following the approach proposed by [31], based on Danzig
duality theory [23]. Term (a) is replaced by a free variable µ and the MILP formulation for
the min-max regret MSCP is given by the objective function (17), constraints (18) and (19),
which ensure that µ = ψs(X)(Y s(X)), and constraints in (10) to (12). It is important to
highlight that the number of constraints (18) grows exponentially with |M |. This is expected,
as Theorem 1 implies that there is no compact MILP formulation for the min-max regret
MSCP unless Σ2

p = NP .

Robust min-max regret covering problems 9

min
x∈∆

{
µ−

∑
j∈M

ljxj

}
(17)

s.t.

µ ≥
∑
j∈M

ujyj +
∑
j∈M

yj (lj − uj)xj ∀Y ∈ ∆ (18)

µ free (19)∑
j∈M

aijxj ≥ 1 ∀i ∈ N (20)

∑
j∈M

wjxj ≤ T (21)

x ∈ {0, 1}|M | (22)

4 Methods for the min-max regret WSCP and the min-max regret MSCP

This section describes the exact and heuristic algorithms proposed in this work for the min-
max regret WSCP and the min-max regret MSCP. In Section 4.1, the exact algorithms intro-
duced by [47] for min-max regret WSCP are reproduced and generalized to min-max regret
MSCP. In the sequel, heuristic algorithms for min-max regret WSCP and min-max regret
MSCP are proposed and described in Section 4.2.

4.1 Exact algorithms

The first exact algorithm proposed by [47] to the min-max regret WSCP, and adapted here
for min-max regret MSCP, relies on a cutting plane algorithm introduced in [35], inspired by
the Benders decomposition [6]. It is usually referred in the literature as Logic-based Benders
decomposition algorithm (LBD). LBD master problem is given by a relaxation of the con-
straints that grow exponentially on the robust problem’s formulation, and its sub-problem is
the mathematical model of the classical counterpart. It is similar to the methods applied to
solve other min-max regret problems [31,43].

The LBD method for the min-max regret WSCP is based on the mathematical model (2)-
(6). As explained in the previous section, the number of constraints (4) increases exponentially
with the number of columns. Thus, they are relaxed and replaced by (23) in the master
problem as follows. Let Γh ⊆ Γ be the set of solutions that induce the constraints (23). In
the algorithm, at each iteration, a new constraint is separated from Γ \ Γh, by solving a
WSCP sub-problem, and added to the master problem. LBD stops when the lower bound
obtained by solving the master problem is equal to the upper bound or when a time limit is
reached. The upper bound of LBD is computed as follows. The incumbent solution Xh regret
of the master problem is given by the difference between its cost on the sub-problem scenario,
and the optimal solution cost of this scenario. At the end of each iteration, if the regret is
improved, the upper bound is updated. The pseudocode of this algorithm is found in [47].

θ ≤
∑
j∈M

ujyj +
∑
j∈M

yj (lj − uj)xj ∀Y ∈ Γh (23)

The LBD algorithm to the min-max regret MSCP is based on the formulation (10)-(12)
and (17)-(19). The number of constraints (18) increases exponentially with the number of
columns. Thus, they are relaxed and replaced by (24) in the master problem as follows. Let
∆h ⊆ ∆ be the set of solutions that induce the constraints (24). At each iteration of the
algorithm, a new constraint is separated from ∆ \∆h, by solving a MSCP sub-problem, and
added to the master problem. LBD stops when the lower bound obtained by solving the
master problem is equal to the upper bound or when a time limit is reached.

10 Amadeu A. Coco et al.

µ ≥
∑
j∈M

ujyj +
∑
j∈M

yj (lj − uj)xj ∀Y ∈ ∆h (24)

The pseudocode of LBD for the min-max regret MSCP is shown in Algorithm 1. Let
ρ(X) = ψs(X)(Y s(X))− ψs(X)(X) be the maximum regret of a solution X ∈ ∆, where Y s(X)

is the optimal solution of MSCP in the scenario s(X). ∆1 is initialized with the solutions
Xm and Xu, returned by the Algorithm Mean Upper (AMU) heuristic [37] in order to avoid
an unbounded master problem. AMU computes the maximum regret of the optimal solutions
found on two different scenarios: (i) one where all uncertain parameters are fixed at their
mean values and; (ii) the other in which these parameters are set to their upper values. The
loop in lines 4 to 10 is performed until an optimal solution is found or when a time limit is
reached. The master problem is run from ∆h in line 5. Let (Xh, µh) be the optimal solution
of this problem. We point out that Xh is feasible for the min-max regret MSCP, but the lower
bound z obtained from the master problem may not be equal to ρ(Xh) because the value of
µh may not be equal to ψs(X)(Y s(X)). Therefore, a MSCP sub-problem is run in line 6 in

order to obtain the optimal solution Y s(X
h) for the scenario s(Xh). This solution is added to

∆h+1 in line 7, which induces a new constraint (24) that cuts the solution (Xh, µh). The best
known solution X∗ is updated in line 8, and the iteration counter h is incremented in line 9.
If z = ρ(X∗) in line 10, the optimal solution X∗ is returned in line 11.

Input: M,N, {aij}, T, [lj , uj] ∀j ∈M
Output: X∗

1 h← 1
2 {Xm, Xu} ← AMU(M,N, {aij}, T, [lj , uj] ∀j ∈M)

3 ∆h ← {Xm, Xu}
4 do
5 (Xh, µh, z)← MasterProblem(M,N, {aij}, T, [lj , uj] ∀j ∈M,∆h)

6 Y s(Xh) ← MSCP(M,N, {aij}, T, s(Xh))

7 ∆h+1 ← ∆h ∪ {Y s(Xh)}
8 X∗ ← arg minX∈{Xh,X∗} ρ(X)

9 h← h+ 1

10 while z < ρ(X∗) and the time limit is not reached ;
11 return X∗

Algorithm 1: Pseudocode of LBD for min-max regret MSCP.

The convergence of LBD may be slow, since only one cut is produced after the run of a
difficult master problem [47]. Thus, in order to speed up the convergence of LBD, the authors
in [47] developed an extension of LBD called Extended Benders (EB). EB follows a method
introduced by [30] where all incumbent solutions found by CPLEX are used to generate new
cuts (not only the optimal one), while the master problem is solved. A sub-problem is solved
for each incumbent solution, and the solutions returned by each sub-problem are added to
the Master Problem. Therefore, the expected number of iterations in EB is smaller than the
one of LBD.

The authors of [43] noticed that LBD may be computationally inefficient because at each
iteration of this algorithm an ILOG CPLEX branch-and-bound algorithm is run from scratch
to solve the MILP formulation of the master problem. Thus, they proposed an approach to
the min-max regret traveling salesman problem where only one instance of a branch-and-cut
(B&C) algorithm is performed. B&C is an optimization method where the optimal solution
is sought by means of a branch-and-bound tree in which cutting planes are applied to tighten
the linear programming relaxations of the tree [20,54]. Henceforth, the framework developed
by [43] is going to be referred to as B&C.

