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Abstract

Cleaning debris in urban areas after major disasters is very relevant to inhabitants to recover from their

effects. In natural disasters, an unexpected and large area can be affected. Moreover, the time and the

costs to perform the cleaning operations can be very high. In this work, the integrated multi-period

scheduling routing problem to clean debris (SRP-CD) after major disasters is investigated. The problem

includes strategical (scheduling) and operational (routing) decisions and, considering complex issues such

as two levels of synchronization between work-troops and dump trucks. The goal of SRP-CD is twofold:

minimizing the number of days for the overall cleaning, in the strategical level; and minimizing the total

costs of vehicles routes in the operational level. A new mathematical model based in a dynamic multi-

flow formulation, constructive heuristics and Large Neighborhood Search (LNS)-based metaheuristics

are proposed. Comparison experiments for the model and the approaches are carried out, to measure

performance and robustness of the proposed methods. To the best of our knowledge, these are the first

contributions in the literature for SRP-CD, including all aspects addressed here.

Keywords: (O) OR in disaster relief, (O) Combinatorial optimization, (O) Metaheuristics, (O)

Humanitarian logistics

1. Introduction

Several situations in big public engineering works and after major disasters (earthquakes, hurricanes,

floods, etc) require an effort to clean the target urban area. The former can be planned in advance, while

the latter, can be very complex since an unexpected and large urban area can be affected. However,

cleaning urban areas after major disasters is very relevant for inhabitants to recover from their effects.

The world has been recently affected by several natural major disasters, such as India floods (2020),

the rupture of dams in Brazil (2019), hurricanes in USA (2018), earthquakes in Nepal (2015), tsunamis

and floods in Japan (2011), nuclear explosion in Japan (2011), earthquakes in Haiti (2010). When such

disasters hit inhabited regions, they strongly impact population, environment and urban infrastructures.
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In general, a disaster can be divided in four phases: mitigation, preparedness, response, and recovery

(Altay & Green III, 2006).

In this study, we investigate the integrated multi-period Scheduling Routing Problem to clean debris

(SRP-CD) in an urban area after major disasters. This problem appears in the recovery phase, which

can take months or years. More precisely, we investigate the optimization of the cleaning operations in

an urban area the fast as possible, considering limited resources such as work-troops (WT) and a fleet of

dump trucks responsible to transfer debris to landfills.

The SRP-CD is related to three classical optimization problems: a close related problem to the

Resource-Constrained Project Scheduling Problem (RCPSP), where within a project, tasks with resources

requirements and processing times need to be completed in such a way the project completion date is

minimal (Brucker et al., 1999; Hartmann & Briskorn, 2010). According to the amount of debris, two

vehicle routing problems can address the SRP-CD : the Full Truckload Vehicle Routing Problem (FTVRP)

(Desrosiers et al., 1988) and the Split Delivery Vehicle Routing Problem (SDVRP) (Archetti & Speranza,

2008; Golden et al., 2008). The former consists in designing routes for trucks in order to make a number

of fully load trips. The latter aims at designing routes for vehicles such that customers can be visited

more than once, and each demand can be divided in different vehicles.

The amount of debris to be removed plays a key role on the operational level and define which

optimization problem should be used to model the situation. Three cases can be distinguished:

(1) the first case happens when the amount of debris is very important, and the operational level relies

on the FTVRP. In this case, the possible gains of using the SDVRP are not enough to have an

impact on the number of days to clean the overall area, neither on the total costs. This was the

case of Port-au-Prince earthquake in 2010, where the report of UNDP (2013) presented that, after

two years, approximately 1 million of 10 million cubic meters had been removed.

(2) the second case appears when the number of full truck trips are not high and the use of SDVRP

can brings gains in terms of total costs. To our knowledge, it is still an open question the impact

of this case considering the minimization of days to clean the affected area.

(3) the last case occurs when the amount of debris are smaller than the vehicle capacity. Thus, there is

no full truck trips and the SDVRP can be used. An example of disaster with this configuration is

the Texas hurricane in 2017, where several set of sites with a small-medium amount of debris can

be identified in the overall damaged area (Sayarshad et al., 2020).

All the cases mentioned above rely on NP-Hard problems (Blazewicz et al., 1983; Archetti et al.,

2011). Thus, the SRP-CD is NP-Hard. Optimal solutions can be obtained for small-size instances within

an acceptable running time. However, when the number of WTs, dump trucks and debris nodes increases,

the combinatorial level of the SRP-CD also raises. This way, larger instances with more debris nodes

and more vehicles need to be executed in methods such as heuristics or metaheuristics. A schema of the
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three cases (1), (2) and (3) in terms of debris is given in Figure 1. We focus in this study, the first case

(1), which allows us to produce the first integrated models and algorithms for this case, and taken into

account the context of disasters.

Post-disaster
scenario

Huge amount of
debris per site

Few debris per site

RCPSP + FTVRP

RCPSP + SDVRP

Solution

Solution
(3)

(2)

(1)

Figure 1: Classification of SRP-CD according to the amount of debris.

The integration of different decision levels in optimization problems is a growing trend in the scientific

literature. Interesting entry points on the integration of vehicle routing problems are found in Coelho

et al. (2014) for the inventory routing problem, and in Prodhon & Prins (2014) for the location-routing

problems. Integrated problems are a challenging field since the global complexity of the integration can

increases according to the complexity of each single problem. However, as showed in Prodhon & Prins

(2014), the gains of addressing a problem in an integrated way are about 15%. Furthermore, in practical

terms, integrated optimization problems allow working with more realistic scenarios by including relevant

constraints involved in the real application, as it is the case in SRP-CD, with two levels of synchronization

between the assigned WTs and dump trucks and between dump trucks.

The main contributions of this study are the integration of the strategical (scheduling) and oper-

ational levels (vehicles routing) of the SRP-CD optimization problem, motivated by removing debris

after major disasters, a new mathematical model based on a dynamic flow formulation, including two

levels of synchronizations between work-troops and between dump trucks, and between dump trucks;

two time discretizations, working days and time horizon; constructive heuristics and Large Neighborhood

Search (LNS)-based metaheuristics. In addition, a data benchmark of interesting instances for SRP-CD

is provided in this study.

The remaining of the document is organized as follows: a bibliographical review is given in Section 2.

In the sequel, the problem is formally defined in Section 3, followed by a detailed description of the

proposed methods in Section 4. The results and additional analysis are presented in Section 5. Then,

concluding remarks and perspectives are provided in Section 7.

2. Related works

Studies related to the SRP-CD are found in classical optimization problems (see Section 2.1), applications

in disaster relief, public works, and mining fields (see Section 2.2). Section 2.3 provides the position of

our research from the existing studies from the literature.
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2.1. Classical optimization problems related to SRP-CD

The SRP-CD considers aspects of different known classical optimization problems both in the strategical

and operational levels. For the former, we can mention the RCPSP. For the latter, the vehicle routing

problem is closely related to the FTVRP and the SDVRP.

As described in Brucker et al. (1999); Hartmann & Briskorn (2010), the RCPSP can be defined as

a project containing a set of tasks which must be concluded without interruption after starting. Each

task has resource requirements to be performed, a duration, and some of them may have predecessors.

Objective functions like minimizing the completion time, the makespan, the total lateness for all tasks,

among others can be used. The models look for finishing all tasks of the project such that resources and

precedence constraints are satisfied. Compared to SRP-CD, the tasks in RCPSP could be seen as the

debris nodes to be cleaned by the set of WTs and dump trucks. The resources could be the set of WTs

together with dump trucks. Some differences exist between RCPSP and SRP-CD such as the integration

with vehicle routing problem in SRP-CD, and the fact that SRP-CD is modeled on a graph due to the

road network. One may note that RCPSP is not modeled on a graph, even if the precedence constraints

could be defined as a graph.

The FTVRP related to the operational level of SRP-CD is defined as follows. Given a set of vehicles,

the problem consists in defining routes for identical vehicles, which travel fully loaded from origins to

destinations, starting and ending at the depot without exceed a time limit (Desrosiers et al., 1988). The

objective is to minimize the total distance travelled such that the vehicle capacity constraint is satisfied.

Some variants of the FTVRP may impose constraints to state a maximum route length, time windows

and vehicle capacities. Another problem that can be used in the SRP-CD operational level is the SDVRP

(Archetti & Speranza, 2008). It consists in serving a set of customers using a fleet of vehicles, which start

and end their route at the depot, but the goods can be delivered (resp. loaded) by different vehicles.

The total goods might be greater than the vehicle capacity. The problem aims to serve all customers,

without exceeding the vehicle capacity and minimizing the total distance of routes. Both the FTVRP

multi-trips and SDVRP allow a customer to be served by several vehicles, the difference relies on the

fact that in the SDVRP, the demands can be decomposed in small parts and distributed in different

vehicles. Both FTVRP and SDVRP can be independently integrated to the RCPSP, according to the

amount of debris considered in the SRP-CD. Due to that, vehicles can only visit debris nodes with a WT

assigned. Moreover, service times, synchronization between WT and dumps trucks, and between dump

trucks are also take into account. The SRP-CD minimizes the total travel time for dump trucks as a

second optimization level.

The study of Lacomme et al. (2019) addressed the RCPSP coupled to a Pickup and Delivery problem

(PDP), where in the RCPSP, each activity of a project requires an amount of resources to be performed.

Moreover, vehicles perform pickups and deliveries of resources between activities in order to minimize the

makespan. The activities could be served by different vehicles and after starting an activity, the vehicles
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are allowed to visit others activities. A Mixed Integer Linear Programming (MILP) model, a constraint

programming formulation, and a hybrid heuristic which couples a Greedy Randomized Adaptive Search

Procedure and an evolutionary local search were proposed. The hybrid heuristic was able to find solutions

on an average gap of 3.3% compared to optimal solutions for small instances. Compared to SRP-CD,

this problem does not consider WTs-like entities for the activities, a minimization of vehicles travel time,

services times and landfills.

