
Gesture sequence recognition with one shot learned

CRF/HMM hybrid model

Selma Belgacema, Clément Chatelaina, Thierry Paqueta

aLITIS EA 4108, University of Rouen, Saint-Etienne du Rouvray, France

Abstract

In this paper, we propose a novel markovian hybrid system CRF/HMM
for gesture recognition, and a novel motion description method called gesture
signature for gesture characterisation. The gesture signature is computed using
the optical flows in order to describe the location, velocity and orientation of
the gesture global motion. We elaborated the proposed hybrid CRF/HMM
model by combining the modeling ability of Hidden Markov Models and
the discriminative ability of Conditional Random Fields. In the context
of one-shot-learning, this model is applied to the recognition of gestures in
videos. In this extreme case, the proposed framework achieves very interesting
performance and remains independent from the moving object type, which
suggest possible application to other motion-based recognition tasks.

Keywords: gesture recognition, one-shot-learning, hybrid system, hidden
Markov model, conditional random field, gesture characterisation.

1. Introduction1

Following the increasing demand for intuitive and simple human/computer2

interaction, the gesture analysis and recognition research field has received3

a lot of attention these last years. A gesture can be defined as a short4

human body motion, achieved primarily with arms. In some particular5

situations such as disability or constrained environment, the gesture is the6

only human/machine communication channel. This study falls into gesture7

characterization and recognition.8
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The recognition of gesture sequences combines both segmentation and9

classification. As stated by Sayre [1], segmentation and classification are two10

tasks that must be performed simultaneously. The segmentation step has to11

face the variability of the duration of gestures, while the classification step12

has to face the variability of instances of a same gesture.13

A video gesture can be represented in a simplified three-dimensional14

space consisting of its two-dimensional projection and its variation through15

time. The recognition system must be robust to recording environment16

variationssuch as changes in brightness, backgrounds, colors, objects, signer17

appearance (clothes, skin color, height, etc.).18

Markov models, which are widely applied to the recognition and segmenta-19

tion of sequential data, model the temporal dependencies in sequences. They20

are based on the Markovian assumption that accounts for the short-term21

dependencies only, omitting the long-term dependencies in the model.22

Although introducing some simplification in the model, generative Markov23

models such as Hidden Markov Models (HMM) [2] allow to introduce a24

temporal structure between classes representing a high-level knowledge such25

as a language model. The principle of the HMM is to model the observation26

generation based on some hidden states. Each observation only depends27

from the current hidden state (thus assuming observations to be conditionally28

independent between each other) and each hidden state only depends from the29

previous state (for an order 1 Markov model). Then, through the inference30

phase, the most likely sequence of hidden states that describes the given31

sequence of observations is determined using Viterbi algorithm [3]. On32

the other hand, HMM’s use Gaussian Mixtures (GM) to model the data33

distribution. When training data are too few, modeling becomes poor and34

inadequate with GMM, which is a major drawback of HMM’s. However,35

discriminative models, such as Conditional Random Fields (CRF) [4] which36

are also Markov models, can remedy this problem. The CRF model was37

proposed by Lafferty et al.[4] in 2001. It has some advantages that can address38

HMM problems.39

CRF’s have been designed in order to model the decision process of40

labelling a sequence. Therefore they account for the a posteriori probability41

of a particular sequence of labels. Similar to HMM’s, at each time step a label42

depends on the the previous label (Markov assumption), but may depend on43

the whole observation sequence making no requirement about the conditional44

independence of the observation data. As opposed to HMM, CRF are not45

able to model high level information such as a language model, or syntactical46
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rules. They are local classifiers in a sequential process. Thus, the high-level47

knowledge must be introduced in post-processing as an additional step of48

filtering in order to guaranty the structural labelling consistency. The HMM’s49

generative framework has this ability of coping with high level structuring50

information.51

Finally, if we compare the advantages and disadvantages of CRF and52

HMM, we find a certain complementarity between the two models. Therefore,53

in this work we propose to combine these two models in a hybrid framework,54

allowing the integration of knowledge while being robust to different sources55

of variability. We also propose to characterize gestures using an original56

global description of shapes and motions in the video frames. This method57

describes the location, the velocity and the direction of the motion, based on58

the optical flow velocity information. In one-shot gesture learning context,59

this system was tested using the ”Gesture Challenge 1-2 ” dataset proposed60

by ChaLearn 2011-2012 [5, 6]. We will show that the lack of training data is61

another problem which can be solved by Markov models to a certain extent.62

We will show mainly the principle of our hybrid model CRF/HMM and63

explain how we adapt it to the one-shot learning context, in order to cope with64

the lack of training data. We will describe also our gesture characterization65

model and present the experimental protocol and the evaluation of our system66

recognition results.67

2. Related works68

Human gesture analysis is an active research domain with a lot of applica-69

tions. Among them, many studies have been devoted to gesture recognition,70

especially the design of automatic systems for recognizing the sign language.71

Such systems would allow deaf people to better communicate with machines72

or with other humans.73

For gesture sequences recognition, the use of global parallel HMM models74

is common in the literature [7, 8, 9, 10, 11, 12]. For example Vogler et al. [7],75