B&C was extended to the min-max regret WSCP in [47] and to min-max regret MSCP in
this work. For min-max regret WSCP, it is based on the linear relaxation of the mathematical
model (2), (3), (5), (6) and (23) while the formulation (10)-(12), (17), (19) and (24) is the

Robust min-max regret covering problems 11

starting point of the B&C to min-max regret MSCP. As both methods are similar, only
the B&C for min-max regret MSCP is explained as follows. This algorithm starts with the
formulation given by the subset ∆′ = ∆1 of constraints (24). When an integer solution (X ′, µ′)
is found in a node of the enumeration tree, a new solution Y s(X

′) is computed by solving the
MSCP sub-problem in the scenario s(X ′). Then, Y s(X

′) is added to ∆′ and a new global cut
is propagated to all active nodes in the branch-and-bound tree. Therefore, one does not need
to restart the branch-and-bound algorithm from ∆′∪{Y s(X′)}. This algorithm is correct since
for each solution X ′ found, a new constraint (18) is generated to enforce the correct value of
µ′ [43].

4.2 Heuristics

In this section, five heuristics are proposed to min-max regret WSCP and min-max regret
MSCP: two scenario-based algorithms [17,37], a path relinking [33], a pilot method [52] and
a linear programming based heuristic [23] are detailed respectively in Sections 4.2.1, 4.2.2,
4.2.3 and 4.2.4. Except the one based in linear programming, they are guaranteed to be
2-approximate.

4.2.1 Scenario-based heuristics

Scenario-based heuristics for min-max regret combinatorial optimization problems consist in
sampling a subset of scenarios and optimally solving the deterministic problem on each of
these scenarios. Then, the maximum regret of each obtained solution is computed, and the
one with the smallest maximum regret is returned.

The Algorithm Mean (AM) heuristic for min-max regret WSCP and min-max regret MSCP
are instantiations of the framework proposed in [37]. Let the mean scenario sm be the scenario
where the cost or benefit of each column j ∈ M is bmj = (lj + uj)/2. AM consists in solving
the WSCP or MSCP in the scenario sm, and computing the maximum regret, on scenario
s(X), of the obtained solution. The proof that this algorithm is 2-approximate for any min-
max regret combinatorial optimization problem can be found in [37]. Two variations of this
approach are also proposed in [37]. The Algorithm Upper (AU) consists in solving the WSCP
or MSCP in the scenario su, where the cost or benefit of each column j ∈ M is buj = uj and
computing the maximum regret, on scenario s(X), of the returned solution. The Algorithm
Mean Upper (AMU) simply returns the best solution obtained by AM and AU.

The Scenario Based Algorithm (SBA) heuristic is an instantiation of the framework pro-
posed in [17] and successfully applied in [13]. SBA is a generalization of AMU, where a set
Q of scenarios, instead of a single one, is investigated. The algorithm consists of solving one
instance of the problem (e.g. WSCP or MSCP) for each scenario in Q, and returning the solu-
tion with the minimum maximal regret. Let sp be the scenario where b

sp
j = {lj+(p×(uj− lj))

for each j ∈ M}. Given Q = {sp | p = i
q and i = 0, 1, 2, 3, · · · , q}, where the number of SBA

iterations q was set to 100. Obviously, for an even value of q, the mean scenario is always
investigated. Therefore, the solutions obtained by SBA are at least as good as those of AMU.

Since the SBA is similar for both covering problems focused here, only its pseudocode for
min-max regret MSCP is given (see Algorithm 2). The difference for SBA applied to min-max
regret WSCP is in line 4, where Xp ←WSCP(M,N, {aij}, sp) is used instead. At each of the
q iterations of the for-loop in lines 1 to 6, a MSCP instance is solved in a specific scenario.
The value of p and the scenario sp are computed in lines 2 and 3, respectively. The optimal
MSCP solution Xp for the scenario sp is obtained in line 4, and the best known solution X ′

is updated in line 5. The best solution found by SBA is returned in line 6.

4.2.2 Path relinking

Path Relinking is a search heuristic that has been successfully applied to a number of op-
timization problems [33]. Given two solutions Xi and Xf , the path relinking main idea is
to gradually transform Xi into Xf , by applying a set of different moves. This mechanism is

12 Amadeu A. Coco et al.

Input: q,M,N, {aij}, T, [lj , uj] ∀j ∈M
Output: X′

1 for i from 0 to q do
2 p← i/q

3 Let sp be the scenario where b
sp
j ← lj + p× (uj − lj), ∀j ∈M

4 Xp ← MSCP(M,N, {aij}, T, sp)
5 X′ ← arg minX∈{Xp,X′} ρ(X)

6 end
7 return X′

Algorithm 2: Pseudocode of SBA heuristic.

motivated by the fact that different near-optimal solutions usually share good components.
For both min-max regret WSCP, and min-max regret MSCP, this is translated by two so-
lutions that share a common subset of columns, i.e. two solutions Xi and Xf may share a
common subset of columns L, where L = Xi ∩Xf and L 6= ∅. Thus, path relinking uses this
information to create a sequence of intermediate solutions between Xi and Xf , in a hope
that better solutions will be found.

The authors in [17] proposed a Path Relinking (PR) heuristic framework for min-max
regret problems and applied it to solve the min-max regret WSCP. In this work, the PR
proposed by [17] is extended to solve the min-max regret MSCP. The solutions that belong
to the path between Xi and Xf are created by adding to Xi a column that is in Xf but not
in Xi and, after that, by removing from Xi one redundant column that is not in Xf .

The pseudocode of PR for the min-max regret MSCP is displayed in Algorithm 3. Let P
be a pool with all distinct solutions obtained by the SBA heuristic, and Xsba be the best
solution found by SBA. The best known solution X ′ is initialized with Xsba in line 1. The
loop in lines 2-16 is performed for each solution Pi ∈ P . Xi is initialized with Pi in line 3. The
loop in lines 4-15 is repeated for each solution in the pool, except Xi. Xf and the column-set
Z containing all columns j ∈ Xf and j /∈ Xi are initialized in lines 5 and 6, respectively. The
loop in lines 7-14 is performed for each column in Z by the increasing order of index. First, a
column l ∈ Z is added to Xi, in line 8. Then, the first redundant column l ∈ Xi that is not
in Xf is removed from Xi in line 9. Finally, the best known solution X ′ is updated in line 10
and, if X ′ is not in P , then it is added to the pool in line 12. The best solution found by PR
is returned in line 17.