The study of Grimault et al. (2017) investigates the Full Truck Load Pickup and Delivery Problem

(FTPDP), with resource synchronization, motivated by an application in the context of road public work.

The problem was described in a time horizon of one working day, where a set of heterogeneous trucks

serve requests for material transportation (asphalt, gravel or waste). Trucks are assigned to a request only

if it is compatible. Besides, service times, trucks fixed costs, travel costs and hourly costs are considered.

The objective is to minimize the overall cost for the routes to satisfy all requests. A mathematical model

and an adaptive large neighborhood search were proposed. The experiments included two sets (set-1

and set-2) of 20 instances from the literature and a group of 7 instances from a realistic case study. The

proposed heuristic obtained an average gap of 0.00% for the set-1 and -0.14% for set-2 compared to results

presented in the literature results. In the SRP-CD, the time horizon is composed of several working days

and the fleet of dump trucks is homogeneous. Another difference lays in the objective function, since

SRP-CD has two objective functions: the minimization of working days and the minimization of dump

truck routes’ costs.

The study of Soares et al. (2019) focused on the FTPDP with a multiple vehicle synchronisation.

Three types of vehicles were used (trucks, loaders and lorries) to perform the material transportation

within a planning horizon of a single working day. The problem has multi-depots and two types of

synchronization: the first happens between lorries pick-up and drop-off loaders at pickup nodes, and

the second occurs between trucks and pickup nodes with loaders. According to the demand, multiple

pickups and deliveries are allowed at each node and idle times might exist for vehicles at pickup nodes.

The objective minimizes the overall cost that couple transportation, fixed costs for vehicles, distance and

time costs. A multi-flow based mathematical formulation and a matheuristic, using a fix-and-optimize

with a variable neighbourhood decomposition search were proposed. The methods were tested over 19

instances. The mathematical formulation obtained gaps from 4.4% to 33%. Although, this application

contains several close related issues with the operational decisions of SRP-CD, it does not integrate the

strategical decisions to the operational ones.

2.2. Applications related to SRP-CD

A first set of applications related to the SRP-CD is the Crew Scheduling Routing Problem (CSRP). The

study of Duque et al. (2016) addressed the network repair CSRP in post-disaster relief, focusing on a

single repair crew. The goal is to minimize the time in which the blocked nodes become accessible. The

idea was to start from a single depot to establish network connectivity and provide humanitarian relief. A
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Dynamic Programming approach was applied to solve small instances and an Iterated greedy-randomized

constructive heuristic was proposed to solve medium- to large-size instances. The instances varied from

21 to 41 nodes (small), 61 to 401 nodes (others) and both with 5% to 50% of damaged nodes. According

to the authors, the Dynamic Programming approach was able to find optimal solutions for 225 out of 300

small instances in up to 24 hours, while the heuristic was able to find optimal solutions for 92,8% out of

225 small instances.

The CSRP investigated in Moreno et al. (2019) takes into account a single crew, with the goal of

minimizing the time affected areas remain inaccessible. A mathematical formulation, inspired on the

one of Duque et al. (2016) was presented. A branch-and-Benders-cut algorithm was proposed, where the

problem was divided into a master problem for determinating the crew schedule, and two subproblems to

check the feasibility and compute the schedule total cost. A simple greedy constructive heuristic and two

local search heuristics were introduced. Another work focusing on the CSRP is found in Shin et al. (2019),

where a single crew, integrated with a single vehicle distributes relief goods after the repair of damaged

places. A MILP model, based on Duque et al. (2016) was proposed. The objective is to minimize the time

which the last demand node was served. An ant colony optimization algorithm was applied to medium

to large instances, taking into account both repair and distribution. As a consequence, a route for the

repair crew and a route for the relief vehicle were obtained. Comparing to SRP-CD, the CSRP does not

consider the two levels of synchronization, multi-periods, landfills, neither service times.

The debris clearance was described by Lorca et al. (2017) as a set of operations such as collection,

transportation, reduction, recycling and disposal, with the goal of minimizing cost management. A

mathematical model including all the mentioned decisions was presented, and applied to a case study

of the Hurricane Andrew with 4 million metric tons of debris in a grid of 22 zones of equal area. The

stochastic debris clearance problem was investigated in Çelik et al. (2015), which the main goal is to

unblock roads in the response phase by moving the debris to the sides of the roads in order to reach other

demand nodes. A Markov decision process was applied to optimally define the solution for small and

large instances. The approaches were tested on randomly generated instances and instances based on a

real-world earthquake scenario of Boston with 446 nodes and 604 road segments.

Other applications appear to clean road network in disaster relief. Some of them integrate the road

network repair to logistics issues, as in Li & Teo (2019), while others integrate the repair road network

scheduling to the reachability as in Sakuraba et al. (2016); Akbari & Salman (2017); Barbalho et al.

(2020), or either to the network strong connectivity (Coco et al., 2020). In Li & Teo (2019), the problem

was divided in two stages: a first stage where a multi-period scheduling problem with limited resources

was solved; and a second one where routes for relief materials delivery were defined. The proposed

mathematical formulation maximizes the network accessibility in the upper level and minimizes the time

in which materials were delivery in the lower level. In addition, a hybrid heuristics based on a steady-state

parallel genetic algorithm was also proposed. It was tested on theoretical instances varying from 25 to

1000 nodes, with 5% to 50% of damaged nodes and up to 34 repair crews; and on a case study derived
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of the Wenchuan earthquake in China.

The problem to unblock roads in order to reconnect the network, while minimizing the operation

time, was addressed by Akbari & Salman (2017). The WTs cleaned the road by removing and pushing

debris to sides. A synchronization between vehicles was taken into account when two or more vehicles

are assigned to the road by using a waiting time. A MILP formulation, a matheuristic based on an

MILP-relaxation, and a local search algorithm were proposed. Tests were done using theoretical and a

realistic instance inspired by the Istanbul road network. According to the results, the matheuristic found

optimal or near-optimal solutions.

In Sakuraba et al. (2016), the Work-troops Scheduling Problem was addressed. It consists in schedule

repairs to improve the access to points where the population gather together. The authors proposed a

MILP formulation and three heuristics, a savings, a ranking and a lexicographical one, to solve theoretical

and a large-scale realistic instance of Port-au-Prince earthquake, 2010. The lexicographical heuristic

performed better than the others and found an average relative deviation of less than 3% from optimal

solutions. An extension of this work is found in Barbalho et al. (2020), where the authors proposed

a dedicated local search, two metaheuristics, a Greedy Randomized Adaptive Search Procedure and an

Iterated Local Search. The methods were applied to solve theoretical instances and the large-scale realistic

instance of Haiti earthquake in 2010 from Sakuraba et al. (2016). The network design issues of these

studies rely on urban network connectivity. A quite similar application in road public works is found

in Coco et al. (2020), where the strong connectivity is required. It integrates a scheduling of planned

disruptions with the network strong connectivity. An ε-constraint method was proposed and applied to

instances of Troyes in France.

The Open Pit Mining (OPM) application consists in defining routes for material transportation from

loading to dumping nodes in mining fields, with the goals of improving the amount of material transported

by vehicles in order to reduce the total operational costs (Alarie & Gamache, 2002). In spite of the context

and the fact that OPM was most solved in the literature by means of simulation, several similarities exist

between OPM and SRP-CD. For instance, OPM has loading and dumping points, and strategical and

operational decisions. In the OPM, the differences from SRP-CD rely on the following issues: there

are a fixed time to plan the operations, and the objective function stands for minimizing resource costs.

Moreover, in general, OPM is addressed in a known and medium size area, differing from a disaster which

can hit everywhere and cover an unexpected and large area.

Although OPM was mainly solved by means of simulation, a few studies investigated the problem using

an optimization approach. For instance, the study of Souza et al. (2010) proposed a MILP formulation to

optimize the deviations of the production, quality goals and number of vehicles required for performing

operations and a hybrid heuristic. The experimental results were performed using instances from a set

of real-data problems and the results showed that the heuristic was able to find good solutions with

low variability. In Ercelebi & Bascetin (2009), a queuing network strategy was proposed to optimize the

number of truck assignments to shovels, which analyses all possible feasible paths between load and dump
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nodes. Then, a MILP formulation was proposed for dispatching trucks to shovels, minimizing the number

of trucks. A coal mine case study was described, and results indicated a production of 10.1 million m3

using 4 shovels and 18 trucks over a year.

2.3. Position of our research

Table 1 presents a summary of the closest related works to SRP-CD regarding the characteristics of the

addressed problems found in the literature and the proposed approaches. The works are sorted by year

and by applications. The dots in Table 1 means that the corresponding work includes the characteristic

and the red dot represents SRP-CD characteristics. For sake of clarity, the characteristic WT/Crew

for the post-disaster studies also represents the loader for OPM studies. The characteristic Material

collection represents the material which is transported according to each study, being hidden when the

study does not provide further details about the material. As can be observed, no studies in the literature

cover all SRP-CD characteristics.

