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Abstract State-of-the-art methods for handwriting recog-
nition are based on LSTM neural networks, which now
provide very impressive character recognition perfor-
mance. Character recognition is generally coupled with
a lexicon-driven decoding process which integrates dic-
tionaries. Unfortunately these dictionaries are limited
to hundreds of thousands of words for the best sys-
tems, which prevents us from having a good language
coverage, and therefore limits global recognition per-
formance. In this article, we propose an alternative to
the lexicon-driven decoding process based on a lexi-
con verification process and a new method to obtain
hundreds of complementary LSTM RNN that are ex-
tracted from a single training, called cohort, coupled in
different combination systems. Our first combination is
a cascade made of a large number of complementary
LSTM RNN for isolated handwritten word recognition.
The proposed cascade achieves new state-of-the art per-
formance on the Rimes and IAM datasets. The second
contribution extends the idea of cohort and lexicon ver-
ification in a ROVER combination for handwriting line
recognition and achieves state-of-the-art results on the
Rimes dataset. Dealing with gigantic lexicon of 3 mil-
lion words, the method also demonstrates interesting
performance with a fast decision stage.

1 Introduction

Handwriting recognition is the numeric process of trans-
lating handwritten text images into strings of charac-
ters. The handwriting recognition process traditionally
involves two steps [1]: optical character recognition and
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linguistic processing. Optical character recognition is a
difficult task due to the variability of shapes in hand-
written texts, since every human has their personal
writing style. Therefore, even when using state-of-the-
art classifiers like deep neural networks to recognize
characters [2], a considerable amount of errors can oc-
cur by considering only the optical model. Linguistic
processing aims at combining the characters hypothe-
ses together so as to provide the most likely sequence
of words in accordance with some high level linguis-
tic rules. There are two types of linguistic knowledge:
lexicons and language models. A language model is a
probabilistic modelization of a language which generally
provides word sequence likelihood, allowing to rank the
recognition hypotheses provided by the optical model.
Nowadays, the use of linguistic knowledge is an open
problem. Lexicon-driven approaches aim at recognizing
words thanks to the use of a lexicon. They search for
the most likely word that belongs to the working lexi-
con, by concatenating the character hypotheses. There
is currently no efficient alternative to the use of lexicon-
driven recognition methods either for isolated words or
for text recognition. The choices of which lexicon re-
source should be used, and which corpora should be
selected for training the language model are still open
questions. These choices directly affect recognition per-
formance. In the case of lexicon-driven methods, where
the characters are aligned on the lexicon words, too
small lexicons fail to cover the test dataset, thus lead-
ing to misrecognition. However, using a large lexicon
(1000 words and more) requires many computations
and generally produces precision loss [3]. To the best
of our knowledge, the largest lexicon used in literature
was composed of 200K words [4] (60K words for [5]),
and there could still remain out-of-vocabulary words
(named entities, numbers, etc).
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Over the last years, significant progress in handwrit-
ing recognition and especially in optical models have
been made thanks to deep learning advances [6], namely
with the Long Short TermMemories (LSTM) Recurrent
Neural Networks (RNN) [7]. LSTM networks achieve
state-of-the-art performance in various applications in-
volving sequence recognition, such as speech recognition
[8], machine translation [9], or optical character recog-
nition [10,11]. Performance of complete systems includ-
ing both LSTM networks and linguistic resources [12]
is due to the very high raw performance of the optical
model (i.e. without using additional linguistic resource).
For example, the raw performance of the optical model
is about 35% WER on the RIMES dataset when us-
ing a BLSTM optical model solely. The contribution
of the language model is then to penalize the wrong
hypotheses produced by the optical model, so as to fa-
vor the most likely word sequences from the language
model point of view. We believe that the raw perfor-
mance of the LSTM based optical models provide hints
that such networks should be used in a more specific
way, and not only as a character classifier using a lex-
icon directed recognition approach, as it is the case in
most of today’s studies reported in literature.