Input: P,Xsba,M,N, {aij}, T, [lj , uj] ∀j ∈M
Output: X′

1 X′ ← Xsba

2 for i from 0 to |P | do
3 Xi ← Pi

4 for k from i+ 1 to |P | do
5 Xf ← Pk

6 Z ← Compare(Xi, Xf)
7 for l from 0 to |Z| do
8 AddColumn(Xi, Z[l])

9 Xi ← RemoveColumn(l ∈ Xi and l /∈ Xf)
10 X′ ← arg minX∈{Xi,X′} ρ(X)

11 if X′ /∈ P then
12 P ← P ∪ {X′}
13 end

14 end

15 end

16 end
17 return X′

Algorithm 3: PR pseudocode.

Robust min-max regret covering problems 13

4.2.3 Pilot Method

Pilot Method (PM) [26] is a metaheuristic that uses a greedy constructive guiding heuristic
H to build a new and more efficient heuristic H ′ and works as follows. Given a constructive
heuristic, it will iteratively insert one element at a time in a partial solution. However, instead
of using a local greedy criterion to evaluate the cost of inserting an element in the solution,
the criterion used by H ′ consists in (i) inserting the element individually in the solution (ii)
performing the heuristic H until a feasible solution is found, and (iii) using the cost of this
solution as the greedy cost of inserting the element. At each iteration, these three steps are
performed for all candidate elements and the one with the best greedy cost is inserted on the
solution.

A survey on PM heuristics is found in [52]. PM was successfully used to produce upper
bounds for NP-hard combinatorial optimization problems, such as the traveling salesman
problem [26] and the Steiner tree problem [26]. The authors in [16] proposed a PM frame-
work for min-max regret problems and applied it to solve the min-max regret shortest path
problems. In this work, the PM proposed by [16] is adapted to solve both min-max regret
WSCP and min-max regret MSCP. The heuristic AM [37] works as a guiding heuristic in
both algorithms.

The pseudocode of PM for min-max regret MSCP is presented in Algorithm 4. The algo-
rithm inputs are: M,N, {aij}, T, [lj , uj] ∀j ∈M , defined in Section 3. The partial (or guiding)
solution X ′ and the best known feasible solution XPM are initialized at line 1. The loop on
lines 2-12 is performed while X ′ is not feasible, i.e., while all lines are not covered and the
capacity is less than T . Let i ∈ N be a line and let δ+(i) be the set of columns in M that
cover line i. The uncovered line i with the highest value of |δ+(i)| is identified at line 3, where
N̄(X ′) denotes the set of lines not covered by X ′. The loop on lines 4-9 is performed for each
column j ∈ δ+(i). The MSCP formulation using the mean scenario sm ∈ S is run at line
5 and returns a feasible solution X ′j which contains all columns in X ′ ∪ {j}. Next, ρ(X ′j) is
used as the greedy cost of inserting a column j in the solution X ′. Then, if ρ(X ′j) is smaller
than the current iteration’s best greedy cost ρ(X ′j∗) or else if the latter is not set yet (line
7), the column j∗ ∈ δ+(i) with the smallest maximum regret and its respective covering X ′j∗
are updated in line 8. Afterwards, j∗ is inserted at the end of X ′ at line 10. PM returns the
best solution XPM found throughout the heuristic, which is not necessarily X ′. Therefore,
the former is updated at line 11, and returned at line 13. One may observe that PM can be
straightforwardly extended to min-max regret WSCP, by running WSCP formulation in line
5.

Input: M,N, {aij}, T, [lj , uj] ∀j ∈M
Output: XPM

1 X′ ← ∅ and XPM ← ∅
2 while X′ is not a feasible solution do
3 Let i = argmaxi′∈N̄(X′) δ

+(i′)

4 for j ∈ δ+(i) do
5 X′j ← MSCPFormulation (X′ ∪ {j}, sm)

6 if ρ(X′j) < ρ(X′j∗) or X′j∗ = ∅ then
7 j∗ ← j and X′j∗ ← X′j
8 end

9 end
10 Insert j∗ in X′

11 XPM ← arg minX∈{X′
j∗ ,X

PM} ρ(X)

12 end

13 return XPM ;

Algorithm 4: Pseudocode of PM for min-max regret MSCP.

14 Amadeu A. Coco et al.

4.2.4 Linear Programming Heuristic

The Linear Programming Heuristic (LPH) was introduced in [2]. In this work, LPH is repro-
duced for the min-max regret WSCP and developed for the min-max regret MSCP. As far as
we know, there is no modeling approach in the literature that provides compact formulations
for min-max regret optimization problems, whose deterministic counterpart is NP-hard. This
is why LPH makes use of an alternative compact formulation, which returns an upper bound
to the maximum regret of a solution.

The authors in [2] developed a LPH heuristic for the min-max regret WSCP. Let N , M ,
{aij}, [lj , uj], and vector x be as previously defined. Additionally, let νi be the variables
obtained on the dual formulation of WSCP. The MILP formulation for the LPH heuristic is
as follows.

min
∑
j∈M

ujxj −
∑
i∈N

νi (25)

s.t.∑
j∈M

aijxj ≥ 1 ∀i ∈ N (26)

∑
i∈N

aijνi ≤ lj + (uj − lj)xj ∀j ∈M (27)

νi ≥ 0 ∀i ∈ N (28)

x ∈ {0, 1}|M | (29)

The objective function (25) aims at finding a covering X ∈ Γ with the smallest maximum
regret. Inequalities (26) ensure that every line in N is covered by at least one column in M .
Constraints (27) assure that

∑
i∈N aijνi is a lower bound to ωs(X)(Y s(X)). The domain of

variables ν and w are defined, respectively, in equations (28) and (29). This formulation is
compact, as the number of constraints (27) grows polynomially with the cardinality of M .
The LPH heuristic for the min-max regret WSCP consists in solving and returning the best
solution of this formulation.

LPH for the min-max regret MSCP works as follows. First, the non-linear formulation
(10)-(12), and (16) is rewritten below as (30)-(33). The MILP formulation of the sub-problem
that computes the optimal solution in the scenario s(X) is highlighted in the term (c). It can
be seen that this sub-problem is equivalent to a MSCP, where the cost of a column j ∈M is
equal to uj + (lj − uj)xj .

min

{
max
y∈∆

{ ∑
j∈M

(uj + (lj − uj)xj)yj
}

︸ ︷︷ ︸
(c)

−
∑
j∈M

ljxj︸ ︷︷ ︸
(d)

}
(30)

s.t.∑
j∈M

aijxj ≥ 1 ∀i ∈ N (31)

∑
j∈M

wjxj ≤ T (32)

x ∈ {0, 1}|M | (33)

Robust min-max regret covering problems 15

Then, the linear relaxation of the sub-problem (c) is expanded in (34)-(37).

max
∑
j∈M

(lj + (uj − lj)xj)yj (34)

s.t.∑
j∈M

aijyj ≥ 1 ∀i ∈ N (35)

∑
j∈M

wjyj ≤ T (36)

yj ∈ [0, 1] ∀j ∈M (37)