3. Problem definition and mathematical model

In SRP-CD, the transportation network is modeled on a connected undirected and simple graph G =

(V,E), where V is the set of n vertices and E is the set of m edges. Let O ⊂ V , D ⊂ V , L ⊂ V be

respectively, the single depot (O = {0}), the set of debris nodes and the set of landfills. Thus V = D∪L∪O

and D ∩ L ∩O = ∅. Each vertex i ∈ D has a volume vi ∈ R∗+ of debris to be removed.
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In the edge-set E, edge [i, j] models a shortest path in terms of time linking nodes i and j in the real

network, with pre-computed travel time cij ∈ R∗+, that are assumed to be symmetric and the triangular

inequality holds. Moreover, A = {1...H} represents a time horizon (with a step of one working day)

considered in the model, and every working day are discretized by an one time unit, with a time limit

B = {1...T}. Let W and K = {1, ..., k} be respectively the number of WTs (each one is composed

of bulldozers, excavators and the human resources) and a fleet of homogeneous dump trucks available

at the depot, with a capacity Q each. The goal of the SRP-CD strategical level is to assign a set of

WTs to debris nodes every time period, in the time horizon; while the operational level aims at defining

synchronized multiple-trips for the fleet of dump trucks during each working day, such that dump trucks

capacity is satisfied. Each WT is assigned to a vertex i ∈ D if and only if there is no WT at node i, and

a WT remains at node i until all debris is removed. Moreover, a WT starts a working day moving to a

debris node and removing debris or removing debris if it is already assigned to a debris node. Concerning

the dump trucks, they visit nodes i ∈ D if and only if there is a WT at node i. In addition, loading and

unloading operations have a fixed service time, which are represented respectively by tl, tu ∈ B. Dump

trucks start and finish a working day at the depot. The objectives of SRP-CD are twofold: the primary

objective is to minimize the total number of working days to clean all sites containing debris, and the

second one looks for minimizing the dump trucks’ total travel time.

Figure 2 depicts an example of a scenario containing the following characteristics: O = {0}, D =

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} and L = {16, 17}, W = 4, K = {K1,K2,K3,K4}, Q = 2t,

T = 22, tl = 1, tu = 1. The graph is presented in the Figure 2-(a), where the depot, each debris node and

each landfill are identified respectively by a solid square, a solid circle and a dotted square. Moreover,

travel times in time units are associated with the edges. The overall scheduling is detailed in Figure 2-(b),

where the solution presents a total of 18 working days to clean all debris nodes. Figure 2-(c) shows the

details of routing for the 4 dump trucks in “the first working day”, where routes were assigned to debris

nodes 1, 6, 12 and 13. Empty dump truck trips and full truck trips are shown, respectively, by dotted

arrows and solid arrows. The solid square represents the depot or the loading operation in a debris node

and the dotted square indicates the unloading operation in the landfill. The loaded debris, in tons, are

shown in trucks’ routes. In the working day, the dump trucks K1 and K2 were able to visit nodes 1 and

6 with synchronized routes, since two trucks cannot be loaded at same time unit. The dump truck K3

visited nodes 13 and 12, and the dump truck K4 visited the debris node 6. The times of each route can

also be noticed in the figure including load and unload times. The dump truck K1 has a route of 21

time units of which 16 time units for travel. The dump truck K2 has a route similar to K1 but there is

a waiting time to be loaded. K3 has a route of 22 time units in which 17 time units correspond to trips.

Finally, K4 has a route of 16 time units in which 13 time units correspond to the trips.
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(a) (b)

(c)

Figure 2: Example for SRP-CD with (a) the graph G, (b) the scheduling of WTs and (c) the routing of dump trucks in the
first working day.

3.1. Mathematical formulation

The proposed mathematical formulation is given in Equations (1) to (20). It is based on a multi-flow

formulation (Ahuja et al., 1989), and makes use of a dynamic flow. As shown by Aronson (1989) and

Wang (2018), dynamic flows can be interpreted in several ways, and the more frequent representation

is a discretization of the time. This is the strategy applied here, where the working days and the time

horizon are indexed over the time, according to a discretization considering time units. Although this

strategy presents a large number of variables and constraints, it allows to further address the two levels

of synchronization. To our knowledge, the dynamic multi-flow formulation described in this section is

the first one found in the literature for SRP-CD. It has two fleets of homogeneous vehicles: one of WTs

and another of dump trucks. The binary variables used in the mathematical formulation are defined as

follows:

• xhi establishes if a WT is assigned to the node i in working day h (xhi = 1), otherwise (xhi = 0).

• yhij determines if a WT visits the node j after i in the beginning of working day h (yhij = 1),
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otherwise (yhij = 0).

• f thijk states if the dump truck k arrives at node j from i in time period t of working day h (f thijk = 1),

otherwise (f thijk = 0).

In addition, variables 0 ≤ lthik ≤ Q determine the accumulated load of each dump truck k at node i

in time period t and in working day h; while, variables 0 ≤ uthik ≤ Q state the amount of debris removed

at i loaded in the dump truck k, in time period t and in working day h. The variable δ ≥ 0 represents

a number of working days used in the time horizon. The model is composed of two objectives functions

F1 and F2 (resp. given in Equations (1) and (2)), which are performed in two optimization phases.

The primary one is F1 which minimizes the number of days to clean all sites, and the second objective

function F2 optimizes the total travel time of dump trucks, satisfying the primary objective. The result

of the first execution (F1) becomes a new time horizon A′ = {1...H ′} for the second optimization phase,

where the model is run with the function F2, without the constraints (3).

Table 2 summarizes all notations and variables of the problem.

The main assumptions for the SRP-CD are:

• Each debris node has at most one WT assigned. This is considered to provide more visit points for

dump trucks.

• The WT remains at the debris node until it is totally cleaned. Without such assumption, WTs

could be assigned in different debris nodes every day before finishing to clean it completely. This

is not a suitable situation in the context of disasters.

• A WT moves to another debris node in a different working day. Following the real context, WTs

travel to debris nodes before a working day. In some cases, they are even transported by using a

support vehicle (lorries) as in Soares et al. (2019). This is done since WTs move quite slow, and

traveling before starting a working day may increase the operations performance.

• Dump trucks visit only debris nodes with WT. This assumption is trivial since dump trucks are

loaded by WTs in the problem.

• Landfill nodes are considered with unlimited capacity.

F1 = min δ s.t. (1)

F2 = min

H′∑
h=1

T∑
t=1

∑
k∈K

∑
(i,j)∈E

cijf
th
ijk s.t. (2)

δ ≥ hxhi ∀i ∈ D,h = {1...H} (3)
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Symbol Description

Sets

G = (V,E) Graph for the transportation network

V Set of vertices (nodes)

O Set containing a single depot, (O ⊂ V )

D Set containing debris nodes, (D ⊂ V )

L Set containing landfill nodes, (L ⊂ V )

E Set containing edges [i, j], (i, j ∈ V )

K = {1, ..., k} Fleet of homogeneous dump trucks

A = {1, ...,H} Time horizon containing H working days

B = {1, ..., T} Time discretization for a working day
containing T time periods

Parameters

W Number of WTs available

Q Capacity of a dump truck

vi Volume of debris for a node i ∈ D, (vi ∈ R∗+)

cij Pre-computed travel time for an edge [i, j] ∈ E, (cij ∈ R∗+)

tl Service time for a loading operation, (tl ∈ B)

tu Service time for an unloading operation, (tu ∈ B)

Variables

xhi Binary variables for the WT assignment

yhij Binary variables for the WT flow

f thijk Binary variables for the dump truck flow

lthik Cumulative variables on the load of a dump truck

uthjk Variables stating the amount of debris loaded in a dump truck

δ
Integer variable for the final number of working days
found by the model

Objectives
F1 Objective function for the model in the first optimization phase

F2 Objective function for the model in the second optimization phase

Table 2: Notations and variables used in the SRP-CD formulation.

Constraints (3) together with the objective function F1 determine the minimum number δ of working

days necessary to clean all debris nodes, where h represents every working day from 1 to day H. The

design for the flow of WTs is adapted from the model of Sakuraba et al. (2016). This flow allows the

formulation to ensure that a WT remains at a debris node until it is totally cleaned. Without such

constraints, the model can assign each WT in different debris nodes every day before finishing to clean it

completely. As mentioned before, this is not an appropriate situation for the application focused in this

study.
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H∑
h=1

∑
j∈D

yh0j ≤W (4)

xhi =
∑

j∈{0}∪D

yhji ∀i ∈ D,h = {1...H} (5)

∑
j∈{0}∪D

yhji =
∑

j∈{0}∪D

yh+1
ij ∀i ∈ D,h = {1...(H − 1)} (6)

H∑
h=1

∑
j∈{0}∪D,

j 6=i

yhji = 1 ∀i ∈ D (7)

Inequalities (4) guarantee that W WTs leave the depot only once in all the time horizon. Equalities

(5) link variables x to y and ensure the assignment of WTs to a debris node i if there is a flow entering

node i. Such WTs can come from the depot or from a debris node. Constraints (6) ensure the flow

conservation for WTs. The general idea remains similar to a classical flow conservation constraints,

where all incoming flow to a debris node has to leave such a debris node. The main difference relies on

the indexation over the time. Precisely, the outgoing flow has a date superior to the date of the incoming

flow by considering the next working day. Constraints (7) determine that exactly one WT is assigned to

each debris node at some working day.