Agris et al. [8] and Ong et al. [9] designed a parallel HMM model for signed76

sentences recognition. They distinguished gesture descriptors such as position,77

orientation and distance to facilitate the learning process of the HMM and78

optimize the use of these descriptors. This decomposition is manifested by79

the generation of one HMM for each descriptor and for each sub-unit of the80

model.81
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Another issue when dealing with real-world problem such as gesture82

recognition is the lack of labeled examples.83

Konecny [10] et al., Jackson [11] and Weiss [12] proposed a global84

HMM model for gesture sequences recognition using single-instance learning85

databases. The global model is a set of left-right interconnected HMM’s86

modeling each gesture. From each state of each HMM, it is possible to remain87

in that state or to jump to a subsequent internal or external state. In the88

model proposed by Jackson [11], each frame of the gesture video is represented89

by a state. This model remain complex due to the large number of states90

involved.91

The idea of combining HMM with other classification scheme is not92

new. Such hybrid framework is intended to introduce a better discrimina-93

tion between classes, than pure generative models can do. One of the first94

combination scheme was proposed in the 1990s by the integration of neural95

networks to HMM’s [13]. Such combination is prevalent in the literature in96

various fields. This type of hybrid models was applied to speech recogni-97

tion [14, 15, 16, 17, 18, 19], handwriting recognition [20, 21, 22, 23, 24, 25, 26]98

and gesture recognition [27]. HMM models have also been combined with99

SVM models for handwriting recognition [28] and with dynamic programming100

methods for gesture recognition [29]. We noticed that the application of these101

hybrid models to gesture recognition is recent and not much studied in the102

literature.103

To the best of our knowledge, the only work addressing CRF and HMM104

combination is the work of Soullard et al. [30], based on the work of Gunawar-105

dana et al. [31]. In this work, the authors constrain the learning step of a106

hidden CRF by initialising it with the parameters of a pre-trained HMM.107

This method ensures the convergence of the hidden CRF learning step and108

shows the difficulty of learning convergence of such models.109

The idea of our approach is different and is inspired from neuro-Markovian110

approaches. The principle of these approaches is to replace the HMM data111

model, consisting of a mixture of Gaussians, by a discriminative model that112

classifies local observations. This model is traditionally composed of a neural113

network which provides local posteriors associated to each local observation in114

the sequence. In this work, we propose the use of a CRF in order to perform115

this discriminative layer. The CRF layer will discriminate local observations116

and provide local class posteriors to the HMM layer. These local posteriors117

are then combined during the HMM decoding stage that integrates more118

global information embedded in the HMM transition model (known as the119
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language model). According to the principle of our hybrid model, the HMM120

learning step and the CRF learning step are performed separately. Details of121

the new hybrid model we propose are presented in section 3.122

3. Hybrid CRF/HMM model123

3.1. Overview of the CRF/HMM model124

In this section, we present our hybrid CRF/HMM system for gesture125

recognition. It combines the discriminative ability of CRF with the modeling126

ability of HMM. Combining the two models is performed in an easy and127

straightforward way derived from the literature. The discriminative CRF128

stage provides local class posterior probabilities that are fed to the HMM stage129

that account for more global constraints regarding the label sequence. Let us130

recall that a label is noted yt, corresponding to a gesture segment which can131

span over multiple video frames. An observation is noted xt, corresponding132

to a feature vector extracted from one frame. The feature vector is a real133

valued vector when using the first HMMs devoted to the frame labelling134

task (the dimension is the feature vector size, see experimental results). This135

feature vector is later quantified into multiple bins when used by the CRF136

(see section 3.3) for the gesture recognition task. Its size is defined in section137

4. The number of a sequence frames is noted T , it depends of the gesture size.138

y1:T and x1:T are respectively noted by Y , and X. Xd presents the quantified139

feature vector. Figure 1 shows the proposed hybrid system.140

Following this model, the HMM probability p(y1:T , x1:T ) (see Eq. 1)141

depends on the posteriors computed using the CRF.142

p(y1:T , x1:T ) = p(x1|y1)p(y1)
T∏
t=2

p(xt|yt)p(yt|yt−1) (1)

In the classic form of HMMs, p(xt|yt) is a Gaussian mixture. In our new143

model, this distribution will be, in some way, replaced by the categorical144

distribution p(yt|xt) computed by the CRFs. Indeed, p(xt|yt) is a likelihood,145

while the CRF outputs posteriors p(yt|xt). Therefore, p(xt|yt) is computed146

from p(yt|xt) using Bayes’ rule :147

p(xt|yt) =
p(yt|xt)p(xt)

p(yt)
(2)
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Figure 1: The graphical model CRF/HMM : the HMM joint probability p(y1:T , x1:T ) for
the observation sequence X and the state sequence y1:T is computed using CRF local class
posterior probabilities p(yt|xt)
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As every gesture class are considered to be equally likely, p(yt) is a constant148