Inspired on Dantzig duality theory [23], the authors in [2] proved that an upper bound to
the non-linear formulation of any min-max regret problem can be obtained by replacing the
sub-problem (c) by the dual of its linear relaxation. In the case of the min-max regret MSCP,
the dual of formulation (34)-(37) is shown in (38)-(41).

min Tξ −
∑
i∈N

νi (38)

s.t.

wjξ −
∑
i∈N

aijνi ≥ uj + (lj − uj)xj ∀j ∈M (39)

νi ≥ 0 ∀i ∈ N (40)

ξ ≥ 0 (41)

Finally, the MILP formulation for min-max regret MSCP is obtained by replacing the
sub-problem (c) in (30) by the dual relaxation (38)-(41). The resulting formulation is given
by (31)-(33), (39)-(41) and (42). This formulation is compact, as the number of constraints
(39) grows polynomially with the cardinality of M . The LPH heuristic for the min-max regret
MSCP consists in solving and returning the best solution for this formulation.

min (Tξ −
∑
i∈N

νi)−
∑
j∈M

ljxj (42)

5 Computational experiments

Computational experiments were carried out on an Intel Core i7-4790K with 4.00 GHz clock
and 16 GB of RAM, running Ubuntu Linux operating system version 16.04 LTS. Algorithms
LBD, EB, B&C, AMU, SBA, PR, LPH and PM were implemented in C++ and compiled
with GNU g++ version 4.8.2. The master and the sub-problems of LBD, EB and B&C were
solved using IBM/ILOG CPLEX version 12.6.2 with default parameter settings.

A total of 90 theoretical instances were generated for the min-max regret WSCP as follows.
As in [47], the classical instances BKZ-4, BKZ-5 and BKZ-6 [5] of the set covering problem
were used and extended. Furthermore, an instance-set called BKZ-7 was introduced in this
work. Table 1 displays the characteristics regarding each instance set. Columns 1 to 5 report
the name, the size (|G|), the number of lines (|N |), the number of columns (|M |), and the
density of matrix {aij} (δ) of each instance set, respectively. Three different interval data
were generated for each instance, as suggested by [36]. For each column j ∈M , the values of
lj and uj are chosen, respectively, within the intervals U [0, λ] and U [lj , lj + λ], where U [a, b]
denotes a random number uniformly chosen in the range [a, b], and the interval length λ is
set to 1000.

The theoretical instances for min-max regret MSCP were created based on the set η of
90 instances for min-max regret WSCP described above. For each instance α ∈ η, three new

16 Amadeu A. Coco et al.

Instance |G| |N | |M | δ
BKZ-4 10 1000 200 2%
BKZ-5 10 2000 200 2%
BKZ-6 5 1000 200 5%
BKZ-7 5 2000 200 5%

Table 1 Characteristics of instance sets BKZ-4, BKZ-5, BKZ-6 and BKZ-7.

instances were generated using the same interval data and the same matrix of α, varying only
the parameter T in T = 0.1 × |M |, T = 0.2 × |M | and T = 0.3 × |M |, and wj = 1 for all
j ∈ M . Therefore, a total of 270 instances were used in the experiments for min-max regret
MSCP.

5.1 Numerical results for min-max regret WSCP

The first experiment evaluates the performance of the exact algorithms LBD, EB and B&C
[47]. The running times were limited to 900 seconds. The results are reported in Table 2,
and values in bold stand for the best ones among all methods, as for Table 3. The first
and the second columns present, respectively, the name and the size (|G|) of each instance
set. The third column reports the number of optimal solutions (|O|) out of |G| found by

LBD in each instance. The average relative optimality Gap (ρ(X
lbd)−zlbd
ρ(Xlbd))(%) between the

regret of the solution provided by LBD and the lower bound zlbd is reported in the fourth
column, where the latter is obtained by solving at optimality the master problem in the last

iteration of LBD. We also show the average relative optimality Gap* (ρ(X
lbd)−z∗

ρ(Xlbd))(%) in the

fifth column, where z∗ is the best lower bound obtained by any of the exact algorithms LBD,
EB and B&C. The sixth column shows LBD’s average running time, while the seventh column
displays the average number of iterations, which is equal to the number of cuts added to the
master problem. Similar data is reported for EB and B&C in columns 8 to 12 and 13 to 17,
respectively. It is worth mentioning that, in B&C, the lower bound zB&C is obtained by the
linear relaxation of formulation (2), (3), (5), (6) and (23) with Γh containing one cut for each
integer solution found by B&C.

B&C is the algorithm that best performed among the exact methods: it found the optimal
solution for 22 out of 90 instances, while EB and BD proved optimality for 16 and 4 instances,
respectively, out of 90. These results are similar to the ones shown by [47]. Moreover, it is
worth noting that the relative gaps of EB (6.32%) and B&C (6.37%) were almost the same.
However, the relative Gap* of B&C (5.56%) was smaller than that of EB (6.08%). This shows
that the lower bounds of B&C are worse than those of EB. This probably happens because of
the excessive number of constraints (23) generated during the B&C that do not improve its
lower bound. It is also noticeable that min-max regret WSCP becomes easier to solve as the
matrix density increases. This is illustrated by the number of optimal solutions, i.e. 21 out
of 30 instances, found using sets BKZ-6 and BKZ-7, which is higher than optimal solutions
found using sets BKZ-4 and BKZ-5, i.e. 1 out of 60 instances.

The second experiment assesses the performance of the proposed heuristics (AMU, SBA,
PR, LPH and PM) for min-max regret WSCP. The results are reported in Table 3. The first
column displays the name of each instance set. Columns 2 to 6 show the average relative

optimality Gap* (ρ(X
amu)−z∗

ρ(Xamu))(%) of AMU, SBA, PR, LPH and PM, respectively, where z∗

is the best lower bound obtained by any of the exact algorithms LBD, EB and B&C. We

also report, in columns 7 to 11, the average percentage deviation ρ(Xbest)−ρ(Xamu)
ρ(Xbest)

(%) of the

solutions provided by AMU, SBA, PR, LPH and PM relative to the best solution found by
any of the three exact algorithms. Columns 12 to 16 present the respective average running
times of AMU, SBA, PR, LPH and PM for each instance set. A negative percentage deviation
means that the heuristic found a better feasible solution than 900-second runs of LBD, EB and
B&C. Results indicate that LPH is the heuristic that best performed on average, while AMU
returned the best average running times. It can also be observed that SBA found solutions as
good as those of PR-R-Any and better than the ones returned by PM consuming much less

Robust min-max regret covering problems 17

computational time. The performance of SBA shows that an extensive scenario search does
not necessarily result in better solutions for min-max regret WSCP, since SBA deals with
much less scenarios than PR-R-Any and PM.

Figure 2 displays the convergence of AMU, SBA, PR, LPH and PM for min-max regret
WSCP over the time, in seconds, for the representative instance scp43-2-1000, belonging to
the set BKZ-4a. The time is truncated after 140 seconds because the slowest heuristic LPH,
stops after almost 136 seconds. LPH took nearly 90 seconds to find its best solution for this
instance, despite that it took only 25 seconds, approximately, to find a solution that is better
than the ones found by the other heuristics. Finally, it can be noticed that AMU is the fastest
heuristic.