∑
i∈D

T−c0i∑
t=1

f
(t+c0i)h
0ik ≤ 1 ∀k ∈ K,h = {1...H} (8)

∑
j:(j,i)∈E

f thjik =
∑

j:(i,j)∈E

f
(t+s)h
ijk ,

s = cij + tl, if i ∈ D

s = cij + tu, if i ∈ L

∀k ∈ K, t = {1...(T − s)},

h = {1...H}
(9)

∑
j:(j,i)∈E

f
(t+cji)h
jik ≤ xhi

∀i ∈ D,∀k ∈ K,

t = {1...(T − cji)},

h = {1...H}

(10)

f thjik +
∑

j′∈{0}∪L

∑
k′∈K,
k′ 6=k

t+tl−1∑
t′=t

f t
′h

j′ik′ ≤ 1

∀i ∈ D,∀j ∈ {0} ∪ L,

∀k ∈ K,

t = {1...(T − tl + 1)},

h = {1...H}

(11)

Inequalities (8) establish that in each working day, every dump truck can be used or not, the decision

of using dump trucks is left for the model. Constraints (9) state the flow conservation for dump trucks

in each working day. As for the WTs, the flow is indexed over the time. The value s corresponds to

the sum of the traveling time (cij) and the service time (resp. tl time to load at a debris node and time

tu to unload at a landfill). This allows controlling the date of incoming and outgoing flows accordingly.
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Inequalities (10) link variables f thijk and xhi . They ensure that a flow enters a debris node i if and only if

there is a WT assigned to i. Constraints (11) guarantee the synchronization between dump trucks. For

instance, if a truck (k) is loading at a debris node, the others trucks (k′) have to wait the operation of

loading (k) to be completed. This is done by the flow variables using the indexation over the time to

control the date of the incoming and outgoing flows.

l
(t+s)h
jk ≥ lthik + u

(t+s)h
jk −Q(1− f (t+cij)h

ijk ),

{
s = cij + tl

∀i ∈ V,∀j ∈ D,∀k ∈ K,

t = {1...(T − s)},

h = {1...H}

(12)

uthjk ≤ Q
∑

i:(j,i)∈E,
i∈L

f
(t+cji)h
jik

∀j ∈ D,∀k ∈ K,

t = {1...(T − cji)},

h = {1...H}

(13)

H∑
h=1

T∑
t=1

∑
k∈K

uthjk = vj ∀j ∈ D (14)

Inequalities (12) determine the accumulated amount of debris, loaded at a dump truck. Such con-

straints are inspired on the well known Miller, Tucker and Zemlin constraints for the travelling salesman

problem (Miller et al., 1960). One may note that the variables are indexed by the period time t in a

working day h. Thus, the load l in the period t+ s of h will be greater than the actual l charge plus the

new load u, if f
(t+cji)h
jik = 1.

Inequalities (13) establish the dump trucks capacity is satisfied. Constraints (14) guarantee that all

debris node have to be cleaned until the last working day used.

yhij ∈ {0, 1}
∀i, j ∈ D ∪ {0},

h = {1...H}
(15)

xhi ∈ {0, 1} ∀i ∈ D ∪ {0}, h = {1...H} (16)

f thijk ∈ {0, 1}
∀i, j ∈ V,∀k ∈ K,

t = {1...T}, h = {1...H}
(17)

0 ≤ lthik ≤ Q
∀i ∈ V,∀k ∈ K,

t = {1...T}, h = {1...H}
(18)

0 ≤ uthjk ≤ Q
∀j ∈ D,∀k ∈ K,

t = {1...T}, h = {1...H}
(19)

δ ≥ 0 (20)

The domain of the variables are given from (15) to (20).
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4. Heuristic methods

We propose heuristics and LNS-based metaheuristics to solve the SRP-CD, detailed respectively in Sec-

tions 4.1 and 4.2.

4.1. Constructive heuristics

The proposed constructive heuristics are composed of four main steps: (a) the assignment of WTs to

debris nodes, (b) the routing of dump trucks to debris nodes already with WTs, (c) the loading of dump

trucks at the debris nodes and (d) the unloading of dump trucks at the landfills. The step (a) focuses on

the strategical decisions of the WTs scheduling, while the steps (b), (c) and (d) are related to operational

decisions of dump trucks’ trips. The steps are performed by a procedure called buildingSolution().

The heuristics perform a greedy or a random construction in the steps (a) and (b), according to a given

criterion. The step (c) performs load at dump trucks in each node, and in the step (d), full-loaded dump

trucks are routed to the nearest landfill from the corresponding debris node. Six criteria are proposed

for the strategic level of decision and seven for the operational one, on a total of 6 × 7 = 42 criteria

combinations. In addition, a random criterion is also used for the two levels. All of these combinations

were considered in the numerical experiments.

4.1.1. Greedy and random constructive heuristics

The six greedy criteria proposed are as follows:

• Less Debris First (LDF) : WTs are assigned to debris nodes with less amount of debris to collect.

This is done in increasing order until all WT are assigned.

• More Debris First (MDF) : WTs are assigned in non increasing order of the higher amount of debris.

• Smaller Travel Time First (STTF) : WTs are set to the nearest nodes from the depot, in terms of

travel time, according to an ascending order.

• Greater Travel Time First (GTTF) : WTs are assigned to the most distant debris nodes from the

depot, considering a non increasing order of travel time.

• Smaller Ratio (Debris/Travel Time) First (SDTTF) : a ratio between the amount of debris and the

travel time is done, and then WTs are assigned in increasing order of debris nodes with the smaller

ratio.

• Greater Ratio (Debris/Travel Time) First (GDTTF) : a ratio between the amount of debris and

the travel time is done, and then WTs are assigned in non increasing order of debris nodes with

the greatest ratio.
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The greedy criteria LDF, MDF, STTF, GTTF, SDTTF and GDTTF are also adapted for the opera-

tional level of decision and assigning dump trucks accordingly. In addition, the Less Trucks First (LTF)

criterion is also used in the operational level and consists in routing dump trucks to debris nodes with

less trucks already allocated. This is done in increasing order of the dump trucks number, working in a

debris node. The algorithms using the aforementioned criteria have a similar structure, which is provided

in Algorithm 1. The best solution s, the incumbent solution s′, and the criteria sets C1 and C2 are

initialized in lines 1-3. The loops of lines 4-8 and 5-8 vary the set of criteria and build the corresponding

deterministic solution for every combination of criteria. The criterion for WTs is referred to as cWT ,

and for the dump trucks is referred to as cK. In lines 7-8, according to the objective functions F1 and

F2, the best solution found so far is updated. The algorithm returns the best solution in line 9. This

heuristic is referred to as Greedy Constructive Heuristic (GCH).

The Random Constructive Heuristic (RCH) builds a feasible solution using a random choice to assign

WT to debris nodes, and to allocate dump trucks to debris nodes. Furthermore, RCH includes a stopping-

criterion, that can be considered for instance, a fixed number of iterations, a fixed execution time or a

fixed number of iterations without any improvements. The algorithm slight differs from the one of GCH

in the following points. Lines 2 and 3 are removed, the loops are replaced for the stopping-criterion loop

and in line 6, cWT and cK are set to a random choice of debris nodes.

Algorithm 1: Greedy constructive heuristics structure

Data: G=(V,E)

Result: s

1 s←∞, s′ ← ∅

2 C1← {LDF,MDF,LDF,GDF, SDTTF,GDTTF}

3 C2← {LDF,MDF,LDF,GDF, SDTTF,GDTTF,LTF}

4 forall cWT ∈ C1 do

5 forall cK ∈ C2 do

6 s′ ← buildingSolution(G, cWT, cK)

7 if ( (F1(s′) < F1(s)) or ( (F1(s′) = F1(s)) and (F2(s′) < F2(s))) ) then

8 s← s′

9 return s

4.2. LNS-based metaheuristics for SRP-CD

LNS metaheuristics proposed by Shaw (1998), has been successful applied for difficult NP-problems

(Pisinger & Ropke, 2010). It moves the solution in the search space by performing removals and insertions.

The use of LNS for SRP-CD is motivated by its simplicity, and according to the literature, by the high

quality of solutions obtained in solving complex problems and in addressing difficult constraints. One may
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note that in SRP-CD, a decision in the strategical level directly impacts the operational level, resulting

in relevant modifications in the solution.

The LNS proposed here for the SRP-CD is as follows. The initial solution applies a greedy or a

random heuristic described in Section 4.1. Moreover, LNS makes use of a removal procedure that takes

away a random debris node of the current solution at a time. It is worth mentioning that removing

a debris implies that a set of vehicles’ routes need to be renewal. Two strategies are used to insert a

debris node into a solution: First Improvement (FI) and Best Improvement (BI). In the former, when

a first insertion improves the current solution, it is updated; while, in the latter, all possible insertions

are checked and the best improvement one are used to update the current solution. The strategy, either

BI or FI, is a parameter in the LNS algorithm, referred to as LS. Furthermore, after a remove-insertion

operations, a solution is accepted if and only if it improves the incumbent one. For this reason, LNS for

SRP-CD has also a cut procedure to optimize the construction of solution after an insertion. During the

construction, the procedure rejects the new partial solution if the scheduling cost is greater than the one

of the incumbent solution.

A general LNS scheme is given in the Algorithm 2. Parameters are initialized in line 1 (resp. the best

solution, the incumbent solution and an auxiliary one), then a feasible initial solution is generated in line

2. In the sequel, the best known solution is set in line 3. The loop 4 to 11 is repeated until the predefined

stopping-criterion is met. An auxiliary solution is initialized in line 5. The algorithm performs removals

in line 6 and insertions in line 7. Condition, in lines 8 and 9, updates the best solution found so far. In

the following, the acceptance criterion is used to update the incumbent solution whenever it accepts only

improved ones.

The criteria cWT, cK and cK’ can be greedy or random. According to this choice, LNS-GG refers to

cWT, cK and cK’ set as greedy, LNS-RG indicates cWT and cK are random and cK’ is greedy. Several

variants of the proposed LNS can be obtained according to the initial solution construction and the local

search type (BI or FI). Concerning these parameters, numerical experiments have been performed (see

Section 5.2.3) to decide the better ones.

5. Computational experiments

The computational experiments were performed on an Intel(R) Core(TM) i5-8350U CPU @1.70GHz

with 16GB of RAM and 2GB of swap, using the operational system Ubuntu 18.04.1 LTS. All the cores

and RAM were used. The proposed approaches and the instances generator were developed in C++.

Moreover, IBM ILOG CPLEX 12.8, under default parameters, and CPLEX Concert Technology in C++

were used to run the mathematical formulation.
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Algorithm 2: LNS-based metaheuristic structure

Data: G = (V,E), cWT, cK, cK ′, LS

Result: s

1 s← ∅, s′ ← ∅, s′′ ← ∅

2 s′ ← buildingSolution(G, cWT, cK)

3 s← s′

4 while stopping-criterion not met do

5 s′′ ← s′

6 x← remove(s′′)

7 insert(s′′, x, cK ′, LS)

8 if ( (F1(s′′) < F1(s)) or ( (F1(s′′) = F1(s)) and (F2(s′′) < F2(s))) ) then

9 s← s′′

10 if accept(s′′, s′) then

11 s′ ← s′′

12 return s

5.1. Data generation

We developed an instance generator, which makes a geographical distribution of debris nodes over a

cartesian plane inspired by urban districts’ spacial organisation, and also Solomon’s benchmark (Solomon,

1987). This results in three network topologies, referred here as (C)luster, (R)andom, and (M)ix. The

Euclidean distance is associated with each edge representing the travel time between two nodes. The

single depot is fixed at the border of the generated data (i.e. outside of the affected area), the landfills

areas vary from 1 to 7 areas, and the axis represent time units. Figure 3 shows three examples of instances

generated by the algorithm with the depot in blue, the landfills in red and the debris nodes in green.