∀t ∈ N. The aim of the decoding process is to find the state sequence y1:T149

that maximises p(y1:T , x1:T ). As the observation probability p(xt) is time150

independent, p(xt) is not involved in the maximization of p(xt|yt). Hence, the151

maximization of p(xt|yt) turns toward the maximization of p(yt|xt).152

Given that the CRF are able to take into account the whole observation153

sequence to compute the posteriors of each class, we assume that p(yt|xt) =154

p(yt|x1:T ) = p(yt|X) ∼= p(yt|Xd).155

This is computed within the CRF using the forward-backward algorithm156

[32], where the forward probability αt and the backward probability βt are157

computed using the following recurrences:158

αt(i) =
Ns∑
j=1

αt−1(j)ψt(si, sj, ol) (3)

βt(i) =
Ns∑
j=1

βt+1(j)ψt+1(si, sj, ol) (4)

where159

ψt(si, sj, ol) = exp(
K∑
k=1

λkfk(yt = si, yt−1 = sj, xt = ol)) (5)

and si, sj are hidden state that belong to S, and ol is an observation that160

belong to O. Finally, following the forward-backward procedure, we have:161

p(Xd) =
Ns∑
j=1

αT (j) =
Ns∑
j=1

β1(j) =
Ns∑
j=1

αt(j)βt(j) (6)

p(yt = si|Xd) =
p(yt = si, Xd)

p(Xd)
=

αt(i)βt(i)∑Ns

j=1 αt(j)βt(j)
= γt(i) (7)

3.2. Training the CRF/HMM model162

We chose to achieve a separate training of the HMMs and the CRF. As163

first stage, HMMs are trained with the standard Baum Welch algorithm which164

means that the target function is the likelihood of the global gesture model.165

Transition probability Matrices are learned separately for each gesture class,166
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and gathered into a global model for decoding gesture sequences. This model167

is described in section 3.5.168

In the second stage, CRF are trained with the classic LBFGS algorithm.169

As CRF do not benefit from an embedded training procedure like HMM, the170

target function of this training phase is the local frame level classe (state)171

posterior. Therefore local frame level labels are necessary. In this respect we172

introduce a frame level labelling stage that consists in using the HMM model173

of gesture trained on the dataset, in a forced alignment mode. The frame174

labels produced serve as the objective target of the of the cost function for175

training the CRF. During this second training phase the CRF learns a single176

model for all gestures, considering as many classes in the model as there are177

sub-gestures. The number of sub-gestures is equal to the number of states in178

the HMM model of gesture.179

The training chain is furthermore explained in figure 3.180

3.3. CRF/HMM adaptation to one-shot learning181

In this section, we focus on the learning of the recognition system using a182

unique sample per class. These learning conditions are interesting since the183

annotation efforts are extremely reduced in this case. Furthermore, using a184

single sample per class allows to speed up the learning process.185

The one-shot learning framework has been quite extensively used for186

gesture analysis and recognition [10, 11, 12, 33, 6]. These system are generally187

made of a standard recognition method that has been adapted to the one shot188

learning framework. We now describe the adaptation of our models (HMM189

and CRF) to one shot learning.190

To model the feature space, the HMM relies on Gaussian mixtures esti-191

mated on the learning database. When considering a very reduced number192

of samples, the parameters of the Gaussian distribution p(xt|yt) are very193

difficult to estimate, especially the variance. Therefore, first we limited the194

mixture to one Gaussian per gesture class. Second, the variance is computed195

on every gesture class in order to increase the amount of data and improve the196

estimation. Doing that, each gesture class has the same variance. Although197

these two tricks are a limitation of the initial method, the experiments showed198

the interest of such an adaptation.199

In its initial form, the CRF method is mathematically able to deal with200

either discrete or continuous features[34, 35]; however, since the CRF clas-201

sification stage is derived from a logistic regression, it is more adapted to202

discrete features than continuous [36]. This is even more true when the203
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number of samples is small. Indeed, in the context of one shot learning the204

loss of information induced by the discretization of continuous features may205

have a regularization effect when training the CRF with one single example.206

Feature quantization also allows to efficiently tune the parameters linked to207

each discrete feature value. Although quantization involves a loss of infor-208

mation, the integration of a large set of features allows to capture a global209

representation of the whole gesture. Therefore, we turned toward the use of a210

feature quantization procedure. Notice that some recent developments have211

introduced Hidden CRF models in order to cope with continuous features212

[37]. But such a framework would require more data than possible in the213

one-shot learning context.214

The quantification is achieved using a uniform scalar quantifier that maps215

each continuous feature into Nq discrete features, according to the following216

equation:217

Q : [−Vmax, Vmax] −→ [−Nq, Nq]
x 7−→ x×Nq

Vmax

(8)

