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Abstract. Pre-training of deep neural networks has been abandoned in
the last few years. The main reason is the difficulty to control the over-
fitting and tune the consequential raised number of hyper-parameters. In
this paper we use a multi-task learning framework that gathers weighted
supervised and unsupervised tasks. We propose to evolve the weights along
the learning epochs in order to avoid the break in the sequential transfer
learning used in the pre-training scheme. This framework allows the use
of unlabeled data. Extensive experiments on MNIST showed interesting
results.

1 Introduction

In many real life applications, acquiring unlabeled data is easy and cheap in the
opposite of labeled data, where manual annotation costs money and time. Many
approaches, such as semi-supervised learning, have been adopted to benefit from
unlabeled data as an inductive bias to improve the generalization of the learned
model [1, 2, 3, 4]. Most of these algorithms are based on: (i) a sequential transfer
learning where unsupervised training is done separately using the unlabeled data
followed by a supervised training. (ii) shallow architectures where there is only
one or two transformations of the input to predict the output.

Deep neural networks (DNN) can also benefit from unlabeled data. Usually,
only one task is performed at each hidden layer. One can think of involving
multiple tasks at each layer [5, 6]. Sharing the hidden representations allows
learning better features for the generalization. [7, 8, 9, 10] proposed an unsuper-
vised auxiliary task based on a layer-wise training which leads to the concept of
pre-training which is a sequential transfer learning consisting of an unsupervised
task followed by a supervised task. Tow main drawbacks to this scheme are: (i)
the difficulty to control the over-fitting that may happen in the unsupervised
task which damages the parameters used for the supervised task. (ii) the large
number of hyper-parameters one needs to tune. One cause is that both tasks
are optimized separately. A natural way to solve this issue is to learn both tasks
simultaneously.

The work presented in this paper is mainly inspired by [11], where the authors
propose to code an auxiliary task in each layer based on similarity preservation
and manifold assumption. It is a regulation scheme based on parallel transfer in
Multi-Task Learning (MTL) in place of the traditional pre-training technique.

∗This work has been partly supported by the ANR-11-JS02-010 project LeMon.
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Here, a similar MTL framework learns an unsupervised and a supervised tasks
simultaneously except that the auxiliary unsupervised task is achieved by a set
of auto-encoder reconstruction functions. Auto-encoders follows the work of [12]
who combines the idea of input corruption [13, 14] with layer-wise training which
leads to the denoising.

Moreover, we propose to balance both tasks using evolving weights along the
learning epochs. Thus, the traditional pre-training scheme is a special case of
our framework when setting the weights in a particular setup.

Our approach allows easily a better generalization and fast training of DNN.
It gives interesting results on MNIST dataset.

2 Proposed model

The approach is formulated as a multi-task learning (MTL) framework [6] that
gathers a main and a secondary task. Let us consider a training set D =
{(x1, y1), . . . , (xl, yl), (xl+1,—), . . . , (xl+u,—)} where the l first examples are la-
beled and the u last examples are unlabeled;M and R the prediction/regression
function of the main and secondary task, respectively; Cs and Cr their respective
costs.

The main task is a supervised task with parameters w = {wsh,ws} where
ws is a set of parameters proper to the main task; and with criterion Js,

Js(D;w = {wsh,ws}) =
l∑
i=1

Cs(M(xi;w), yi) . (1)

The secondary task is a reconstruction task with parameters w′ = {wsh,wr}
where wr is a set of parameters proper to the reconstruction task; and with
criterion Jr,

Jr(D;w′ = {wsh,wr}) =

l+u∑
i=1

Cr(R(xi;w
′), xi) . (2)

Both tasks share the set of parameters wsh. Our purpose in using both
tasks in the same framework, is that we hope that the secondary task improves
the main task. The importance of both tasks is balanced using the importance
weights λs and λr for the main and secondary task, respectively.