Figure 3-(a) presents an instance with a cluster topology containing 80 debris nodes and 4 landfills, Figure

3-(b) depicts an instance with a random topology containing 30 debris nodes and 4 landfills, and Figure

3(c) shows an instance with the mix topology containing 180 debris nodes and 7 landfills.

Two set of instances, S1 and S2, were created from medium- to large-size instances. For each set, 90

instances were generated: 30 with a cluster topology (C), 30 for the random topology (R) and 30 with a

mix topology (M). The characteristics of the instances’ sets are presented in Table 3, where the columns

represent respectively the number of instances (#Inst.), the number of debris nodes (|D|), the number of

landfills (|L|), the number of WTs (W), the number of dump trucks (|K|), the capacity of dump trucks

(Q), the time units for load (tl), unload (tu) and the working day (T).
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(a) (b) (c)

Figure 3: Example of generated instances with different network topologies.

# Inst. |D| |L| W |K| Q tl tu T

S1 90 10, 20, 30, 40, 50 2 2, 3, 4
2, 3, 4,

2 1 40, 55, 60, 65
6, 8

S2 90 100, 200, 300, 400, 500 3 5, 6, 7
5, 6, 7,

2 10 480, 720
10, 12, 14

Table 3: Characteristics of the instance sets.

5.2. Numerical results

The benchmarks of instances S1 and S2 are used to measure robustness and scalability of the proposed

heuristics. Extensive numerical experiments have been done with the proposed methods and are detailed

in this section. The greedy constructive heuristics are compared in Section 5.2.2. In the following, the

tuning experiments for the metaheuristics’ parameters are presented in Section 5.2.3. In Section 5.2.4,

the experiments and analysis using all instances are detailed.

5.2.1. Mathematical model results

For the sake of clarity, the value of H in the model is computed for each instance using the Equation (21),

where γ is pre-computed as follows. Given all shortest paths between origins and destinations in G, γ is

set to the value of the biggest one.

H =
∑
i∈D

vi/[(|K| ×Q× T )/γ] (21)

The model was given CPU time limit of 2 hours for each objective function, which was set based on

some studies from literature (Souza et al., 2010; Soares et al., 2019). The mathematical formulation has

been validated with 15 small instances (resp. 5 instances for each topology, C, R and M) with |D| = 5,

W = 2 and |K| = 3, for which it was able to prove optimally for the two objective functions. But, the

most relevant is to show the limits of the model. For this purpose, we took the 18 small instances (resp.

6 for each topology) of S1 with |D| = 10 and provide the results in Table 4. The first three columns
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present the instances characteristics: topology type, number W of WTs and number |K| of dump trucks.

For each objective, the upper bound (bold in this column means the optimally has been proved), the time

in seconds, the GAP, the number of nodes opened in the branch-and-cut tree (Nb nodes), the number of

variables (Nb var.) and the number constraints (Nb const.) are given.

The mathematical formulation was able to prove optimality for the first objective function for 7 out

of 18 instances. Obviously, whenever W and |K| increase, a large number of variables and constraints

are required. When the number of W and |K| are smaller as it is the case of the instances with W=2 and

|K| = 2, W=3 and |K| = 3, W=2 and |K| = 4, and W=3 and |K| = 6, the combinatorial raised, and the

formulation spent the time limit, in some cases, without proving optimality. Using more resources such as

with W=4 and |K| = 8, the model was able to prove optimality for the first objective function, except for

the corresponding instance with the mix topology. The GAPs for the scheduling are high, while for the

routing, the GAPs are within 6%, except for one instance in mixed topology, with W = 2 and |K| = 4,

where the GAP is about 11%. This aspect opens some avenues of research, such as the development of

valid inequalities, cuts or reformulation. Once the scheduling are defined, the model is able to manage

well the travels and the synchronization of dump trucks. Columns without results indicates that the

model did not find any feasible solution.

Instances F1 F2

W |K| UB t(s) GAP Nb nodes Nb var. Nb const. UB t(s) GAP Nb nodes Nb var. Nb const.

C

2 2 19 7200 10.53 102621 160421 238441 1052 7200 4.28 117100 372580 238251
3 3 12 7200 8.33 291829 238941 357261 1052 7201 4.28 258961 557180 357141
4 4 9 468 0.00 4205 317461 476081 1052 7201 3.90 472127 741780 475991
2 4 10 7200 10.00 196977 317461 476081 1072 7201 4.12 53730 741780 475981
3 6 7 7200 14.29 1113730 474501 713721 1063 7201 5.04 160799 1110980 713651
4 8 5 250 0.00 0 631541 951361 1060 7201 4.51 249279 1480180 951311

R

2 2 21 7200 9.52 203639 154501 236021 1184 7201 4.10 773956 358500 235811
3 3 13 447 0.00 4283 230126 353646 1184 7201 4.10 1296215 536125 353516
4 4 10 217 0.00 1954 305751 471271 1184 7201 4.10 900245 713750 471171
2 4 11 7200 9.09 327932 305751 471271 1184 7202 4.10 395484 713750 471161
3 6 7 447 0.00 1742 457001 706521 1184 7202 4.10 1333698 1069000 706451
4 8 5 227 0.00 2018 608251 941771 - - - - - -

M

2 2 18 7200 16.67 129199 130327 198597 964 7201 5.29 804928 301686 198417
3 3 11 7201 9.09 476570 194125 297570 964 7202 5.29 1444497 451164 297460
4 4 8 490 0.00 36538 257923 396543 964 7202 4.88 834157 600642 396463
2 4 10 7200 20.00 137853 257923 396543 1028 7200 11.19 107320 600642 396443
3 6 6 7200 16.67 181384 385519 594489 964 7204 5.29 352682 899598 594429
4 8 5 7208 20.00 1264228 513115 792435 964 7201 3.79 1131294 1198554 792385

Table 4: Results for the mathematical model in the instances with 10 debris nodes.

Sensitivity analysis have been performed to investigate the impact of some parameters on solving

SRP-CD. For such a purpose, one parameter is varied at a time, such as the number of dump trucks,

the number of WT, and the volume of debris; while the other parameters are fixed. Table 5 presents the

results by varying the number of dump trucks. As |K| increases, the value of F1 decreases due the fact

that a higher capacity (more dump trucks) is available to remove debris in a day. In addition, the value

of F2 tends to increase due to more trips involved in leaving and returning to the depot every day.
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Table 6 shows the results by varying the number of WTs. As W increases, the values of F1 and F2

tends to decrease. Since more critical resources are available, t(s), GAP and Nb nodes tends to be reduced

with some exceptions as the instance with Mixed topology, W = 4 and |K| = 8. A possible explanation

is that other resources as dump trucks have limited the general resolution for such exceptions.

Table 7 depicts the results by varying the volume of debris. As expected, this parameter makes the

problem difficult to be solved. This can be observed by the higher GAP values of F1, accordingly with

the increase on the volume of debris. The main reasons are that under limited resources as dump trucks

and WTs, more debris might improve the combinatorial choices, and require a bigger time horizon. This

latter aspect increases the number of variables and constraints for a mathematical formulation indexed

over the time. A particular situation has also been raised in this experiment, where F2 meets an optimal

cost, but not F1. Naturally, the corresponding solution is not optimal.

Instances F1 F2

W |K| UB t(s) GAP Nb nodes Nb var. Nb const. UB t(s) GAP Nb nodes Nb var. Nb const.

C
2 2 19 7200 10.53 102621 160421 238441 1052 7200 4.28 117100 372580 238251
2 4 10 7200 10.00 196977 317461 476081 1072 7201 4.12 53730 741780 475981
2 8 6 7200 16.67 96676 631541 951361 1096 7201 2.99 87849 1480180 951301

R
2 2 21 7200 9.52 203639 154501 236021 1184 7201 4.10 773956 358500 235811
2 4 11 7200 9.09 327932 305751 471271 1184 7202 4.10 395484 713750 471161
2 8 6 337 0.00 658 608251 941771 1220 7200 1.72 280250 1424250 941711

M
2 2 18 7200 16.67 129199 130327 198597 964 7201 5.29 804928 301686 198417
2 4 10 7200 20.00 137853 257923 396543 1028 7200 11.19 107320 600642 396443
2 8 6 7200 16.67 174056 513115 792435 1029 7200 4.81 87297 1198554 792375

Table 5: Evaluation of varying |K| in the instances with 10 debris nodes.

Instances F1 F2

W |K| UB t(s) GAP Nb nodes Nb var. Nb const. UB t(s) GAP Nb nodes Nb var. Nb const.

C
2 8 6 7200 16.67 96676 631541 951361 1096 7201 2.99 87849 1480180 951301
4 8 5 250 0.00 0 631541 951361 1060 7201 4.51 249279 1480180 951311
8 8 5 167 0.00 0 631541 951361 1052 7201 1.14 852970 1480180 951311

R
2 8 6 337 0.00 658 608251 941771 1220 7200 1.72 280250 1424250 941711
4 8 5 227 0.00 2018 608251 941771 - - - - - -
8 8 5 72 0.00 0 608251 941771 1184 7201 0.76 903430 1424250 941721

M
2 8 6 7200 16.67 174056 513115 792435 1029 7200 4.81 87297 1198554 792375
4 8 5 7208 20.00 1264228 513115 792435 964 7201 3.79 1131294 1198554 792385
8 8 4 124 0.00 0 513115 792435 964 22 0.00 1948 1198554 792395

Table 6: Evaluation of varying W in the instances with 10 debris nodes.