 15400

 15600

 15800

 16000

 16200

 16400

 16600

 16800

 0 20 40 60 80 100 120 140

R
e

g
re

t

Time

AMU
SBA

PR
PM

LPH

 15400

 15600

 15800

 16000

 16200

 16400

 16600

 16800

 0 20 40 60 80 100 120 140

Fig. 2 Convergence of AMU, SBA, PR, LPH and PM for min-max regret WSCP to the instance scp43-2-1000.

5.2 Numerical results for min-max regret MSCP

The third experiment evaluates the performance of the exact algorithms LBD, EB and B&C
using the set of 270 theoretical instances proposed for min-max regret MSCP. The running
times were limited to 3600 seconds. The results are reported in Table 4. The first column
displays the value of T , while the second one presents the name of each instance set. Bold
in Tables 4 and 5 stands for the best results obtained by the methods. The average relative

optimality Gap (ρ(X
lbd)−zlbd
ρ(Xlbd))(%) between the regret of the solution provided by LBD and

the lower bound zlbd is reported in the third column, where the latter is obtained by solving
at optimality the master problem in the last iteration of LBD. We also show the average

relative optimality gap* (ρ(X
lbd)−z∗

ρ(Xlbd))(%) in the fourth column, where z∗ is the best lower

bound obtained by any of the exact algorithms LBD, EB and B&C. The fifth column depicts
the average running time of LBD for each set, while the sixth column displays the number of
cuts added to the master problem. Similar data is given for EB in columns 7 to 10 and for
B&C in columns 11 to 14. For sake of clarity, in B&C, the lower bound zB&C is obtained by
the linear relaxation of formulation (10)-(12), (17), (19) and (24) with ∆h containing one cut
for each integer solution found by B&C.

In Table 4, the gaps of the three algorithms were on average about 38% for the sets with
T = 0.1× |M |, 35% for the sets with T = 0.2× |M | and 34% for the sets with T = 0.3× |M |.
Unlike other problems in the literature that used such algorithms as in [31,43,47], LBD, EB
and B&C found high gaps for the min-max regret MSCP. We have noticed in our numerical
experiments that most cuts did not significantly improve the formulation’s linear relaxation

1
8

A
m

a
d

eu
A

.
C

o
co

et
a
l.

LBD EB B&C
Instance |G| |O| Gap Gap* Time (s) Cuts |O| Gap Gap* Time (s) Cuts |O| Gap Gap* Time (s) Cuts
BKZ-4-a 10 0 17.09 12.39 900.00 23.40 0 12.26 12.26 900.00 144.50 0 12.00 10.24 900.00 809.70
BKZ-4-b 10 0 19.50 15.79 900.00 15.20 0 15.79 15.79 900.00 95.20 0 16.66 14.84 900.00 873.10
BKZ-4-c 10 0 17.82 13.19 900.00 18.90 0 13.08 13.08 900.00 115.60 0 14.02 12.12 900.00 810.70
BKZ-5-a 10 0 11.61 6.85 900.00 19.10 0 6.93 6.85 900.00 125.50 0 7.73 6.51 900.00 401.90
BKZ-5-b 10 0 12.58 8.18 900.00 15.00 0 8.27 8.18 900.00 94.40 0 9.11 7.87 900.00 336.80
BKZ-5-c 10 0 13.19 8.57 900.00 18.10 0 8.39 8.37 900.00 127.50 1 8.48 7.57 828.37 429.30
BKZ-6-a 5 0 7.66 1.72 900.00 17.00 3 2.09 1.25 759.58 100.60 4 0.74 0.74 484.61 93.80
BKZ-6-b 5 0 10.51 4.66 900.00 14.00 1 5.09 4.17 899.86 88.80 2 4.55 3.98 591.66 117.00
BKZ-6-c 5 0 9.85 3.64 900.00 15.20 0 3.58 2.97 900.00 115.80 1 3.04 2.85 806.78 140.00
BKZ-7-a 5 2 0.91 0.11 665.93 23.80 5 0.00 0.00 238.46 75.00 5 0.00 0.00 118.96 37.40
BKZ-7-b 5 0 4.28 0.21 900.00 15.40 4 0.13 0.01 640.77 72.20 5 0.00 0.00 439.59 52.20
BKZ-7-c 5 2 2.97 0.44 892.25 15.40 3 0.23 0.04 676.19 62.80 4 0.13 0.04 288.03 52.20
Average 10.66 6.31 879.85 17.54 6.32 6.08 792.91 101.49 6.37 5.56 671.50 346.18

Table 2 Comparison among the exact algorithms proposed by [47] to the set BKZ for min-max regret WSCP.

Gap* Dev (%) Time (s)
Instance AMU SBA PR LPH PM AMU SBA PR LPH PM AMU SBA PR LPH PM
BKZ-4-a 12.39 11.23 11.00 10.05 10.97 2.49 1.12 0.86 -0.21 0.82 2.48 12.59 85.97 118.48 107.05
BKZ-4-b 15.79 14.97 14.74 14.38 14.92 1.15 0.15 -0.12 -0.55 0.10 4.18 23.72 64.34 270.29 183.14
BKZ-4-c 13.19 12.12 11.98 11.56 12.24 1.24 0.01 -0.15 -0.63 0.14 2.43 12.66 74.54 137.46 108.54
BKZ-5-a 6.85 6.63 6.61 6.44 6.95 0.37 0.13 0.12 -0.07 0.49 2.21 10.44 59.29 44.82 157.47
BKZ-5-b 8.18 7.91 7.91 7.68 7.97 0.33 0.04 0.04 -0.21 0.10 2.85 15.56 67.65 73.96 206.12
BKZ-5-c 8.57 7.81 7.74 7.36 7.73 1.09 0.25 0.18 -0.23 0.16 3.08 15.76 96.58 140.24 277.15
BKZ-6-a 1.72 1.62 1.42 0.87 1.82 1.00 0.90 0.81 0.14 1.12 11.87 48.99 186.54 123.69 633.95
BKZ-6-b 4.66 4.66 4.66 3.93 4.73 0.71 0.71 0.71 -0.05 0.80 19.40 49.96 102.64 383.51 742.57
BKZ-6-c 4.01 3.15 3.15 2.92 2.89 1.23 0.31 0.31 0.07 0.04 17.12 56.79 298.78 273.73 781.95
BKZ-7-a 0.34 0.20 0.20 0.06 0.06 0.34 0.20 0.20 0.06 0.06 6.05 22.26 51.82 36.27 547.43
BKZ-7-b 0.21 0.04 0.04 0.04 0.98 0.21 0.04 0.04 0.04 0.98 15.16 89.74 164.14 98.15 884.91
BKZ-7-c 0.45 0.14 0.14 0.06 1.14 0.42 0.10 0.10 0.03 1.12 18.87 106.46 196.95 173.91 867.50
Average 6.36 5.87 5.80 5.45 6.03 0.88 0.33 0.26 -0.13 0.49 8.81 38.74 120.77 156.21 458.15

Table 3 Comparison among the proposed heuristics to the set BKZ for min-max regret WSCP.