The full objective of our model can be written as,

J (D; {wsh,ws,wr}) = λs · Js(D; {wsh,ws}) + λr · Jr(D; {wsh,wr}) . (3)

We propose to evolve the importance weights λs and λr along the optimiza-
tion iterations. The intuition is to give more importance to the secondary task in
the first learning epochs, but keep the main task present to avoid large damage
of wsh. The main task is the final target, thus, the importance of the main task
is increased and the importance of the secondary task is decreased through the
learning epochs (Fig.1).
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The new criterion becomes,

J (D; {wsh,ws,wr}) = λs(t) ·Js(D; {wsh,ws})+λr(t) ·Jr(D; {wsh,wr}) , (4)

where t ≥ 0 indicates the learning epochs. For the sake of a fair comparison
between different models in the experiments, weights are constrained such that
∀t ≥ 0: 0 ≤ λs(t) ≤ 1, 0 ≤ λr(t) ≤ 1 and λs(t) + λr(t) = 1. These conditions
are not mandatory in an MTL [6, 15]. By doing this, we make sure that the
observed benefit in our approach is not due to any boost of the learning rate
in the optimization of Eq.4, as the learning rate has a direct relation with the
importance weight.

3 Implementation details

3.1 The reconstruction task

In practice, the main task is achieved by a neural network NN with K hidden
layers. The secondary task is achieved by a set of K reconstruction functions,
each one is represented by a denoising auto-encoder (DAE). We recall that a
DAE is a 2-layers neural network (a coding layer followed by a decoding layer).
The kth DAE has a set of parameters wdae,k = {wc,k,wd,k} where wc,k and wd,k

are respectively the parameters of the coding and decoding layers, and a noise
function f (a binomial for instance) which is used to corrupt the input. In this
case, all the parameters wc,k, 1 ≤ k ≤ K are shared with the supervised task
which allows a parallel transfer learning. We set wr = {wdae,1, . . . ,wdae,K}.
Each DAE is provided with its own cost function Cdae,k. The criterion of the
secondary task can be written in this case as,

Jr(D;wr) =
l+u∑
i=1

K∑
k=1

Cdae,k(R(f(xi,k−1);wdae,k), xi,k−1) , (5)

where x∗,k is the representation at the kth layer of NN (x∗,0 is the original in-
put). For the sake of simplicity, we consider that all the reconstruction functions
have the same importance weight λr(t). One may think to associate different
importance weights to each one.

3.2 Evolution of the importance weights along learning

Four different ways to evolve the importance weights through learning epochs
(Fig.1) are studied in this work: • Stairs schedule : the traditional pre-training
scheme referenced as stairst1 where λs(t) = 0 and λr(t) = 1 before an iteration
t1 and λs(t) = 1 and λr(t) = 0 after. • Linear schedule : the weights progress
linearly from the epoch 0 to the last training epoch; This case is referenced
as lin. • Abridged linear schedule : The linear trend can be stopped at an
iteration t1 then λs(t) and λr(t) are respectively saturated to 1 and 0 after that.
This case is referenced as lint1 . • Exponential schedule : the weights evolve

exponentially proportionally to exp
−t
σ , where t is the current number of epochs,

σ is the slope. This case is referenced as expσ.
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Fig. 1: Evolution of importance weights along training epochs

3.3 Optimization

Eq.4 is minimized by Stochastic Gradient Descent (SGD). Usually, in a case
where one has multiple tasks in one single objective, alternating between task
works well [6, 11, 16, 15]. The optimization technique is illustrated in Alg.1.

Algorithm 1 Training our model for one epoch

1: D is the shuffled training set. B a mini-batch.
2: for B in D do
3: Bs ⇐ labeled examples of B,
4: Make a gradient step toward Jr using B (update w′)
5: Make a gradient step toward Js using Bs (update w)
6: end for

4 Experiments

We evaluate our approach on the MNIST dataset for the classification task using
a similar protocol as in [11]. All the networks have the same input (282) and
output (10). We refer to each network by NNK where K is the number of hidden
layers. We use the following networks: • NN1: with size 50. • NN2: with size:
60, 50. • NN3: with size: 70, 60, 50. • NN4: with size: 80, 70, 60, 50.

Each network NNK is optimized once with only a supervised criterion Js.
The resulting classification test error is denoted as the baseline error. Starting
from the very same random neuron weights, each network NNK is also op-
timized with multi-task criteria following different weight schedules: stairs100
(traditional pre-training), lin100, lin and exp40. All the trainings end after 5000
epochs using a mini-batch size of 600 and a constant learning rate (0.01) which
is decreased over the last 500 epochs. Only for the stairs100 schedule, as in
traditional pre-training setup, we use a learning rate which is optimized on a
validation set to train the denoising auto-encoders. We used a custom version
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of Crino [17] for all the experiments. The error difference with the baseline er-
ror is displayed in Tab.1 for different sizes l and u of respectively labeled and
unlabeled sets (negative means better than baseline). For deeper networks, we
present only results using the schedule exp40, due to the lack of space.