Breaking the standard use of LSTM RNN as a sim-
ple classifier introduced in a lexicon-driven decoding
scheme, this work proposes a new recognition paradigm
that improves handwriting recognition state-of-the-art
performance. This new paradigm is based on classifiers
combination using an efficient decision rule operating at
word level, which consists in lexicon verification. Lexi-
con verification consists in accepting a word hypothesis
if it belongs to the lexicon, and rejecting it otherwise.
The underlying idea is that it is very unlikely that a
wrong word hypothesis belongs to the lexicon. The ma-
jor advantage of this strategy is that it constitutes an
extremely fast decision process, especially when com-
pared to the tedious lexicon-driven decoding process
which generally consists in a Viterbi beam-search [13].
Classifier combination is introduced using a cascade
framework to combine multiple word classifiers. It is
based on two key points: i) a lexicon verification de-
cision process ii) a pool of complementary recognizers.
We introduce a very efficient way to produce hundreds
of complementary word recognizers in a very reasonable
training time. Following the recent theoretical results
in deep learning[14], we observed that multiple com-
plementary networks can be obtained during a single
training stage. We exploit this theoretical result to pro-
duce hundreds of complementary LSTM networks us-
ing a single training. We call this ensemble of networks
a cohort. We show that the proposed strategy reaches
very high performance whatever the size of the lexi-

Fig. 1: The standard handwriting recognition paradigm.

con. As a consequence, the approach has no limitation
regarding lexicon size, as demonstrated by the results
obtained using a gigantic lexicon of more than 3 million
words. We further explore this recognition paradigm to
recognize text lines. We show that by introducing a lex-
icon verification operator in a ROVER [15] combination
scheme, hundreds of LSTM networks hypothesis can be
combined efficiently and achieve state-of-the-art perfor-
mance on the Rimes dataset without introducing any
language model.

This article is organized as follows : section 2 presents
the state-of-the-art handwriting recognition review; sec-
tion 3 is devoted to the lexicon verification and our
approach made of a cascade of LSTM recurrent neural
networks; section 4 describes the implementation of the
method is described. Finally the results are presented
and discussed on the Rimes and IAM datasets for iso-
lated word recognition and text line recognition.

2 Related works

2.1 Handwriting recognition

Handwriting recognition models can be classified ac-
cording to the character segmentation approach which
can be either explicit (an algorithm specifically seg-
ments characters prior to their recognition), or implicit
(characters are classified without prior segmentation)[1].
Handwriting models can also be classified according to
the character recognition method (discriminant classi-
fiers for hybrid approaches [16] or generative approaches
for Hidden Markov Models (HMM) [17]). All these ap-
proaches rely on a lexicon-driven decoding stage. In-
deed, since character recognition is not perfect, an effi-
cient word recognition strategy is to postpone the char-
acter decision process until the end of the sequence
recognition process, where the best character sequence
hypothesis being a valid sequence is finally selected.
This traditional scheme is represented in Figure 1.

2.2 The large vocabulary problem

When using lexicon-driven decoding, the character clas-
sification decisions are postponed until the end of the
word so as to decide of the most probable word belong-
ing to the working lexicon. On the one hand, lexicon
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directed approaches allow to correct character recogni-
tion errors. On the other hand, they require using large
lexicons in order to get high word coverage rates, and
minimize Out Of Vocabulary (OOV) words. However,
using very large lexicons requires pruning during the
recognition phase, in order to get acceptable processing
time. Results of the RIMES 2009 competition for iso-
lated word recognition [10] show that most of the par-
ticipants have implemented HMM based approaches for
which we can observe a neat difference of the recogni-
tion rate between small, medium and large lexicon size
with a maximum size of 5334 words. The lexicon’s size
has also a major role in the use of these methods in
real applications where the lexicon is linked to a lan-
guage that can contain hundreds of thousands of words.
In specific cases, using such linguistic resources to im-
prove recognition is not anymore compatible with real
time constraints.

The large vocabulary problem is well known, as de-
scribed in [3], where a vocabulary of 1000 words is
considered to be a large lexicon. Today larger lexicons
are considered. In [12] the authors used 50k, 12k and
95k word lexicons for the IAM, Rimes and OpenHaRT
dataset respectively, but none of these lexicons are fully
covering the evaluation set. To the best of our knowl-
edge, the largest lexicon ever used is composed of 200
000 words [4] (60K words for [5]) using a n-gram model.
But this is still generating problems as out of vocab-
ulary words still remain. General purpose applications
require unrestricted lexicons which may be composed of
hundreds of thousands words (French Gutenberg dictio-
nary has 336k words) to reach an acceptable coverage
rate, but still without covering named entities, num-
bers, etc.