Robust min-max regret covering problems 19

bound. That was specially the case for B&C, which obtained worse lower bounds than LBD
and EB, since its gap was 40.46% while its gap* was 37.83%. This opens several avenues of
research in terms of development of new cuts for this problem. In general, B&C performed
slightly better, on average, for T = 0.1 × |M | while LBD was the best exact algorithm, on
average, for T = 0.2× |M | and T = 0.3× |M |.

The fourth experiment evaluates the proposed heuristics (AMU, SBA, PR, LPH and PM)
for min-max regret MSCP. The results are reported in Table 5. The first column displays the
values of capacity T , while the second one presents the name of each instance set. Columns 3

to 7 report the average relative optimality Gap* (ρ(X
amu)−z∗

ρ(Xamu))(%) of AMU, SBA, PR, LPH and

PM, respectively, where z∗ is the best lower bound obtained by any of the exact algorithms
LBD, EB and B&C. We also present, in columns 8 to 12, the average percentage deviation
ρ(Xbest)−ρ(Xamu)

ρ(Xbest)
(%) of the solutions provided by AMU, SBA, PR, LPH and PM relative to

the best solution found by any of the three exact algorithms. Columns 13 to 17 show the
respective average running times of AMU, SBA, PR, LPH and PM for each instance set. The
best average solutions found for each instance set are highlighted, and a negative percentage
deviation means that the heuristic found a better feasible solution than 3600-second runs of
LBD, EB and B&C. Results indicate that PR performed better on average for T = 0.1× |M |
and AMU, SBA, PR found similar solutions, on average, for instances with T = 0.2×|M | and
T = 0.3 × |M | while, AMU returned the best average results in terms of running times. PR
found the best deviations on average, although running times are higher than those for SBA
and AMU. However, AMU and SBA are a good compromise between quality and running
times. These results indicate that focusing on representative scenarios is relevant since AMU
and SBA explore fewer scenarios, but important ones, and produce good results in a smaller
running time. Moreover, it can be observed that LPH, which is the best known heuristic for
min-max regret WSCP [2] and min-max regret Restricted Shortest Path problem [2], had
the worst average results for min-max regret MSCP. This is due to the quality of the linear
relaxation of mathematical formulation (31)-(33), (39)-(41) and (42).

Figure 3 depicts the convergence of the best solution found by AMU, SBA, PR-R-Best,
LPH and PM for min-max regret MSCP over the time, in seconds, to the representative
instance scp41-2-1000 with T = 0.1× |M |. It is worth mentioning that this instance belongs
to the set BKZ-4. The time limit is 3600 seconds, due to the running time limit for all
algorithms. Moreover, it is in logarithmic scale due to the huge timeline. It can be seen that
PR-I-Any consumed nearly 90 seconds to find the best solution for this instance, while LPH
found the worst best solution among all algorithms after almost 3600 seconds. The fastest
heuristic is AMU.

The methods’ results clearly show that the min-max regret MSCP is more complicated to
solve than the min-max regret WSCP. As proven in Section 3.2, the min-max regret MSCP is
Σ2
p-Hard. Moreover, it is a strong indication that the formulation produces bad quality lower

bounds.

6 Conclusions and future works

The min-max regret WSCP and the min-max regret MSCP are addressed in this study. Despite
both problems aim at minimizing the maximum regret, the proposed exact methods have a
different performance. In particular, the exact algorithms which work well for the former do
not produce good results for the latter. A possible explanation is that the min-max regret
MSCP belongs to another complexity class in the polynomial hierarchy.

The heuristics proposed to the min-max regret WSCP in this work returned better solu-
tions, on average, than the AMU heuristic of [47]. Moreover, the heuristics developed in this
work have found better upper bounds than a 900-second run of exact algorithms in several
instances. Finally, it is worth mentioning the heuristics LPH found, on average, the best so-
lutions for the min-max regret WSCP among the heuristics, and SBA which found solutions
as good as the exact algorithms in a smaller amount of time.

The MSCP and the min-max regret MSCP were motivated by an application in disas-
ter relief logistics, where field hospitals must be placed after large-scale emergencies such

20 Amadeu A. Coco et al.

 58000

 59000

 60000

 61000

 62000

 0.01 0.1 1 10 100 1000

R
e

g
re

t

Time

AMU
SBA

PR
PM

LPH

 58000

 59000

 60000

 61000

 62000

 0.01 0.1 1 10 100 1000

Fig. 3 Convergence of AMU, SBA, PR, LPH and PM to min-max regret MSCP to the instance scp41-2-1000
with T = 0.1×M .

R
o
b

u
st

m
in

-m
a
x

reg
ret

co
v
erin

g
p

ro
b

lem
s

2
1

LBD EB B&C
T Instance Gap Gap* Time (s) Cuts Gap Gap* Time (s) Cuts Gap Gap* Time (s) Cuts

0.1× |M |
BKZ-4 39.35 38.50 3600.00 8.00 39.26 38.50 3600.00 137.57 38.54 38.50 3600.00 4454.37
BKZ-5 41.65 40.69 3600.00 7.30 41.41 40.69 3600.00 142.17 40.70 40.69 3600.00 5137.77
BKZ-6 39.21 39.18 3600.00 7.20 39.39 39.18 3600.00 140.93 40.20 39.18 3600.00 5233.67
BKZ-7 42.17 42.12 3600.00 7.93 42.55 42.12 3600.00 141.78 45.30 43.68 3600.00 4014.67

0.2× |M |
BKZ-4 35.68 35.67 3600.00 7.13 36.01 35.67 3600.00 116.27 39.21 35.67 3600.00 1494.30
BKZ-5 39.14 39.13 3600.00 7.20 39.51 39.13 3600.00 101.57 42.39 39.13 3600.00 3047.10
BKZ-6 35.41 35.38 3600.00 6.53 35.78 35.38 3600.00 98.73 39.00 35.38 3600.00 3022.53
BKZ-7 38.92 38.92 3600.00 8.20 39.07 38.92 3600.00 129.23 42.85 38.92 3600.00 2405.40

0.3× |M |
BKZ-4 34.96 34.94 3600.00 6.70 35.33 34.94 3600.00 102.30 37.65 34.94 3600.00 765.97
BKZ-5 36.65 36.65 3600.00 7.50 37.20 36.65 3600.00 115.77 40.52 36.65 3600.00 2556.40
BKZ-6 34.77 34.76 3600.00 6.60 35.19 34.76 3600.00 102.40 37.76 34.76 3600.00 1582.27
BKZ-7 36.45 36.45 3600.00 8.13 36.62 36.45 3600.00 119.67 41.40 36.45 3600.00 1938.53

Average 37.86 37.70 3600.00 7.37 38.11 37.70 3600.00 120.70 40.46 37.83 3600.00 2971.08

Table 4 Comparison among the exact algorithms to the set BKZ for the min-max regret MSCP.