We empirically tuned the value Nq in order to reach the best recognition218

performance using a validation procedure. We found that Nq = 16 was the219

best value.220

3.4. Structure and parametrization of the CRF/HMM model221

As for a standard HMM, the HMM of our hybrid structure is made of222

states describing each gesture. Although the gesture duration can be modelled223

through the state auto-transitions, it is known that a better modelization224

can be achieved by setting a variable number of states per gesture. We225

experimentally checked that this strategy outperforms the performance of226

the same system with a fixed number of states per gesture. The number of227

states of each gesture i is determined automatically depending on its frame228

length fg(i). The theoretical number of frames per state, denoted fs, is one229

hyper-parameter of the system. We denote the number of states of a gesture230

model i; Ne(i) = fg(i)/fs. As we already mentioned, we limit the data model231

to have only one Gaussian per state.232

The CRF part of our hybrid model has a standard linear structure, as233

shown in figure 1. The CRF training leads to a single model that discriminates234

all the gestures of the dataset. As explained in the previous section, the235

CRF formulation allows to consider an observation window, including the236
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current observation and a neighbouring context to be determined. To adapt237

the system to the gesture duration variability, we chose a variable size fw of238

the observation window wo (equation 9). fw is statistically estimated on the239

learning databases. In order to avoid overfitting the CRF, a regularization240

term has been empirically tuned to a value of 1.5.241

fw(wo(G)) = min(
3

4
min
g∈G

fg(g), threshold) (9)

3.5. Decoding using the CRF/HMM model242

The gesture sequence to recognize may contain an arbitrary number of243

gestures, in an arbitrary order. Therefore, the model should evenly switch244

between the gesture models. This can be modelled by gathering all the245

gesture model within a global sequence model, as shown in Figure 2. In this246

model, each line represents an isolated gesture, with a variable number of247

state. This global model allows to describe any arbitrary gesture sequence248

with equiprobable gesture transition probabilities.249

Figure 2: The recognition model of gesture sequences using HMM. sgij represents the state
j of the gesture i

3.6. CRF/HMM algorithm250

Algorithm 1 summarizes the training and decoding process of our hybrid251

CRF/HMM model for gesture sequences recognition. Table 1 details algorithm252

functions and variables description. GSHOG characterisation function extract253

features from videos using Gesture Signature and HOG methods explained in254
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section 4. CRF/HMM procedure is furthermore explained by the diagram255

represented in figure 3.256

Begin CRFHMMRecognition(Databases:videos):sequences
for all Databases do

for all GestClassVideos do
LFeatFile←GSHOG(GestClassVideo)

end for
BawmWelch(HMMParams,LFeatFiles)
UnifyHMMGaussVar(HMMParams.GaussVar)
LabGestClassVideos←Viterbi(HMMParams,LabList,LFeatFile)
QLFeatFiles←Quantify(LFeatFiles)
LBFGS(CRFParams,QLfeatFiles,LabGestClassVideos)
for all TestSeqVideos do

TFeatFile←GSHOG(TestSeqVideo)
end for
QTFeatFiles←Quantify(TFeatFiles)
PosterioriProbas←ForwardBackward(CRFParams,TFeatFiles)
GestSeqs←CRFHMMViterbi(HMMParams.TransitionProbas,
PosterioriProbas,LabList,SizeSeqs)

end for

End

Algorithm 1: CRF/HMM learning and decoding algorithm

257

Figure 3: The CRF/HMM training and decoding process diagram

11



Function Description
GSHOG feature extraction (see section 4)
BawmWelch HMM learning algorithm
UnifyHMMGaussVar HMM adaptation
Viterbi Learning videos labeling
Quantify CRF adaptation
LBFGS CRF learning method
ForwardBackward posteriori probabilities computing
CRFHMMViterbi Test sequences decoding

Variable Description
Databases learning and test databses
GestClassVideos videos of gesture classes
LFeatFiles feature files of gesture class videos
HMMParams HMM parameters
HMMParams.GaussVar HMM Gaussian variables
LabGestClassVideos labeled video frames of gesture classes
LabList gesture class labels
QLFeatFiles quantified feature files of gesture class videos
CRFParams CRF parameters
TestSeqVideos videos of test sequences
TFeatFiles feature files of test sequence videos
QTFeatFiles quantified feature files of test sequence videos
PosterioriProbas posteriori probabilities
HMMParams.TransitionProbas global transition probabilities
SizeSeqs size of test sequences
GestSeqs recognized gesture sequences