To overcome these limitations, solutions have been
investigated: Pruning [18,19], lexicon free decoding us-
ing character language models as an alternate solution
to using a lexicon [20,21,22,23,24], sub lexical units
driven recognition [20,25,26]. Pruning methods exhibit
problems such as excessive pruning, leading to increas-
ing errors. Some methods[20,21] using hidden Markov
models with other techniques like bag of symbols allow
a lexicon free decoding , but they still have not reached
the performance of the lexicon-driven approaches. Note
that such approaches have also been used for numerical
field recognition without lexicon [22,23,24], but digits
are simpler to recognize than characters since they are
generally isolated, and there are only 10 classes. Fi-
nally, in [20,25,27,26] the authors proposed a lexicon
decomposition into prefix and suffix of the word’s lex-
icon, modeled by n-grams. These methods are based
on statistics extracted from a training corpus. The n-

grams models reach state-of-the-art performance when
dealing with out of lexicon word [25,27].

As reviewed in this paragraph, the very large vo-
cabulary problem is still an open question. With the
current fast progress in deep learning, many architec-
tures are studied. Regarding handwriting and speech
recognition, it is currently lead by the Long Short Term
Memory recurrent neural networks.

2.3 Recurrent Neural Networks

Recurrent neural Networks (RNN), proposed more than
30 years ago with Hopfield networks [28], get their ef-
ficiency from their ability to process sequences, thanks
to recurrent connections bringing information about the
previous inputs or states in the sequence to the current
position. However, for a long period of time, training
recurrent neural networks suffered from the vanishing
gradient problem [29]. As a consequence, long term de-
pendencies can not be learned. Long Short Term Mem-
ory (LSTM) cells have thus been designed by Hochre-
iter et al. [7] in order to overtake this limitation. Many
improvements still have been proposed on LSTM [30,
31] adding a gate and peepholes.Recently Gated Recur-
rent Units [32] have been proposed as an alternative to
LSTM units, requiring less computation but with al-
most similar performance. In this paper we focus on
LSTM cells.

LSTM cells enable to learn long or short term de-
pendencies while processing sequences thanks to the in-
troduction of gates (input, forget and output gates) fol-
lowed by a sigmoid function, which controls the inter-
nal memory cell update (updating, resetting, express-
ing) by introducing a multiplier cell at each gate. RNN
operate by processing the sequence in a particular di-
rection, that is why bi-directionality has been intro-
duced in RNN [33]. Then this idea has been extended
to LSTM networks [8] to create bidirectional LSTM re-
current neural networks (BLSTM). However key appli-
cations like handwriting recognition are based on im-
ages which have two dimensions. In order to process
images, multidimensional LSTM recurrent neural net-
works (MDLSTM) have been introduced [2].

LSTM networks only became popular once a new
learning strategy was introduced, the Connectionist Tem-
poral Classification (CTC)[34], which is a neural variant
of the well known Forward Backward algorithm used
for training HMM. CTC greatly helps training such
networks by allowing embedded training of character
models from the word or sentence label without the
need for knowing the location of each character. This
is working especially well thanks to the introduction
of a "joker" class between characters, which allows the
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network to postpone the decision until sufficient infor-
mation is gathered along the sequence, so as to output
the character hypothesis at one particular position in
the input stream.

Today, LSTM recurrent neural networks are the state-
of-the-art method for numerous sequence analysis ap-
plications, including optical character recognition [10,
35]. LSTM networks provide nearly binary posterior
probabilities. One example of LSTM network outputs
for the French word "demander" is given in Figure 2,
for readability of the legend, only lowercase characters
are shown, with the correct characters highlighted with
colors. Such an output profile allows to apply a simple
decoding scheme without lexicon, known as "Best path
decoding" [36]. It takes the maximum a posteriori prob-
ability of the character class at each frame, and by re-
moving every successive repetitions of each class (joker
included), then the joker. The raw performance at the
end of this lexicon free decoding scheme on a recogni-
tion task, although below state-of-the-art performance,
are very high. For example, on the Rimes word isolated
recognition task, standard MDLSTM-RNN [12] recog-
nize 67% of the words, by using this simple best path
decoding strategy.

Fig. 2: LSTM network outputs at the end of a CTC
training. The outputs form peaks for every character.

The LSTM RNN high performance shows that con-
tribution to the recognition mostly comes from LSTM
RNN (see Fig. 1). From these observations and consid-
ering the aforementioned problems inherent to the use
of lexicon-driven recognition, in this paper we explore

Fig. 3: Our new handwriting recognition paradigm.

a new paradigm for isolated handwritten word recogni-
tion. The following section is devoted to the presenta-
tion of this new strategy which is based on combining
multiple character classifiers using a word lexicon veri-
fication rule of the sequence’s hypotheses.