In the case of shallow network (Tab.1a), one can see that our approach im-
proves the results using different schedules with a better global performance
using the exp40 schedule. One can also notice that the more we add labeled
data, the less we improve the result using our approach. In that case, we ob-
serve high values in the shared parameters wsh; that can be overcome throught
an l1, l2 regularization which is considered for future work. We notice also that
we do not improve the performance when using only labeled data (u = 0). One
explanation to this is that the observed improvement of our approach is mainly
due to the information contained in the extra unlabeled data.

In the case of deeper networks (Tab.1b), one can observe a global improve-
ment of the performance using our approach. We observe the same pattern when
using larger labeled data, but we obtain lower improvement.

Table 1: Classification error over MNIST test.
(Figures are in percentage and relative to their corresponding baseline error)

(a) Shallow neural network

Labeled l = 100 l = 103 l = 104

Architecture NN1 NN1 NN1

Baseline Error 31% 12.85% 9.08%

Unlabeled
Schedule

stairs100 lin100 lin exp40 stairs100 lin100 lin exp40 stairs100 lin100 lin exp40

u = 0 +0.03 +0.03 +1.32 +0.03 +0.03 0.0 +1.5 +0.05 +0.03 +0.01 +0.95 -0.04
u = 103 -0.1 -0.87 -0.19 -0.85 +0.09 -0.71 +0.33 -0.73 +0.03 -0.08 +0.85 -0.08

u = 2 ∗ 103 -0.17 -1.35 -1.03 -1.46 +0.009 -0.98 -0.23 -0.95 +0.03 -0.2 +0.74 -0.21
u = 5 ∗ 103 -0.16 -1.69 -1.78 -1.91 +0.05 -1.43 -0.95 -1.44 +0.03 -0.26 +0.31 -0.3
u = 104 -0.28 -2.21 -2.03 -2.21 0.0 -1.6 -1.12 -1.44 +0.01 -0.5 -0.1 -0.51

u = 2 ∗ 104 -0.28 -1.82 -2.26 -2.42 -0.02 -1.83 -1.46 -1.78 +0.01 -0.63 -0.44 -0.75
u = 4 ∗ 104 -0.46 -2.39 -2.62 -2.44 -0.049 -1.63 -1.37 -1.7 +0.01 -0.63 -0.63 -0.56

u = 5 ∗ 104 − l -0.19 -1.89 -2.03 -2.44 -0.06 -1.68 -1.56 -1.75 +0.01 -0.63 -0.63 -0.56

(b) Deeper neural networks

Labeled l = 100 l = 103 l = 104

Architecture NN2 NN3 NN4 NN2 NN3 NN4 NN2 NN3 NN4

Baseline Error 31.48% 33.58% 30.53% 12.32% 11.96% 12.54% 5.62% 5.69% 5.5%

Unlabeled
Schedule

exp40 exp40 exp40

u = 0 +0.01 -0.01 +0.03 +0.02 -0.08 -0.03 -0.11 -0.03 +0.08
u = 103 -1.05 -0.83 -0.92 -0.55 -0.58 -0.8 -0.2 -0.07 +0.12

u = 2 ∗ 103 -2.03 -1.35 -1.17 -0.78 -0.77 -1.18 -0.4 -0.01 +0.04
u = 5 ∗ 103 -2.32 -1.71 -1.31 -1.15 -1.23 -1.56 -0.54 -0.18 -0.04
u = 104 -2.26 -1.29 -0.72 -1.14 -1.29 -1.76 -0.75 -0.22 -0.24

u = 2 ∗ 104 -2.4 -0.78 -0.82 -1.25 -1.48 -1.88 -0.81 -0.41 -0.08
u = 4 ∗ 104 -2.12 -1.17 -1.65 -1.08 -1.3 -1.92 -0.81 -0.42 -0.55

u = 5 ∗ 104 − l -1.99 -1.23 -0.88 -1.23 -1.3 -1.85 -0.81 -0.42 -0.55

5 Conclusion

We presented in this paper a new learning scheme for deep neural networks
where we used a multitask learning framework that gathers a supervised and
unsupervised task. We proposed to evolve the weights of the tasks along the
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learning epochs using different schedules. Using less hyper-parameters, we im-
proved the performance of deep neural networks easily. As a future work, we
consider using l1, l2 regularization of the shared parameters. In the aim to set an
automatic framework, we consider using an early stopping on the reconstruction
task based on the error on the train and validation set.
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