5.2.2. Greedy constructive heuristics comparison

In this section, 42 different combinations of the greedy constructive heuristics are compared by ranking

analysis, absolute rank (Abs-Rank) and the average rank (Avg-Rank):

• The Abs-Rank gives the value 1 for each heuristic that found, for a given instance, the best solution

value of the scheduling (F1) and the routing (F2) among all the others heuristics. In case of two or
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Instances F1 F2

Volume UB t(s) GAP Nb nodes Nb var. Nb const. UB t(s) GAP Nb nodes Nb var. Nb const.

C
200 37 7200 53.06 15580 320841 476861 2030 7200 3.82 21517 745160 476491
400 81 7200 91.92 1176 641681 953701 3846 7201 1.14 6549 1490320 952891
600 132 7200 94.62 0 962521 1430541 5763 7200 1.12 1352 2235480 1429221

R
200 40 7200 30.00 12137 309001 472021 2271 177 0.00 0 717000 471621
400 88 7200 90.91 2828 618001 944021 4542 7201 2.40 19479 1434000 943141
600 - - - - - - - - - - - -

M
200 37 7200 38.42 15617 260653 397173 1826 7200 4.96 51150 603372 396803
400 80 7204 92.50 3098 521305 794325 3600 7201 4.00 2271 1206744 793525
600 - - - - - - - - - - - -

Table 7: Evaluation of varying the volume of debris in the instances with 10 debris nodes, considering W = 2 and |K| = 2.

more heuristics finding the same best solution value, both will be rewarded. The sum of all ranking

for all instances provide how many times a heuristic found the best solution value among all the

others for a set of instances.

• The Avg-Rank defines a classification for the heuristics as follows. The heuristic that produces the

best solution value among all the others receives the rank number 1, the heuristic which finds the

second best solution value receives the rank number 2 and so on. If two heuristics find a similar

solution value, then both will be set with the average of the corresponding individual ranks. For

example, if three heuristics found the second best solution value, instead of receive the ranks 2, 3

and 4, both will have a rank value equals to (2 + 3 + 4)/3 = 3. The average of all Avg-Rank for

every heuristic, considering all instances, indicates the average classification of a heuristic among

all the others.

The ranking analysis for each set of instances are presented in Table 8, where the best results are in

bold. In the cell K\W, W indicates the criteria for work-troops (scheduling), and K indicates the criteria

for dump trucks (routing).

Results for S1 instances indicate that the best Abs-Ranks and Avg-Ranks are respectively LDF for

the scheduling and STTF for the routing, and MDF for the scheduling and GDTTF for the routing. Con-

cerning the set S2 of instances, the best Abs-Rank and Avg-Rank are respectively MDF for the scheduling

and STTF for the routing, and STTF for the scheduling and routing. Some greedy criteria overcome

the others in terms of rankings in the two set of instances (STTF and MDF), although with different

matches (LDF-STTF, MDF-GDTTF, MDF-STTF, STTF-STTF) for the two levels of optimization and

according to the set of instances. This is the case of MDF for the scheduling level of decision, which has

obtained the best absolute ranking for S2 and the best average ranking for S1; and STTF for the routing,

which obtained the best absolute ranking for both S1 and S2.

To summarize, the highlighted heuristics of the four matches LDF, MDF, STTF and GDTTF are

used in the metaheuristics tuning. This allowed us to reduce the number of possible combinations.
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Abs-Rank Avg-Rank

K
W

LDF MDF STTF GTTF SDTTF GDTTF LDF MDF STTF GTTF SDTTF GDTTF

S1

LDF 1 1 0 1 12 0 19.84 29.17 24.97 21.12 14.92 23.04
MDF 0 6 0 0 0 0 29.29 19.24 27.99 20.66 26.96 29.40

STTF 17 13 5 0 5 0 12.34 11.09 11.99 23.22 20.71 12.63
GTTF 0 0 0 1 0 0 34.87 35.78 33.09 20.19 25.91 34.81

SDTTF 0 0 0 1 0 0 34.52 35.53 32.06 19.33 16.52 33.30
GDTTF 10 15 0 0 0 3 14.91 10.49 17.14 21.99 24.93 11.93

LTF 9 6 3 2 3 2 11.04 11.07 11.29 11.54 11.06 11.09

S2

LDF 0 0 0 0 0 0 30.65 30.52 15.84 13.91 20.74 21.27
MDF 0 0 0 0 0 0 31.37 30.10 16.77 15.61 27.14 27.69

STTF 10 21 12 6 5 4 6.44 6.07 5.78 6.56 7.67 8.10
GTTF 0 0 0 0 0 0 40.36 40.65 25.37 24.53 36.29 36.43

SDTTF 0 0 0 0 0 0 40.35 40.48 22.38 22.17 33.52 32.98
GDTTF 7 8 1 2 0 0 6.83 6.52 10.07 9.54 16.38 13.56

LTF 0 0 6 6 0 0 27.63 27.00 12.02 11.81 21.50 22.42

Table 8: Ranking analysis for greedy criteria in both sets.

5.2.3. Metaheuristics tuning

The metaheuristics tuning were done using the Iterated racing for automatic algorithm configuration

(IRACE) package (López-Ibánez et al., 2016), which works with a machine learning mechanism. The set

of instances S1 was used to tune the following parameters:

(a) considering the initial solutions, the four criteria (LDF, MDF, STTF and GDTTF) mentioned in

Section 5.2.2 were used for both scheduling and routing.

(b) two types of local search: BI and FI.

(c) stopping criteria considering {50, 60, 70, 80, 90, 100} iterations without improving the best solution

found by the corresponding heuristic.

The tuning was done considering the three topologies in order to find the parameters which raise the

best results for each one. Results are presented in Table 9.

Topology cWT cK cI cK’ stopping criterion

C STTF STTF FI STTF 100
R STTF GDTTF BI STTF 90
M STTF LDF FI STTF 100

Table 9: Parameters calibrated by IRACE.

The results indicate the unique parameter that differs between the cluster and mix topologies is the

cK criterion. It is noticeable that the random topology has a set of different parameters from the others

ones such as cK, cI and the stopping criterion.
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5.2.4. Heuristics comparison

The tuning results described in Section 5.2.3 are used in these experiments, where the goals are to

analyse performance of the proposed methods: GCH, RCH (using a fixed execution time of 20 seconds

as stopping-criterion), LNS-GG and LNS-RG. For the methods RCH, LNS-GG and LNS-RG, the results

consider the best outcome of 10 different runs for each instance, using different seeds.

The results for S1 and S2 are showed in the Tables 10, 11 and 12 respectively for instances with

cluster, random and mix topologies. As mentioned in Section 5.1, S1 and S2 contain 90 instances each,

resulting in a total of 180 instances. In Tables 10, 11 and 12, results are presented by topology, and each

line represents 6 instances. The rows with Avg. [Total] indicate the average or whenever it applies, the

total values in brackets. The best results are highlighted in boldface.

It worth mentioning that a solution is considered better when it has the smallest value of F1 (working

days), or in case of a tie, when it has the smallest value of F2 (total travel time). A deviation and a

relative deviation are computed between the obtained solution and the best known one respectively for

the first and the second objectives, as indicated in Equations (22) and (23).

Dev = Fm
1 −Fb

1 (22)

Dev(%) =
Fm

2 −Fb
2

Fb
2

× 100 (23)

The two first columns in Tables 10, 11 and 12 are the instances characteristics. Then, for each method,

the following data are given. Nb best depicts the number of best known (b.k.) solutions; α shows the Dev

average for 6 instances of each line; β provides the Dev(%) average of 6 instances for each line, and t(s)

gives the average running time in seconds. A method is considered better according to a lexicographical

order of Nb best, α and β.

Table 10 presents the results for the cluster topology. According to the results, LNS-RG found 70% of

the b.k. solutions, with an average deviation for the scheduling and routing of respectively 0.40 working

days and 0.53% for the total travel time of dump trucks, and with an average execution time of 300.06

seconds. LNS-GG reached about 38% of the b.k. solutions, with an average deviation of 0.48 working

days and 1.67% for the total travel time, and an average execution time of 346.78 seconds. The method

RCH obtained about 7% of the b.k. solutions and the GCH did not find any b.k. solution.

In Table 11, the results for random topology are depicted. Regarding the results, LNS-RG achieved

about 67% of the b.k. solutions, with an average deviation of 0.55 for the working days. It obtained

1.13% for the total travel time of the dump trucks, consumed an average execution time of 259.90 seconds.