3 Proposed Approach

This paper proposes a new recognition paradigm which
provides an efficient alternative to lexicon-driven de-
coding. This strategy is based on cascading complemen-
tary neural networks, combined with a reliable rejection
stage based on lexicon verification (see Figure 3). This
section describes the overall cascade architecture (Sec-
tion 3.1), the proposed rejection stage (Section 3.2) and
how complementary classifiers are generated (Section
3.3)

3.1 The cascade framework

The first element of our lexicon-driven decoding free
approach is the cascade framework. Cascade of classi-
fiers is a combination method that sequentially com-
bines classifiers decisions by exploiting the complemen-
tary behavior of the classifiers, in order to progressively
refine recognition decisions along the cascade. The most
famous contribution on cascade of classifiers is from Vi-
ola and Jones [37], who applied their framework to face
detection. The authors present a cascade based on a
large ensemble of diverse and weak classifiers, which
enable a fast decision process by sequentially introduc-
ing reliable decision stages. The performance of each
classifier may be low but it must be associated to a
high confidence decision stage that accepts or rejects
the decision. In [38] and [39], an alternative cascade
scheme is proposed by combining strong classifiers with
different architecture and different input features. The
strong classifier recognizes an important number of ob-
jects with a low error rate, while relying on a decision
stage allowing to transfer rejects to the next classifiers.

This brief literature review shows that for both strate-
gies, using either strong or weak classifiers, the strength
of a cascade scheme comes from the reliability of the
decision stage introduced after each classifier. In this
paper we use the strong classifier approach, where we
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combine hundreds of LSTM RNN. Classifiers are or-
dered by increasing error (i.e. by decreasing reliabil-
ity) and a reliable decision stage is introduced based
on a lexicon verification operator (see Figure 4). When
the lexicon verification operator accepts an hypothesis,
the classification process stops thus avoiding to use the
whole set of classifiers most of the time. This decision
mechanism is essential to control the performance of
the cascade while enabling to significantly speed up the
process, when many classifiers are involved.

Fig. 4: The proposed BLSTM Cascade. Each classifier
process the rejects from the previous layer.

The second important element of a cascade is the
classifiers complementarity. Indeed, classifiers with sim-
ilar behavior would not allow to refine the decision
along the cascade. In this paper, we take benefit of the
deep neural networks properties to get complementary
classifiers during training of a single RNN, as discussed
in section 3.3. We now discuss the decision reliability of
our lexicon verification operator.

3.2 Lexicon verification operator reliability

The decision stage is made of a lexicon verification rule
which consists in accepting a character string hypothe-
sis if it belongs to the lexicon, or rejecting it otherwise.
Such simple verification stage can serve as a decision
in the cascade only if it provides reliable decisions and
has a very low false acceptance rate.

A False Acceptance (FA) of our lexicon verification
rule occurs when a wrong character string hypothesis
produced by the recognizer matches one entry of the
lexicon. The probability of false acceptance PFA for a
given recognizer can be expressed as described in equa-
tion (1) where W is a word hypothesis, L a lexicon,
and Reco a recognizer. "W is erroneous" is true when

the word hypothesis W is wrong, and "W ∈ L" is true
when the word hypothesis W belongs to the lexicon.

PFA = P (W is erroneous ∧W ∈ L | Reco) (1)

Figure 5 shows the estimated probability PFA of a
single recognizer with respect to word length n. The
probability was estimated by taking the results of one
network trained on the Rimes dataset. One can observe
that the probability PFA (blue curve) is high for short
words (less than 4 characters) and therefore that the
verification rule is not reliable enough. That is why we
introduce the Minimum Number of Decision Agreement
(MNDA), that allows to drastically reduce the proba-
bility of false acceptance to a very acceptable level. This
MNDA is the minimum number of classifiers that must
take the same classification decision, among the classi-
fiers that have been activated in the cascade. As can be
observed on magenta and cyan curves from Figure 5,
using a MNDA of 2 and 3 leads to a very low estimated
probability (below half a percent), even for short words.

0 5 10 15 20
Length of word n

0.00

0.02

0.04

0.06

0.08

0.10

0.12

P
_F

A

Without MNDA
MNDA=2
MNDA=3

0.000

0.001

0.002

0.003

0.004

0.005

Fig. 5: Estimated PFA over the length of word n for
a given LSTM recognizer with and without Minimum
Number of Decision Agreement.