Gap* Dev (%) Time (s)
T Instance AMU SBA PR LPH PM AMU SBA PR LPH PM AMU SBA PR LPH PM

0.1× |M |
BKZ-4 38.50 38.50 38.42 38.53 39.08 0.00 0.00 -0.15 0.06 0.94 0.13 2.15 337.56 3183.70 15.13
BKZ-5 40.69 40.69 40.58 40.53 41.10 0.00 0.00 -0.18 -0.26 0.71 0.24 4.00 553.90 3600.00 50.20
BKZ-6 39.18 39.18 39.18 40.72 39.92 0.00 0.00 0.00 2.60 1.23 0.15 2.79 521.07 60.18 22.12
BKZ-7 42.12 42.11 42.10 42.93 42.44 0.00 -0.01 -0.02 1.42 0.55 0.29 1.21 2141.20 392.22 144.80

0.2× |M |
BKZ-4 35.67 35.65 35.64 43.97 37.16 0.00 -0.02 -0.04 14.90 2.38 0.18 2.63 3600.00 11.26 20.28
BKZ-5 39.13 39.12 39.11 53.82 39.81 0.00 -0.02 -0.03 31.84 1.14 0.33 4.88 3600.00 253.29 68.15
BKZ-6 35.38 35.37 35.37 44.12 36.97 0.00 -0.01 -0.01 15.79 2.54 0.22 3.34 3600.00 7.95 27.13
BKZ-7 38.92 38.92 38.92 41.03 39.70 0.00 0.00 0.00 3.55 1.30 0.39 1.64 3600.00 75.49 200.49

0.3× |M |
BKZ-4 34.94 34.94 34.94 41.73 37.79 0.00 0.00 0.00 11.69 4.60 0.24 3.22 3600.00 11.26 25.70
BKZ-5 36.65 36.65 36.65 39.76 37.87 0.00 0.00 0.00 5.17 1.96 0.46 5.96 3600.00 253.29 84.64
BKZ-6 34.76 34.76 34.76 42.01 37.58 0.00 0.00 0.00 12.58 4.53 0.28 3.95 3600.00 7.95 32.96
BKZ-7 36.45 36.45 36.45 39.45 37.53 0.00 0.00 0.00 4.96 1.73 0.50 2.09 3600.00 68.37 257.94

Average 37.70 37.70 37.68 42.65 38.85 0.00 -0.01 -0.04 8.69 1.97 0.28 3.16 2696.14 660.41 79.13

Table 5 Comparison among the proposed heuristics to the set BKZ for the min-max regret MSCP.

22 Amadeu A. Coco et al.

as earthquakes, hurricanes and floods. For the latter, uncertainties are associated with the
number of inhabitants affected after the disaster.

The numerical results indicate that the exact algorithms usually applied to min-max regret
problems [31,43,47] have not obtained good results for min-max regret MSCP. In addition,
the heuristics proposed for min-max regret MSCP found competitive results when compared
to the ones produced by a one-hour run of the exact algorithms. It is worth mentioning that
min-max regret MSCP is a challenging problem, requiring further studies on its structure and
particularities. We conjecture that min-max regret MSCP belongs to Σp

2 -complete class.
As future works, it is relevant to investigate the structure of the min-max regret MSCP

mathematical formulation and to develop new cuts and valid inequalities. These future avenues
of work may help to improve lower bounds for this problem. In addition, there is room to
investigate representative scenarios and the reduction of scenarios by using dominance rules.

Acknowledgements This study was funded by the Coordenação de Aperfeiçoamento de Pessoal de Nı́vel
Superior (CAPES), the Conselho Nacional de Desenvolvimento Cient́ıfico e Tecnológico (CNPq), the Fundação
de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), and Campus France.

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. Aissi, H., Bazgan, C., Vanderpooten, D.: Min-max and min-max regret versions of combinatorial opti-
mization problems: A survey. European Journal of Operational Research 197, 427–438 (2009)

2. Assunção, L., Santos, A.C., Noronha, T.F., Andrade, R.: A linear programming based heuristic framework
for min-max regret combinatorial optimization problems with interval costs. Computers & Operations
Research 81, 51–66 (2017)

3. Averbakh, I., Berman, O.: Minmax regret p-center location on a network with demand uncertainty.
Location Science 5, 247–254 (1997)

4. Beasley, J.E.: A lagrangian heuristic for set-covering problems. Naval Research Logistics (NRL) 37(1),
151–164 (1990)

5. Beasley, J.E.: OR-library: distributing test problems by electronic mail. The Journal of the Operational
Research Society 41, 1069–1072 (1990)

6. Benders, J.F.: Partitioning procedures for solving mixed-variables programming problems. Numerische
Mathematik 4, 238–252 (1962)

7. Beraldi, P., Bruni, M.E., Conforti, D.: Designing robust emergency medical service via stochastic pro-
gramming. European Journal of Operational Research 158, 183–193 (2004)

8. Beraldi, P., Ruszczyński, A.: The probabilistic set-covering problem. Operations Research 50, 956–967
(2002)

9. Berman, O., Wang, J.: The minmax regret gradual covering location problem on a network with incomplete
information of demand weights. European Journal of Operational Research 208, 233–238 (2011)

10. Bertsimas, D., Sim, M.: The price of robustness. Operations Research 52, 35–53 (2004)
11. Caprara, A., Fischetti, M., Toth, P.: A heuristic method for the set covering problem. Operations Research

47, 730–743 (1999)
12. Caprara, A., Toth, P., Fischetti, M.: Algorithms for the set covering problem. Annals of Operations

Research 98, 353–371 (2000)
13. Carvalho, I.A., Noronha, T.F., Duhamel, C., Vieira, L.F.M.: A scenario based heuristic for the robust

shortest path tree problem. In: IFAC-PapersOnLine, vol. 49, pp. 443–448 (2016)
14. Church, R., ReVelle, C.: The maximal covering location problem. Papers in Regional Science 32, 101–118

(1974)
15. Church, R., Stoms, D.M., Davis, F.W.: Reserve selection as a maximal covering location problem. Bio-

logical Conservation 76, 105–112 (1996)
16. Coco, A.A., Júnior, J.C.A., Noronha, T.F., Santos, A.C.: An integer linear programming formulation and

heuristics for the minmax relative regret robust shortest path problem. Journal of Global Optimization
60, 265–287 (2014). DOI 10.1007/s10898-014-0187-x

17. Coco, A.A., Santos, A.C., Noronha, T.F.: Scenario-based heuristics with path-relinking for the robust set
covering problem. In: Proceedings of MIC 2015: The XI Metaheuristics International Conference, pp.
1–10 (2015)