LNS-GG obtained 35% of the b.k. solutions, with an average deviation of 0.68 for the working days and

2.60% for the total travel time, and with an average execution time of 273.20 seconds. RCH found 10%

of the b.k. solutions and GCH did not find any b.k. solution.
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Instances GCH RCH LNS-GG LNS-RG

|D| Nb best α β t(s) Nb best α β t(s) Nb best α β t(s) Nb best α β t(s)

S1

10 0 0.33 1.72 ∼ 0 4 0.00 0.06 20 1 0.33 0.59 ∼ 0 5 0.00 0.04 20
20 0 2.17 7.39 ∼ 0 0 0.83 2.78 20 6 0.00 0.00 0.03 3 0.17 0.40 20
30 0 1.17 2.74 ∼ 0 0 0.33 1.38 20 6 0.00 0.00 0.15 0 0.33 1.38 20
40 0 4.67 7.64 ∼ 0 0 3.50 5.71 20 4 0.33 0.07 0.30 4 0.17 0.22 20
50 0 6.67 6.94 ∼ 0 0 3.67 3.79 20 6 0.00 0.00 0.63 0 3.33 3.27 20

S1: Avg. [Total] [0] 3.00 5.29 ∼ 0 [4] 1.67 2.75 20 [23] 0.13 0.10 0.22 [12] 0.80 1.06 20

S2

100 0 0.50 7.74 ∼ 0 0 0.83 16.56 20 0 0.17 1.46 8.35 6 0.00 0.00 27.12
200 0 1.00 9.77 ∼ 0 0 2.50 24.09 20 0 0.33 3.03 69.38 6 0.00 0.00 88.47
300 0 2.17 12.01 0.17 0 4.17 22.33 20 0 1.17 4.31 331.30 6 0.00 0.00 258.07
400 0 2.67 8.59 0.17 0 7.50 23.39 20 0 1.17 3.04 920.88 6 0.00 0.00 799.30
500 0 3.33 8.15 ∼ 0 0 8.50 23.26 20 0 1.33 4.34 2136.78 6 0.00 0.00 1727.65

S2: Avg [Total] [0] 1.93 9.25 0.07 [0] 4.70 21.92 20 [0] 0.83 3.23 693.34 [30] 0.00 0.00 580.12

C: Avg. [Total] [0] 2.47 7.27 0.03 [4] 3.18 12.34 20 [23] 0.48 1.67 346.78 [42] 0.40 0.53 300.06

Table 10: Results for the approaches in the instances with cluster topology.

Instances GCH RCH LNS-GG LNS-RG

|D| Nb best α β t(s) Nb best α β t(s) Nb best α β t(s) Nb best α β t(s)

S1

10 0 1.00 3.59 ∼ 0 6 0.00 0.00 20 1 0.33 1.33 0.03 6 0.00 0.00 20
20 0 2.67 8.98 ∼ 0 0 1.17 4.36 20 2 0.17 0.56 0.07 4 0.00 0.49 20
30 0 3.50 10.29 ∼ 0 0 2.17 7.06 20 6 0.00 0.00 0.15 0 0.50 1.63 20
40 0 5.50 7.21 ∼ 0 0 3.50 4.72 20 6 0.00 0.00 0.28 0 2.17 3.82 20
50 0 7.50 11.09 ∼ 0 0 4.33 6.53 20 5 0.17 0.07 0.55 1 2.83 5.23 20

S1: Avg. [Total] [0] 4.03 8.23 ∼ 0 [6] 2.23 4.54 20 [20] 0.13 0.39 0.22 [11] 1.10 2.23 20

S2

100 0 0.67 9.35 ∼ 0 0 1.00 18.45 20 1 0.17 2.08 8.12 5 0.00 0.10 26.35
200 0 1.33 9.91 ∼ 0 0 2.17 19.91 20 0 1.33 6.60 58.78 6 0.00 0.00 75.20
300 0 2.33 11.69 0.17 0 4.17 22.17 20 0 1.83 5.94 266.47 6 0.00 0.00 185.58
400 0 2.00 6.92 ∼ 0 0 6.00 19.80 20 0 1.17 4.25 701.35 6 0.00 0.00 648.50
500 0 2.83 8.64 ∼ 0 0 8.50 23.26 20 0 1.67 5.13 1696.15 6 0.00 0.00 1563.38

S2: Avg. [Total] [0] 1.83 9.30 0.03 [0] 4.37 20.72 20 [1] 1.23 4.80 546.17 [29] 0.00 0.02 499.80

R: Avg. [Total] [0] 2.93 8.77 0.02 [6] 3.30 12.63 20 [21] 0.68 2.60 273.20 [40] 0.55 1.13 259.90

Table 11: Results for the approaches in the instances with random topology.

Table 12 shows the results for the mix topology. Concerning the results, LNS-RG obtained 75% of

the b.k. solutions an average deviation of 0.30 for working days and 1.32%. In addition, it obtained

an average execution time of 303.85 seconds. LNS-GG achieved about 33% of the b.k. solutions, with

an average deviation of 1.23 working days and 2.84% for the total travel time, in an average execution

time of 344.25 seconds. RCH obtained about 13% of the b.k. solutions and GCH did not find any b.k.

solution.

We noticed that the improvements obtained using the LNS-RG and LNS-GG methods when compared

with the other methods become very relevant whenever the instances increase and in particular for S2.

For instance, on average, the solutions obtained by the LNS-RG are for the cluster topology up to 4.70

better that the others considering the working days, and about 21.92% of total travel time. A quite

similar result is found for the other topologies: improvements of up to 4.37 working days and 20.72% of

total travel time for the random topology, and improvements of up to 4.73 working days and 22.70% of

total travel time for mix topology. Not surprisingly, the metaheuristics LNS-RG and LNS-GG require

more execution time. Their average time increases with the instance size, and the number of iterations

in the stopping-criterion. The more time consuming instances were the ones with |D| = 500, with up to

2241.28 seconds for the instances with mix topology.
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Instances GCH RCH LNS-GG LNS-RG

|D| Nb best α β t(s) Nb best α β t(s) Nb best α β t(s) Nb best α β t(s)

S1

10 0 0.83 6.11 ∼ 0 6 0.00 0.00 20 3 0.17 1.15 ∼ 0 6 0.00 0.00 20
20 0 1.00 4.06 ∼ 0 0 0.50 2.79 20 3 0.00 0.28 0.08 5 0.00 0.15 20
30 0 2.83 9.68 ∼ 0 0 1.67 7.48 20 5 1.33 2.72 0.17 1 0.67 4.84 20
40 0 4.50 13.96 ∼ 0 0 3.00 11.45 20 3 1.00 5.89 0.35 3 0.33 1.95 20
50 0 5.50 11.17 ∼ 0 0 2.83 7.65 20 6 0.00 0.00 0.68 0 2.00 6.29 20

S1: Avg. [Total] [0] 2.93 9.00 ∼ 0 [6] 1.60 5.87 20 [20] 0.50 2.01 0.26 [15] 0.60 2.65 20

S2

100 0 0.50 11.85 ∼ 0 0 1.00 21.93 20 0 0.17 2.29 8.72 6 0.00 0.00 26.92
200 0 1.67 10.14 ∼ 0 0 2.17 20.11 20 0 1.00 2.80 101.55 6 0.00 0.00 73.58
300 0 3.50 3.74 ∼ 0 2 4.00 14.30 20 0 5.00 3.57 213.85 6 0.00 0.00 197.00
400 0 3.67 11.83 0.17 0 7.67 28.93 20 0 1.83 3.58 875.78 6 0.00 0.00 833.32
500 0 3.83 12.07 ∼ 0 0 8.83 28.25 20 0 1.83 6.14 2241.28 6 0.00 0.00 1807.63

S2: Avg. [Total] [0] 2.63 9.93 0.03 [2] 4.73 22.70 20 [0] 1.97 3.68 688.24 [30] 0.00 0.00 587.69

M: Avg. [Total] [0] 2.78 9.46 0.02 [8] 3.17 14.29 20 [20] 1.23 2.84 344.25 [45] 0.30 1.32 303.85

Table 12: Results for the approaches in the instances with mix topology.

To summarize, it is noticeable that LNS-GG works better for the S1 instances, while the random

aspects play a key role for large ones. This is supported by the results obtained for S2 instances considering

the three topologies, where the LNS-RG results overcome the other heuristics.

For the sake of reproducibility, Table 13 depicts the best known solutions found among the proposed

methods for each instance. For S1 and S2, the inner columns refer to the instances characteristics and the

topologies. For each topology the left and right values correspond, respectively, the number of working

days (F1) and the total travel time (F2). The values in boldface represent the optimum for F1.

S1 S2

Instances Topologies Instances Topologies

T W |K| |D| |L| C R M T W |K| |D| |L| C R M

40

2 2

10 2

20 1128 20 1299 18 1031

480

5 5

100 3

24 34263 26 38982 25 34862
3 3 13 1122 13 1291 12 1012 6 6 20 34876 22 38355 21 34917
4 4 10 1123 10 1291 9 1012 7 7 18 34474 19 38570 18 34593
2 4 10 1143 11 1327 10 1078 5 10 20 38376 20 41823 20 39154
3 6 7 1137 7 1299 6 1040 6 12 17 38284 17 42224 17 39202
4 8 5 1133 5 1291 5 1040 7 14 15 38358 15 42138 15 39179

40

2 2

20 2

36 2102 37 2335 41 2372

480

5 5

200 3

48 66651 52 76275 57 87113
3 3 24 2102 25 2335 27 2350 6 6 40 66265 44 76925 48 86370
4 4 18 2102 19 2353 21 2372 7 7 35 67079 38 76867 42 86715
2 4 19 2180 21 2523 22 2438 5 10 40 77081 40 83771 40 94073
3 6 13 2130 13 2415 14 2394 6 12 34 76560 34 83810 34 93129
4 8 10 2130 10 2409 11 2390 7 14 29 76147 29 83245 29 93804

55

2 2

30 2

55 4707 42 3688 37 3284

480

5 5

300 3

80 120301 83 125995 87 133370
3 3 37 4690 28 3662 24 3220 6 6 68 121922 70 125466 74 133212
4 4 28 4712 21 3682 19 3252 7 7 59 121077 60 125451 65 134153
2 4 29 4823 25 3985 22 3545 5 10 60 131179 60 135952 60 146215
3 6 19 4747 16 3844 14 3450 6 12 50 130958 50 136979 51 174774
4 8 14 4745 12 3812 11 3420 7 14 43 130308 43 135709 43 176498

60

2 2

40 2

75 6801 79 7981 52 5019

720

5 5

400 3

99 249391 103 261004 98 233048
3 3 50 6801 54 8019 34 4969 6 6 82 248549 85 260457 82 234334
4 4 38 6801 40 8005 26 4983 7 7 72 251401 73 258502 70 234814
2 4 40 7051 43 8263 31 5508 5 10 80 284626 80 286304 80 267413
3 6 25 6823 28 8093 19 5178 6 12 67 284409 67 285232 67 267634
4 8 19 6867 21 8115 15 5303 7 14 58 282679 58 284142 58 268467

65

2 2

50 2

100 11074 85 9033 65 6808

720

5 5

500 3

117 289758 122 300937 117 278882
3 3 67 11083 56 9002 43 6711 6 6 98 290019 101 300270 99 277250
4 4 51 11111 43 9038 33 6793 7 7 85 288885 88 301550 84 277863
2 4 53 11220 46 9357 35 7152 5 10 100 328747 100 337103 100 310085
3 6 34 11196 31 9372 24 7124 6 12 84 327984 84 335356 84 308406
4 8 26 11167 23 9283 18 7031 7 14 72 326016 72 334462 72 306848

Table 13: Best known solutions among all the methods for each instance.
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5.2.5. Robustness of the proposed heuristics

Time-to-target (TTT plots) proposed by (Aiex et al., 2002, 2007) are used in this section to analyse the

robustness of the LNS-GG and LNS-RG. TTT plots compute the running time for a heuristic to find a

solution at least as good as a target one for a given instance. A total of 100 independent execution for

each heuristic were done using different seeds. Then, running times are sorted in an ascending order list.