Let us now analyze the effect of the lexicon verifica-
tion solely (MNDA = 0) on a word recognition task. In
this respect, Table 1 shows the performance obtained
on the Rimes dataset using a lexicon free BLSTM rec-
ognizer, with and without the simple verification rule.
We see that adding the verification rule to the BLSTM
makes the error dramatically decreases by 93%, from
33.63% to only 2.25%. By looking at the remaining con-
fusions, most of the errors are type case, accents and
plural errors. This first experiment demonstrates the
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strength of a verification strategy in combination with
BLSTM classifiers.

Network Accuracy Error Rejection
BLSTM 66.37 33.63 0
BLSTM + verif. 66.37 2.25 31.38

Table 1: Accuracy, error rate and rejection rate of a
lexicon-free BLSTM recognizer on the Rimes dataset,
with and without the lexicon verification strategy.

We have shown that Lexicon Verification can signif-
icantly reduce recognition errors, and that the number
of False Acceptance can be reduced by adding a Mini-
mum Number of Decision Agreement. In the design of
a cascade we introduce a rejection rule by combining a
lexicon verification operator with Minimum Number of
Decision Agreement. Such an operator will serve as an
efficient rule to control the decisions at each stage of
the cascade. In the next section, we investigate how to
easily generate complementary LSTM RNN.

3.3 Generation of complementary LSTM RNN

There are many ways to generate complementary LSTM
neural networks. The first one is by using different ar-
chitectures (BLSTM vs MDLSTM, changing the num-
ber of layers or neurons, etc.) or using different input
features (pixels, Histogram of Gradients, etc.). However
these modifications are costly in terms of design, train-
ing time, and limited in number.

Some previous experiments have shown that similar
LSTM recurrent neural networks trained with differ-
ent initial weights can be combined with success [11].
These networks have similar recognition rates, but the
connection weights are different and therefore they have
some complementarity properties which allow to com-
bine them with success. However training many net-
works starting with different initializations is slow as it
takes up to a week to train a single network.

In order to get as much complementary networks
as possible with a limited effort considering both time
in design and training, the idea lies in controlling the
training phase of deep neural networks, and is inspired
by the work of Choromanska et al. in [14]. This work
makes a parallel between fully-connected neural net-
works loss function and high degree random polynomi-
als which have a huge number of local minima of same
order of magnitude. The authors conclude that when
training a large neural network, reaching a local mini-
mum is nearly similar to reaching the global optimum.
As a consequence, exploring these local minima may be

a simple but relevant strategy to obtain a large amount
of complementary networks that perform equally well,
but with different local properties. We call the ensem-
ble of networks obtained by this strategy a cohort, and
we use the obtained cohort to feed a cascade.

Fig. 6: Word Error Rate over epoch of a network trained
on the Rimes dataset with learning rate: fixed at 10−4

(blue), at 10−4 then 10−5 at epoch 96 (magenta) and
at 10−3 (cyan).

However, this easy and fast strategy to get many
complementary networks requires some attention on the
training parameters in order to get the desired prop-
erty. Indeed training must avoid to be trapped in one
local minimum in order to get complementary classi-
fiers. Training a neural network using steepest gradi-
ent descent is controlled by three important parame-
ters which are the learning rate, the momentum value
and dataset shuffling. Momentum is the factor that con-
trol the weights update and thus the convergence of the
training procedure. We use a fixed momentum of 0.9,
which is commonly used in the literature, in order to
help escaping local minima. When training networks,
the examples are shuffled between each epoch in or-
der to get a better convergence by preventing cycles.
As training examples are randomly shuffled between
epochs, we can consider that the state of the network
(the weights’ value) is randomly reached from one epoch
to another. The last and maybe most important param-
eter is the learning rate. It is the weight associated to
the value of the gradient that serve as the update rule of
the network weights. Figure 6 shows the impact of the
learning rate on training a BLSTM network defined in
4.2 on the Rimes dataset (see 4.1). A large learning rate
does not allow convergence of the network, as shown on
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Figure 6 (cyan curve) where the network does not con-
verge properly with a learning rate of 10−3. A too small
learning rate leads to very small changes of the weights
values and does not allow reaching another local min-
imum, and as a consequence gives no complementary
networks between epochs. As shown on Figure 6 on the
magenta curves decreasing the learning rate to 10−5 at
the epoch 96 (taken arbitrarily but any other epoch at
this stage would have been suited) produces less fluc-
tuation of the WER leading to less variability and then
nearly no complementarity. The desired behavior is ob-
tained for a learning rate set to 10−4.

By choosing these parameters, the networks selected
at each epoch of one single complete training phase can
constitute a cohort. The red rectangle on Figure 6 shows
the region where the networks can be selected, where
training has converged to reach a region with no overall
significant decrease of the WER, but with small fluctu-
ations that highlight the various local minima reached,
thus providing networks with different local properties.
The proposed training strategy although simple is very
effective to get complementary networks.