Table 1: Algorithm 1 Functions and variables description

12



4. Global gestures characterization258

Gestures characterization requires velocity descriptors and shape descrip-259

tors as well. Considering that signers can wear clothes in different colors260

and have different skin colours, color descriptors are not included in our261

characterization model.262

In this section, we propose a second contribution presenting a model for263

the gesture characterisation : a set of motion descriptors deduced from optical264

flows velocities. We call this set of descriptors Gesture Signature (GS).265

For a complete gesture characterization, we add global contour features266

extracted with a classic shape descriptor; Histograms of Oriented Gradients267

(HOG). To apply this descriptor, we resumed the implementation of Dalal et268

al.[38]. 9 directions are used to quantify gradients inclination angles calculated269

on the image. Such descriptors will account for shape descriptors.270

4.1. Characterization with optical flows : Gesture Signature271

Optical flows describe local velocities at the pixel level. They are known272

for their robustness to brightness changes [39]. They are invariant to colors273

and object distortion. Optical flows are able to describe simultaneously all274

movements in the scene without any segmentation. Therefore, this method275

seems adequate to simultaneously extract a maximum of information on body276

motion, while being robust to variability of color, shape and brightness.In277

what follows, we propose a feature vector whose components are combinations278

of velocity values computed with optical flows.279

Hand movements are usually located on the left and the right part of the280

image, so it is advantageous to divide the image into two vertical sections.281

Thus, the description of the movement is better localized and motions are282

characterized in these two distinct regions.283

Each part of the image is described by a gesture signature which consists284

of 9 descriptors derived from positive and negative horizontal components285

V+X and V−X , and 9 descriptors derived from vertical components V+Y and V−Y .286

These components are derived from optical flows at each pixel of the image at287

position p. Obviously, for each pixel p, two of these four values are null, one288

pixel can have only one direction according to the x-axis and one direction289

according to the y-axis.290

For a given direction, these 9 descriptors consist of 4 movement location291

descriptors, 2 movement velocity descriptors and 3 movement orientation292

descriptors. Although these features are simple, they are complementary and293
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describe precisely the gesture changes since location, velocity and orientation294

are the main components of a gesture.295

Table 2 shows the 18 features set (related variables are defined in table 3).296

The 8 horizontal and vertical location features are related to inertia center297

coordinates. They represent the vertical and horizontal positions of velocity298

centers with respect to the global movement of the considered portion of the299

image.300

There are 4 features of movement velocity and strength. The first descrip-301

tor gives an energy information of the movement. It is inversely proportional302

to the quadratic mean of the moving pixels velocities. For normalization303

reasons, we use the inverse of this quadratic mean. The second descriptor304

gives information about the motion amplitude. It is the median of the moving305

pixels velocities. The median integrates information about the linear mo-306

mentum, where the mass is replaced in our case by the number of moving307

pixels. The median also reduces the noise effect. V∗X and V∗Y components are308

the medians of a thresholded velocity vector which is computed with optical309

flows. Values of the threshold are given below.310

SVX
=

∑Nspx
p=1 |VX(p)|
Nspx

(10)

SVY
=

∑Nspx
p=1 |VY(p)|
Nspx

(11)

The 6 movement orientation features are statistics on pixels moving in the311

same direction, positive or negative. The first two descriptors characterize312

the amount of pixels moving in the same direction. The third descriptor313

characterizes the dominant direction of the movement. Those three descriptors314

characterize the relationship or the symmetry between the two main movement315

groups whose orientations are opposite. Figure 4 shows the interest of these316

descriptors and illustrates the symmetry information. Thus, by analyzing317

the variation of these three descriptors, we can deduce the type of associated318

movement. Hence the importance and the complementarity of these three319

orientation descriptors.320

5. Experimental protocol321

In this section, we explain the experimental protocol : databases and322

evaluation methods323
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Table 2: The 8 movement location features, the 4 motion velocity features and the 6
movement orientation features of the Gesture Signature characterisation model.

Descriptor horizontally vertically

L
o
ca

ti
o
n

Average Abscissa of pixels moving
in the Positive direction (AAP)

1
Iw
×

∑N
+
px

p=1 |V
+
X (p)|xp∑N

+
px

p=1 |V
+
X (p)|

1
Iw
×

∑N
+
px

p=1 |V
+
Y (p)|xp∑N

+
px

p=1 |V
+
Y (p)|

Average Ordinate of pixels moving
in the Positive direction (AOP)

1
Ih
×

∑N
+
px

p=1 |V
+
X (p)|yp∑N

+
px

p=1 |V
+
X (p)|

1
Ih
×

∑N
+
px

p=1 |V
+
Y (p)|yp∑N

+
px

p=1 |V
+
Y (p)|

Average Abscissa of pixels moving
in the Negative direction (AAN)

1
Iw
×

∑N
−
px

p=1 |V
−
X (p)|xp∑N

−
px

p=1 |V
−
X (p)|

1
Iw
×

∑N
−
px

p=1 |V
−
Y (p)|xp∑N

−
px

p=1 |V
−
Y (p)|

Average Ordinate of pixels moving
in the Negative direction (AON)

1
Ih
×

∑N
−
px

p=1 |V
−
X (p)|yp∑N

−
px

p=1 |V
−
X (p)|

1
Ih
×

∑N
−
px

p=1 |V
−
Y (p)|yp∑N

−
px

p=1 |V
−
Y (p)|

V
e
lo

ci
ty Global Velocity Inverse (GVI)

√
Npx∑Npx

p=1(VX(p))
2

√
Npx∑Npx

p=1(VY(p))
2

Maximum Velocities Median
(MVM)