It important to highlight that the LNS-GG has random components in the local search moves.

TTT plots are built using a probability ρi = (i−1/2)/100, i = {1...100}, associated with every result.

The points (τi, ρi) are plotted for i = {1, ..., 100}, where τi is the running time for the ith solution in the

sorted list. Figure 4 depicts TTT plots for six instances: one instance from S1 and another from S2, for

each of each topology. The target solution should not be too easy, nor too difficult to reach, hence, for

each instance, a deviation in the b.k. solution up to 10% for F1 and F2 was fixed to obtain the target

values. The axes x and y indicate respectively τi and ρi to reach the target value. The more straight the

plot is, the higher probability to reach the target value is. Moreover, the closer to the y axis the plot is,

the faster the method is.

Figures 4-(a), 4-(c) and 4-(e) depict TTT plots for three S1 instances, respectively, for cluster, random

and mix topologies. Results indicate LNS-GG performed better than LNS-RG : TTT plots are closer

to the y axis, but the plots have a few disruptions. This indicates the method is sensitive to some seeds

and did not found a solution that reached the target value. Figures 4-(b), 4-(d) and 4-(f) show TTT

plots for three S2 instances, using cluster, random and mix topologies. It is noticeable that after 20

seconds necessary to generate the initial solution using LNS-RG, this method reached target values very

fast. LNS-GG has limitations to reach target values for large instances, consuming more time and a

considerable sensibility to some seeds. For the former aspect, this can be observed by the position of

the plots, and for the latter one, it can be seen by a lack of solutions for some seeds, generating some

disruptions in the plot. Clearly, results indicate the robustness (fast and not sensible to the seeds) of the

LNS-RG over the LNS-GG for larger instances.

6. Theoretical contributions and insights

In this section, we summarize the main theoretical contributions, results and insights obtained with this

research. The formalization of SRP-CD by means of a mathematical model, the development of heuristics

and the large set of experiments have allowed us to observe interesting theoretical issues described in the

sequel.

The proposed mathematical model is based on dynamic multi-flow and was validated on small in-

stances. To our knowledge, considering all parameters focused in this study, this is the first formulation

integrating scheduling and routing for SRP-CD. In spite of its limits on solving medium instances, the

flow indexed over the time allowed to further address the two levels of synchronization.

Results showed that the mathematical model solved small instances with up to 4 WTs, up to 8 dump
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(a) (b)

(c) (d)

(e) (f)

Figure 4: Analyzes of TTT plots of instances with cluster (a,b), random (c, d), and mix (e, f) topologies.

trucks and up to 10 debris nodes. For these cases, the model was able to produce optimal solutions for F1,

while obtained feasible solutions for F2 within a reasonable computational time. This clearly indicates

that F2 is rather difficult to be solved optimally by means of MILP. In addition, as the sensibility

analysis suggest, the volume of debris plays a key role on the ability of the formulation to solve the

problem. Instances with more than 10 debris nodes and a higher volume of debris are not solved by the
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mathematical formulation due to the computational time or memory limitation. This is a consequence of

the amount of resources (WT, vehicles and time periods) required to address more debris. This aspect is

traduced in the mathematical formulation as more variables and constraints, and in the overall problem

as an increase on the combinatorial aspects.

The experimental analysis was applied as a methodology to evaluate the heuristics. This has been done

since is still an open question to know why some heuristics perform better than others. Results show that

LNS-RG overcame the other heuristics in three topologies. For instances with a cluster topology, LNS-RG

found 70% of the best known solutions, while LNS-GG reached about 38% of the best known solutions.

For instances with a random topology, LNS-RG achieved about 67% of the best known solutions, and

LNS-GG obtained 35% of the best known solutions. And, for instances with a mix topology, LNS-RG

found 75% of the best known solutions, while LNS-GG achieved about 33% of the best known solutions.

LNS-RG has been shown to better perform and be more robust for larger instances in relation to the

proposed methods.

The aforementioned theoretical issues open several avenues of opportunities in order to address a

more efficient resource management and a faster recovery in the context of SRP-CD applications. One

may note that using less resources (WT and vehicles) leads to a smaller cost, but increases the number

of working days for the overall cleaning. Moreover, the fact that the volume of debris appears as a key

point, it might imply in a multi-year governmental budgetary and operational planning.

7. Concluding remarks and perspectives

This study brings several contributions for the integrated Scheduling vehicle Routing Problem to Clean

Debris (SRP-CD) in the aftermath of major disasters: a mathematical formulation with two levels of

synchronization (between WT and dump trucks, and among dump trucks), including two temporal scales

(working day and time horizon), and having two objectives functions (one to minimize the total number

of working days and another to minimize the vehicle routing costs); several constructive heuristics, meta-

heuristics, and a data generation for which three topologies (random, cluster, and mix) are proposed.

Moreover, extensive computational experiments have been done to measure performance and robustness

of the proposed methods. The metaheuristic parameters were calibrated using IRACE that is a machine

learning based method.

In addition, this study opens several avenues of research. Several open questions were raised concerning

the integration of other optimization problems according to the volume of debris. This is the case of the

scheduling coupled to the SDVRP problem, or either the transition between SRP-CD (RCPSP and

FTVRP) and the integrated RCPSP and SDVP. Other issues like giving a priority to debris nodes can

also be taken into account. In case of a high volume of debris, other approaches like sorting and valorizing

debris, by direct use or recycling, could also be investigated. In terms of methods, hybrid ones and new

local searchers can be proposed. In particular, there is room to improve the routing part of the SRP-CD.
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Lorca, Á., Çelik, M., Ergun, Ö., & Keskinocak, P. (2017). An optimization-based decision-support tool

for post-disaster debris operations. Production and Operations Management , 26 , 1076–1091.

Miller, C., Tucker, A., & Zemlin, R. (1960). Integer programming formulations and traveling salesman

problems. Journal of the ACM , 7 , 326–329.

32



Moreno, A., Munari, P., & Alem, D. (2019). A Branch-and-Benders-Cut algorithm for the crew scheduling

and routing problem in road restoration. European Journal of Operational Research, 275 , 16–34.

Pisinger, D., & Ropke, S. (2010). Large neighborhood search. In Handbook of Metaheuristics (Gendreau,

Michel and Potvin, Jean-Yves, eds.) (pp. 399–419). Springer.

Prodhon, C., & Prins, C. (2014). A survey of recent research on location-routing problems. European

Journal of Operational Research, 238 , 1–17.

Sakuraba, C. S., Santos, A. C., Prins, C., Bouillot, L., Durand, A., & Allenbach, B. (2016). Road

network emergency accessibility planning after a major earthquake. EURO Journal on Computational

Optimization, 4 , 381–402.

Sayarshad, H. R., Du, X., & Gao, H. O. (2020). Dynamic post-disaster debris clearance problem with

re-positioning of clearance equipment items under partially observable information. Transportation

research part B: methodological , 138 , 352–372.

Shaw, P. (1998). Using constraint programming and local search methods to solve vehicle routing prob-

lems. In International conference on principles and practice of constraint programming (pp. 417–431).

Springer, Pisa, Italy, October 26-30.

Shin, Y., Kim, S., & Moon, I. (2019). Integrated optimal scheduling of repair crew and relief vehicle after

disaster. Computers & Operations Research, 105 , 237–247.
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Appendix A. Supplementary material

This appendix is devoted to present the acronyms used in the document.

Appendix A.1. Acronyms

BI - Best Improvement

C - Cluster

cK’ - Criterion for dump truck in the insertion - LNS

cK - Criterion for dump truck

CSRP - Crew Scheduling Routing Problem

cWT - Criterion for WT

FI - First Improvement

FTPDP - Full Truck Load Pickup and Delivery Problem

FTVRP - Full Truck load Vehicle Routing Problem

GCH - Greedy Constructive Heuristic

GDTTF - Greater Ratio (Debris/Travel Time) First

GTTF - Greater Travel Time First

IRACE - Iterated racing for automatic algorithm configuration

LDF - Less Debris First

LNS-GG - Large Neighborhood Search - Greedy Greedy

LNS-RG - Large Neighborhood Search - Random Greedy

LNS - Large Neighborhood Search

LTF - Less Trucks First

M - Mix

MDF - More Debris First

MILP - Mixed Integer Linear Programming

OPM - Open Pit Mining

PDP - Pickup and Delivery problem

R - Random

RCH - Random Constructive Heuristic

RCPSP - Resource-Constrained Project Scheduling Problem

SDTTF - Smaller Ratio (Debris/Travel Time) First

SDVRP - Split Delivery Vehicle Routing Problem

SRP-CD - Scheduling routing problem to clean debris

STTF - Smaller Travel Time First

TTT - Time-to-target

WT - Work-troops
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