At this stage, we have proposed a lexicon verifica-
tion rule that can serve as an effective reliable rejection
rule, and an easy mean to get hundreds of complemen-
tary LSTMM RNN during a single training session. Let
us now describe the implementation details of the cas-
cade.

4 Cascade implementation and results

Based on the methodological principles established in
the previous section, we now detail our implementation
and present the results achieving state-of-the-art per-
formance. We also analyze the method regarding both
the complementarity between networks and the lexicon
verification stage in terms of performance.

4.1 Dataset and Evaluation

The experiments have been carried out on the Rimes[10]
and IAM [40] isolated words datasets and using the of-
ficial splits and lexicons provided with these datasets.
The character sets contain upper and lower case char-
acters of the Latin alphabet, symbols that may occur in
a word like "’" or "-", and many others. For the Rimes
dataset there is also accented characters, and the eval-
uation is made on lower case as in [11] for comparison
purpose, and also because of some ground truth ambi-

guity 1. The lexicons for both datasets are composed
of all the words of the training (Rimes 51738 running
words, Iam 66153 running words), validation (Rimes
7464 running words, Iam 7350 running words) and test
(Rimes 7776 running words, Iam 17586 running words)
sets, as used in the competitions and related papers,
giving lexicons size of 5744 and 12202 words for Rimes
and IAM respectively. For the Rimes dataset, some
additional lexicons are used in order to evaluate lexi-
con sensitivity. They are the test dataset lexicon (1692
words) and the training lexicon (5334 words). Notice
that except for the training lexicon, the lexicons have a
100% coverage rate as it is the case for every evaluation
conducted for related isolated word recognition tasks in
the literature.

We also evaluate the performance of our approach
on very large lexicons that better represent what can be
found in real world industrial applications (e.g. There
exist millions of named entities for addresses : coun-
tries, regions, towns, street names, names,...). In this
respect, we have collected by ourselves two extremely
large lexicons that are available on request:

– The first one is the union of the lexicons from the
french Wikipedia, Wiktionnaire, French dictionary
Gutemberg and the Rimes dataset, leading to a French
lexicon of 3,276,994 words;

– The second one is the union of the lexicons found in
the one billion word data [41] and the IAM dataset,
leading to an English lexicon of 2,439,432 words.

For all the experiments, we measure the recognition
performance with the Character Error Rate (CER), cal-
culated with the Levenshtein distance. We also measure
the accuracy, the error rate and the rejection rate for
isolated word recognition. We also measure Word Error
Rate for text line recognition.

4.2 Architecture

Two well established LSTM RNN architectures have
been used for the experimentations: The first is a BLSTM
architecture inspired from [42]: it is a two layers net-
work made respectively of 70 and 120 LSTM blocks,
separated by a subsampling layer of 100 hidden neu-
rons without bias. The network also has two layers to
reduce the sequence length. The first one concatenates
the input vectors in pairs, while the second one concate-
nates the output vectors of the first layer in pairs. As
input features, we use histogram of oriented gradients
(HOG) [43] that have demonstrated their efficiency for

1 Namely on certain upper case characters, especially for letter
"j" in the word "je" or "j’" where many ground truth errors
occur in the dataset.
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handwriting recognition [44]. Images are normalized to
64 pixels height. A sliding window of 8 pixel width ex-
tracts the HOG features at a 1 pixel pace. The second
architecture is a MDLSTM architecture similar to the
reference in [2]. This architecture is composed of three
layers of respectively 2, 10 and 50 LSTM cells, and two
subsampling layers of 6 and 20 neurons. Raw images are
normalized and directly fed to the network. The decod-
ing time is 10 milliseconds per word on average (on an
intel i7-3740QM CPU).

For both architectures we use a lexicon free "Best
path decoding" algorithm [36] described in (2.3) to re-
trieve the characters string. Training and decoding have
been performed with RNNLIB [45].

4.3 Generating a cohort of LSTM RNN

To get a cohort of complementary LSTM RNN, the
three following strategies are followed: (i) Our train-
ing trick described in section 3.3, for which we get one
network per epoch ; (ii) Different starting initialization
; (iii) Two different architectures BLSTM and MDL-
STM.