1
SVX

× |V∗X| 1
SVY

× |V∗Y|

O
ri

e
n
ta

ti
o
n Proportion of the Pixels moving

in the Positive direction (PPP)
PPPX =

N
V
+
X

px

Npx
PPPY =

N
V
+
Y

px

Npx

Proportion of the Pixels moving
in the Negative direction (PPN)

PPNX =
N
V
−
X

px

Npx
PPNY =

N
V
−
Y

px

Npx

Dominant Orientation (DO) DOX =
N
V
+
X

px −N
V
−
X

px

Npx
DOY =

N
V
+
Y

px −N
V
−
Y

px

Npx
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Variable Description
Iw image width
Ih image height
Npx total pixel number

N
V +
X

px number of pixels moving in the positive horizontal direction

N
V −X
px number of pixels moving in the negative horizontal direction

N
V +
Y

px number of pixels moving in the positive vertical direction

N
V −Y
px number of pixels moving in the negative vertical direction

V +
X (p) positive horizontal velocity component of a pixel p
V −X (p) negative horizontal velocity component of a pixel p
V +
Y (p) positive vertical velocity component of a pixel p
V −Y (p) negative vertical velocity component of a pixel p
VX(p) horizontal velocity component of a pixel p
VY (p) vertical velocity component of a pixel p
V ∗X median of horizontal components (absolute value) of pixel velocities
V ∗Y median of vertical components (absolute value) of pixel velocities
SVX

, SVY
velocity thresholds (see equations 10 and 11)

PPPX Proportion of the Pixels moving in the Positive horizontal direction
PPNX Proportion of the Pixels moving in the Negative horizantal direction
PPPY Proportion of the Pixels moving in the Positive vertical direction
PPNY Proportion of the Pixels moving in the Negative vertical direction

Table 3: Gesture Signature variables description
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Figure 4: Evolution of the descriptors PPPX (Proportion of the Pixels moving in the
Positive horizontal direction) and PPNX (Proportion of the Pixels moving in the Negative
horizontal direction) in a video from SignStream database [40]. Two curves superimposed
with a presence of a peak correspond to an opposite movement of the two hands. A strong
difference between the two curves correspond to a parallel movement of both hands in the
dominant direction. A stagnation of the two curves correspond to fixed hands (frame 70).
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5.1. Databases324

Our recognition system has been evaluated on public databases designed325

for the ChaLearn 2011-2012 competition [5]. We did not participate to326

this competition but we were able to compare our system to those of the327

participants thanks to the evaluation platform proposed by the competition328

organizers 1. We detail the results of this evaluation in section 6.329

ChaLearn databases are made of three types of resources: 480 system330

development sub-databases named devel, 20 system validation sub-databases331

named valid and 40 system final evaluation sub-databases named final. The332

1-20 final sub-databases were tested in the first round of the competition and333

21-40 final sub-databases were tested in the second round of the competition.334

This final evaluation classifies participants in the ChaLearn competition.335

Each of these sub-databases contains 47 pairs of videos. Each video pair336

presents the same scene in two formats: RGB color format and depth format.337

These videos are recorded using a Kinect (TM) camera. Videos of the same338

sub-database share the same scenic features: same actor, same background,339

same recording conditions, same theme and same gesture vocabulary. However,340

these scenic characteristics vary from sub-database to another. 20 players341

participated in the making of these databases, one actor per sub-database.342

These databases present 30 vocabularies composed of 8-15 gestures belonging343

to various themes such as video games, distance education, robot control,344

sign language, etc.345

Each sub-database includes two sets of video: a training set G and a test346

set S. The training set G consists of 10 videos. Each video contains a single347

and isolated instance of a gesture: one-shot learning databases. The test set348

S consists of 40 videos. Each video includes a sequence of 1 to 5 successive349

gestures separated by a common break point. Gestures organization in each350

test sequences is random, there is no specific gestures grammar.351

We summarize in the following subsection the various feature vectors used352

for the tests.353

5.2. Feature vector variants354

Table 4 presents the different variants of the feature vector ~c we used355

in our experiments. We index each variant by its size l(~c). l(~v(GS)) is the356

number of gesture signature features. l(~v(HOG)) is the number of HOG357

1https://www.kaggle.com/c/GestureChallenge2
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features. Some variants of the feature vector ~c are applied to two data formats358

(RGB image and depth image).359

Table 4: Feature vector variants adopted in the experiments

total Descriptor
size Gesture Signature GS HOG
l(~c) l(~c(GS)) description l(~c(HOG)) description
52 16 no median, no image

division
36 4 image blocks × 9

gradient directions
54 18 no image division 36 4 image blocks × 9

gradient directions
72 72 image division into 2

parts, 2 data formats
0 HOG not applied

180 36 image division into 2
parts

144 16 image blocks × 9
gradient directions

360 72 image division into 2
parts, 2 data formats

288 16 image blocks × 9
gradient directions,
2 data formats

5.3. Evaluation metric360

The organizers of the ChaLearn competition defined a global evaluation361

metric on all test sequences based on the Levenshtein distance, also called362

edit distance [41]. This form of global error is denoted by Lch and given by363

equation 12.364

Lch : D −→ R
S 7−→

∑
s∈S L(R(s),T (s))∑

s∈S l(T (s))