18. Coco, A.A., Santos, A.C., Noronha, T.F.: Coupling scenario-based heuristics to exact methods for the
robust set covering problem with interval data. In: IFAC-PapersOnLine, vol. 49, pp. 455–460 (2016)

19. Coco, A.A., Santos, A.C., Noronha, T.F.: Formulation and algorithms for the robust maximal covering
location problem. In: Electronic Notes in Discrete Mathematics, vol. 64, pp. 145–154 (2018)

Robust min-max regret covering problems 23

20. Cordeau, J.F., Furini, F., Ljubić, I.: Benders decomposition for very large scale partial set covering and
maximal covering location problems. European Journal of Operational Research 275, 882 – 896 (2019)

21. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. The MIT
Press (2009)

22. Correia, I., da Gama, F.S.: Facility location under uncertainty. In: Location Science, pp. 177–203. Springer
(2015)

23. Dantzig, G.B.: Linear programming and extensions. Princeton University Press (1963)
24. Deineko, V.G., Woeginger, G.J.: Pinpointing the complexity of the interval min–max regret knapsack

problem. Discrete Optimization 7, 191–196 (2010)
25. Drezner, Z., Hamacher, H.W.: Facility location: applications and theory. Springer Science & Business

Media (2001)
26. Duin, C., Voss, S.: The Pilot Method: A strategy for heuristic repetition with application to the Steiner

problem in graphs. Networks 34, 181–191 (1999)
27. Edmonds, J.: Covers and packings in a family of sets. Bulletin of the American Mathematical Society

68, 494–499 (1962)
28. Farahani, R.Z., Asgari, N., Heidari, N., Hosseininia, M., Goh, M.: Covering problems in facility location:

A review. Computers & Industrial Engineering 62, 368 – 407 (2012)
29. Fischetti, M., Monaci, M.: Cutting plane versus compact formulations for uncertain (integer) linear pro-

grams. Mathematical Programming Computation 4, 239–273 (2012)
30. Fischetti, M., Salvagnin, D., Zanette, A.: A note on the selection of Benders’ cuts. Mathematical Pro-

gramming 124, 175–182 (2010)
31. Furini, F., Iori, M., Martello, S., Yagiura, M.: Heuristic and exact algorithms for the interval min-max

regret knapsack problem. INFORMS Journal on Computing 27, 392–405 (2015)
32. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness.

W. H. Freeman & Co., New York, NY, USA (1979)
33. Glover, F., Laguna, M., Mart́ı, R.: Fundamentals of scatter search and path relinking. Control and

cybernetics 29, 653–684 (2000)
34. Hammar, M., Karlsson, R., Nilsson, B.J.: Using maximum coverage to optimize recommendation systems

in e-commerce. In: Proceedings of the 7th ACM Conference on Recommender Systems, RecSys ’13, pp.
265–272. ACM, New York, NY, USA (2013)

35. Hooker, J.N., Ottosson, G.: Logic-based benders decomposition. Mathematical Programming 96, 33–60
(2003)

36. Kasperski, A., Zielińki, P.: Minimizing maximal regret in the linear assignment problems with interval
costs. Preprint 7 (2004)

37. Kasperski, A., Zieliński, P.: An approximation algorithm for interval data minmax regret combinatorial
optimization problems. Information Processing Letters 97, 177–180 (2006)

38. Kasperski, A., Zieliński, P.: Robust discrete optimization under discrete and interval uncertainty: A survey,
chap. 6, pp. 113–143. Springer International Publishing (2016). DOI 10.1007/978-3-319-33121-8 6

39. Kouvelis, P., Yu, G.: Robust discrete optimization and its applications. Kluver Academic Publishers
(1997)

40. Lutter, P., Degel, D., Busing, C., Koster, A., Werners, B.: Improved handling of uncertainty and robustness
in set covering problems. European Journal of Operational Research 263, 35–49 (2017)

41. Máximo, V.R., Nascimento, M.C.V., Carvalho, A.C.P.L.F.: Intelligent-guided adaptive search for the
maximum covering location problem. Computers & Operations Research 78, 129–137 (2017)

42. Mǐsković, S.: A VNS-LP algorithm for the robust dynamic maximal covering location problem. OR
Spectrum 39, 1011–1033 (2017)

43. Montemanni, R., Barta, J., Mastrolilli, M., Gambardella, L.M.: The robust traveling salesman problem
with interval data. Transportation Science 41, 366–381 (2007)

44. Muren, Li, H., Mukhopadhyay, S.K., Wu, J., Zhou, L., Du, Z.: Balanced maximal covering location problem
and its application in bike-sharing. International Journal of Production Economics 223(4), 107513 (2020)

45. Owen, S.H., Daskin, M.S.: Strategic facility location: A review. European journal of operational research
111, 423–447 (1998)

46. Pereira, J., Averbakh, I.: Exact and heuristic algorithms for the interval data robust assignment problem.
Computers & Operations Research 38, 1153–1163 (2011)

47. Pereira, J., Averbakh, I.: The robust set covering problem with interval data. Annals of Operations
Research 207, 217–235 (2013). DOI 10.1007/s10479-011-0876-5

48. Roy, B.: Robustness in operational research and decision aiding: A multi-faceted issue. European Journal
of Operational Research 200, 629–638 (2010)

49. Saxena, A., Goyal, V., Lejeune, M.A.: MIP reformulations of the probabilistic set covering problem.
Mathematical Programming 121(1), 1–31 (2010)

50. Schilling, D.A., Jayaraman, V., Barkhi, R.: A review of covering problem in facility location. Location
Science 1, 25–55 (1993)

51. Snyder, L.V.: Facility location under uncertainty: A review. IIE Transactions 38, 537–554 (2006)
52. Voss, S., Fink, A., Duin, C.: Looking ahead with the Pilot Method. Annals of Operations Research 136,

285–302 (2005)
53. Wang, S., Cui, W., Chu, F., Yu, J.: The interval min–max regret knapsack packing-delivery problem.

International Journal of Production Research 0, 1–17 (2020)
54. Wolsey, L.A.: Integer programming. Wiley-Interscience, New York, NY, USA (1998)
55. Wu, H.H., Kucukyavuz, S.: Probabilistic partial set covering with an oracle for chance constraints. SIAM

Journal on Optimization 29, 690–718 (2019)
56. Xia, L., Xie, M., Xu, W., Shao, J., Yin, W., Dong, J.: An empirical comparison of five efficient heuristics

for maximal covering location problems. In: 2009 IEEE/INFORMS International Conference on Service
Operations, Logistics and Informatics, pp. 747–753 (2009). DOI 10.1109/SOLI.2009.5204032

	Introduction
	Literature review
	Robust covering problems
	Methods for the min-max regret WSCP and the min-max regret MSCP
	Computational experiments
	Conclusions and future works