Moreover, we use a common trick to improve per-
formance of neural networks by performing transfor-
mations over the training set, in order to increase the
size of the training set. By using rotations and warp-
ing, we multiply the size of the training set by 3, and as
shown in Figure 7 the word error rate improves. Beside
providing a lower error, we observe that the transfor-
mations also bring more fluctuations during training by
adding more training samples between two epoch, thus
increasing the number of weight updates and the po-
tential local differences between two network between
two epochs.

2100 different networks are collected from only ten
different trainings on the Rimes dataset with different
random initializations:

– 2 BLSTM trainings;
– 1 MDLSTM training;
– 4 BLSTM trainings with transformations;
– 3 MDLSTM trainings with transformations.

Training these 10 networks with 3 computers on CPU
only took 10 days, while training 2100 networks with
different initialization would have taken 2 years and 9
months. Regarding the IAM dataset, we also trained
two networks with transformations (tripling the size of
train set), two BLSTM and two MDLSTM, leading to
a total of 1039 networks for this task. The purpose of
doing several training is threefold, it allows us to: i) get
more networks with training run in parallel, (ii) check
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Fig. 7: Comparisons of Word Error Rate over of two net-
works with and without transformations (higher fluctu-
ations amplitude) with learn rate fixed at 10−4.

successfully that the method doesn’t depend on the ini-
tial weights or architecture selected, and (iii) improve
performance thanks to the two architectures and using
different features.

4.4 Results

4.4.1 Performance of cascades built from a single
cohort

In this section, cascades are built using networks from
a single cohort of RNN. Cascade from single cohort of
BLSTM, BLSTM with transformations, and MDLSTM
are considered. We select 100 networks to form each
cohort and combine each cohort in a cascade, using the
lexicon verification operator.

When combining hundreds of networks into a cas-
cade, the performance depends on both the classifier
sorting, and the value of MNDA in the decision stage.
Ordering the classifiers in the cascade is made according
to the deletion error criterion (rate of omitted charac-
ters) on the validation set. Tuning the MNDA parame-
ter was carried out by considering long and short words.

As previously seen in Figure 5, we observe that short
words (3 and less characters) are more prone to mis-
takes, justifying the fact that short and long words will
be considered differently in the rejection stage of the
cascade. In these experiments we have chosen a MNDA
of 3 for long words and 10 for short words, however,
small deviations from the values do not affect the re-
sults much. For example when selecting MNDA in the
range 2 to 10 for long words, and MNDA in the range
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5 to 40, we observed no modification of the CER, while
the WER is slightly modified by 0.25% on the validation
set. It would also possible to optimize these parameters
on the validation data set.

In Table 2, the first line is a reminder of the perfor-
mance obtained with a single BLSTM during the pre-
liminary experiments (See section 3.2 ). A Word Recog-
nition Rate of 66% was obtained. When using trans-
formations, the performance improves to 71%. Com-
bining 100 networks highly improves the performance
up to 84.5%, while combining transformations with 100
BLSTM increase the performance to 89.56%. Finally, it
appears that improvement does not depend on the type
of network nor on the input features used. For exam-
ple we observe a similar significant improvement of the
performance when using MDLSTM, as reported on the
last line of Table 2.

The study of the mis-accepted words shows that the
majority of the errors comes from accented letters ("a"
and "à" or "demande" and "demandé"), case sensitivity
("je" and "Je"), plurals ("conseillers" and "conseiller")
and close words ("tiers" and "tiens"). We now analyze
the results for cascades composed of classifiers from
multiple cohorts, in the hope to increase further the
complementarity within the cascade and then reducing
the errors.

4.4.2 Performance of cascades with multiple cohorts

We evaluate the cascade of cohorts of LSTM for the
Rimes and IAM datasets. First we report the results
on the Rimes dataset. By gathering the 10 cohorts de-
scribed in section 4.3, 2100 networks are combined in
the cascade.

Table 3 presents the results for different lexicon sizes.
The performance gap between small (1692 words) and
large (5744 words) lexicons is very low (' 0.48 points)
compared to the traditional performance drop observed.
The performance gap between the large (5744 words)
and the gigantic (> 3M words) lexicon is more impor-
tant, however it remains rather low with a gap of 5.71%.
Both results prove the low sensitivity of the approach
to the lexicon size. Moreover, it is to be noticed that
the cascade built using the training lexicon only obtains
good results due to the capacity of the approach to gen-
erate more rejects. Finally we observe that when using
the French dictionary in addition to the training lexi-
con similar performance are obtained than when using
the test lexicon in addition to the training lexicon and
French dictionary.