(12)

where D is the set of test databases, S is the set of test sequences, s is the365

sequence of gestures, R(s) is the system recognition result of sequence s, T366

is a function giving the ground truth sequence s, L(., .) is the Levenshtein367

distance and l(v) gives the size of a vector v.368

We use the ChaLearn form of the error Lch to compare our recognition369

system to ChaLearn participants recognition systems. However, let us empha-370

size that Lch is slightly different from the classical Levenshtein distance (see371
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Equation 13), which is bounded and seems more generic. Thus, to present372

the main results of our various tests, we use the classic error form.373

L : D −→ [0, 1]

S 7−→ 1
|S|

∑
s∈S

L(R(s),T (s))
l(R(s))+l(T (s))

(13)

6. Gesture recognition results374

In this section we present the results of our system, using different variants.375

We first compare the recognition results of the hybrid system CRF/HMM376

to the classic and adapted versions of HMM and CRF in subsection 6.1. Then,377

we present our rank compared to participants at the ChaLearn competition.378

Next, in subsection 6.2, we present some properties of the hybrid model379

CRF/HMM including its robustness with respect to the number of states and380

to the various feature vectors, and we conclude this section by demonstrating381

the advantage of the gesture signature model.382

All recognition performance results of the hybrid system CRF/HMM383

presented in this section are obtained with tests performed with an adapted384

CRF/HMM as explained in section 3.3 unless otherwise stated. Adapted385

HMM and adapted CRF recognition systems cited in this section are also386

adapted as explained in section 3.3.387

6.1. Evaluation of the CRF/HMM using the ChaLearn platform388

We present in this subsection the recognition results of our best hybrid389

system CRF/HMM on the valid and final databases, as well as our ranking390

in the ChaLearn competition.391

We first present a comparison of the performance of the main recognition392

systems that we studied (Table 5) on the devel databases. The feature vector393

is identical for all the systems (l(~c) = 52). The number of frames per state fs394

is optimized for each system. fg(g) represents the size of the learned gesture,395

which means that every gesture is represented by a single class, subclasses396

that correspond to states in the case of HMM do not exist in the case of CRF.397

On the other hand, a post-processing step (see algorithm 2) is applied to the398

classic and adapted CRF in order to filter their recognition results. Without399

this step recognition error exceeds 0.5. Table 5 shows that the performance of400

the proposed hybrid system CRF/HMM clearly outperform the recognition401

performances of other systems. Indeed, for a data size equal to 750, we402

demonstrated with the statistical unilateral Student test that our hybrid403
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model CRF/HMM significantly outperforms classic and adapted HMM and404

CRF models with a confidence level detailed in table 5.405

Begin CRFpostProcessing(RecognizedSeqs):FilteredSeqs
for all RecognizedSeqs Si do

for all gestures Gj do

Fix window size Sz(wj) =

{
3
4
Sz(Gj) if 1 < Sz(Si)

Sz(Gj)

Sz(Si) if 0 < Sz(Si)
Sz(Gj)

≤ 1

for all shifted window positions (shifting step is Sz(wj)) do
Search for the most occurent gesture Gm in the current
window

if (Gm = Gj) then
save Gm at the current window position (if conflict,
keep the shortest gesture)

end

end for

end for
FilteredSeq ← all saved Gm

end for

End

Algorithm 2: Post-filtering and segmentation algorithm for CRF recog-
nized sequences, where FiltredSeqs are filtered and segmented sequences
extracted from RecognizedSeqs which are the recognized sequences with
CRF Backward-Forward method

406

Table 5: a) The recognition results of various recognition systems based on HMM and CRF
and tested on 20 devel databases (fs is optimized for each system, l(~c) = 52 and images
are RGB). b) Unilateral student test results (confedence level): CRF/HMM campared to
classic and adapted HMM and CRF models.

System (a) Error : L (b) Student confi-
dence level (%)

classic HMM 0.3615 99.95
adapted HMM 0.2354 85
classic CRF (continuous) 0.2930 99.95
adapted CRF (discrete) 0.2757 99.95
CRF/HMM (adapted) 0.2228 -

In order to rank our system in the ChaLearn 20111-2012 competition,407
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we tested the hybrid system on valid and final databases provided during408

the competition. Table 6 shows the hybrid system CRF/HMM recognition409

error values computed with both evaluation methods L and Lch on valid and410

final databases. Table 6 presents the CRF/HMM system rank on both411

database categories using the Lch error. It appears that we ranked at the 7th412

position among 559 systems from 48 participants for both first and second413

rounds. The complete list with their score (the Lch error) is available on the414

Kaggle website for the first2 and the second round3. We achieved this rank415

using only RGB format data.416

Table 6: The recognition results of our best hybrid system CRF/HMM on 20 valid databases,
20 final 1-20 databases and 20 final 21-40 databases (each database category contains about
750 total sequences test in the order of 200 frames each, images are RGB and l(~c) = 180)

database category Error ranking
L Lch

valid 0.1772 0.3488 -
final 1-20 (1st round) 0.1479 0.2964 7th

final 21-40 (2nd round) 0.1224 0.2523 7th

6.2. Properties of the CRF/HMM system417

6.2.1. Robustness to changes in the number of frames per state418

Figure 5 shows the recognition error L of the adapted HMM and the419

CRF/HMM systems with respect to the number of frames per state fs.420

Those systems were trained for each value of fs. One can observe that the421

CRF/HMM system outperforms the HMM, and that the CRF/HMM system422

provides extremely stable results, while the performance of the HMM is423

strongly variable. This is an interesting aspect of this system since it does424

not require a fine tuning of the hyper-parameter for reaching good results.425

6.2.2. Robustness to changes in the gesture duration426

The average number of frames per state has a direct impact on the427

CRF/HMM robustness to the gesture duration variation. With a large428

number of frames per state, the CRF/HMM system is able to handle the429

2https://www.kaggle.com/c/GestureChallenge/leaderboard
3https://www.kaggle.com/c/GestureChallenge2/leaderboard
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Figure 5: CRF/HMM and adapted
HMM systems robustness to the vari-
ation of the number of frames per
state.

Table 7: Recognition results with dif-
ferent variants of the feature vector
on 20 devel databases (RGB image
and depth image)

System Error : L
GS
l(~c) = 72

(GS,HOG)
l(~c) = 360

adapted
HMM

0.2525 0.2425

CRF/HMM 0.2559 0.2255

temporal elasticity of a gesture. In other words, when a gesture expands430

or narrows through the number of frames in the test data, the CRF/HMM431

system is able to align the gesture model on the data and decode them. In432

addition, the CRF component is able to implicitly manage duration variation433

of gestures in a more straightforward way than HMMs do. It appears that434

the temporal elasticity of gestures is better captured by the simple structure435

of the hybrid model with a reduced number of states, compared to the totally436

connected structure of the HMM system alone as adopted by some participants437

of the ChaLearn competition [10, 11, 12].438

6.2.3. Robustness to changes in the feature vector439

Figures 6 present the variation of the error L in terms of the number of440

frames per state fs for two HMM systems (left) and for two CRF/HMM441

systems (right). Each pair of systems is evaluated with two different feature442

vectors. When the feature vector size decreases, CRF/HMM keep almost the443

same performance. In other words, a minimum of features is sufficient for444

CRF HMM, whereas for classic HMM, feature addition greatly increases the445

recognition performance. This recognition ability with a reduced number of446

features makes features extraction task easier and faster.447

These three CRF/HMM robustness property prove that with a simple448

system, it is possible to reach high recognition performance thanks to CRF449

and HMM advantages combination and disadvantages compensation. We450
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Figure 6: Adapted HMM (left) and CRF/HMM (right) robustness to the variation of the
feature vector

can see the simplicity of the CRF/HMM system at three levels: (a) a simple451

model structure with a reduced number of state without jumps nor complete452

connection. (b) a reduced number of features. (c) a training data set reduced453

to an example by class.454

6.2.4. Evaluation of the Gesture Signature455

Table 7 shows the recognition results of two systems, adapted HMM and456

CRF/HMM, on devel databases applying three variants of the feature vector.457

The purpose of these tests is not to compare these two recognition systems458

but to validate the interest of the feature vector GS. According to table 7, we459

notice that the performance of recognition systems with the feature vector GS460

is very close to the performance of these recognition systems using a feature461

vector that combines GS features and the HOG features. Moreover, these462

error values are low and exhibit valuable recognition performance. Thus, the463

gesture signature GS can represent a complete characterization model.464

Finally, these results and this study show that the CRF/HMM hybrid465

system is a system that has better performance than other classic systems466

(HMM and CRF), is robust to different variations and is interesting and467

practical in the real-world problem such as one shot learning.468
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7. Conclusion469

In this article, an hybrid CRF/HMM system for gesture recognition has470

been proposed. This HMM and CRF combination benefits from each model471

advantages without undergoing its drawbacks. These systems have been472

adapted to the one-shot learning context in order to suit to the real-world473

constraints of small labelled datasets.474

A new gesture characterization model has also been proposed, which is a475

gesture signature that rely on optical flows. This model is able to describe476

any dynamic scene using its motion, making it independent from the moving477

object type.478

We demonstrate that the CRF/HMM system are able to efficiently model479

and manage spatio-temporal variations of sequential data and constitute a480

robust recognition hybrid system that opens up new perspectives for sequential481

Markov models. Among them, an interesting perspective concerns the gesture482

detection task, called the gesture spotting, which consists on locating and483

labelling specific gestures in videos. It can be applied in video retrieval and484

indexing context. Our recognition model could be adapted to the spotting485

task by representing false examples through an additional class to the gestures486

vocabulary.487
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