Regarding the gigantic lexicon, the system provides
very interesting accuracy (90.14%) as the lexicon is
nearly 600 times larger than the Rimes lexicon. Such

lexicon size opens new perspectives for processing named
entities (person, street and city names, numbers, etc.)
or multilingual documents for example. To the best of
our knowledge, there is no other reference in the liter-
ature using such lexicon size.

At the end of the cascade there are some remaining
rejected words. These rejects can be processed with a
lexicon-driven decoding method. Notice that generally,
for practical applications like automated postal sorting,
it is interesting not to process rejects because the cost
of a wrong decision is higher than processing it by a hu-
man operator. To compare the results with other state-
of-the-art methods, which have no rejection stage, we
use a Viterbi lexicon decoding on the rejected words at
the end of the cascade. As shown in Table 4, we achieve
state-of-the-art performance for a 5744 words lexicon
on the Rimes dataset. For doing so, character posterior
probabilities are estimated by the average class pos-
terior probabilities of ten LSTM networks randomly
picked among the cohort, before running the Viterbi de-
coder. Averaging the output probabilities from different
networks improves the performance (in comparison to
taking the output of only one network). Notice that the
number of networks randomly selected has a very low
impact on the performance above a certain threshold.
Selecting 5, 10, 20 or 40 networks yields nearly similar
results. To draw this conclusion we have computed the
CER and error rate on the validation set for randomly
selected sets of 5, 10, 20, 40 networks among the co-
horts and get a standard deviation below 0.03 on the
CER and error rate. The gap between this study and
the results presented in [26], both in terms of CER and
error rate is significant with an absolute decrease of 0.56
(29%) of the CER and 0.42 (11%) of the error rate.

Table 4 also stress the low performance obtained
by a standard lexicon directed Viterbi decoding using
one single BLSTM and using a very large lexicon. This
demonstrates the weakness of the traditional recogni-
tion paradigm. One can observe the large increase of the
CER (80% increase) and the accuracy decrease (4.6%
decrease) when decoding with a lexicon of 342275 words
compared to decoding with a lexicon of 5744 words. As
a comparison we can notice that our approach performs
almost similarly for the two lexicon sizes with only a
2.6% decrease of the accuracy. Table 5 presents results
on the IAM dataset. Both CER and error rate are bet-
ter than state-of-the-art by respectively 0.66 (19% de-
crease) and 0.52 (8% decrease). The result for the gi-
gantic lexicon is also impressive with 85% of words rec-
ognized with a lexicon 200 times larger than the initial
one.
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System Accuracy Error Rejection CER
Single BLSTM 66.37 33.63 0 11.24
Single BLSTM (+transformations) 71.78 28.22 - 8.89
Cascade of 100 BLSTM 84.53 3.13 12.34 0.99
Cascade of 100 BLSTM (+transformations) 89.56 2.74 7.70 0.82
Cascade of 100 MDLSTM 80.27 4.09 15.64 1.40

Table 2: Accuracy, error rate, rejection rate and Character Error Rate of different Systems on the Rimes dataset
with the 5744 words lexicon (training and test). Networks from the cascade are extracted from a single training
procedure (i.e. cohort).

Verification lexicon Lexicon
size Accuracy Error Rejection CER

Test 1692 96.08 2.32 1.60 0.76
Training + Test 5744 95.60 3.00 1.40 0.99

Training 5 334 91.32 3.68 5.00 1.26
Training + Test + Dictionary 342 275 93.41 5.47 1.12 1.72

Training + Dictionary 341 865 92.01 5.77 2.21 1.85
All lexicons + wikipedia 3 276 994 90.14 9.18 0.68 2.67

Table 3: Results of the 2100 networks cascade on the Rimes dataset for various lexicon sizes.

System Lexicon size Accuracy Error rate CER
One BLSTM + Viterbi 5744 91.48 8.52 2.77
One BLSTM + Viterbi 342 275 87.24 12.76 5.00
Cascade 2100 + Viterbi 5744 96.52 3.48 1.34
Cascade 2100 + Viterbi 342 275 93.96 6.04 2.11

Menasri et al. [11] 5744 95.25 4.75 -
Poznanski et al. [26] 5744 96.10 3.90 1.90

Table 4: Results of the 2100 networks cascade on Rimes dataset with Viterbi compared to state-of-the-art methods.

System Lexicon size Accuracy Error rate Rejection rate CER
This work 12202 92.46 5.04 2.50 2.08
This work 2 439 432 85.51 13.30 1.19 4.77

This work + Viterbi 12202 94.07 5.93 - 2.78
Poznanski et al. [26] 12202 93.55 6.45 - 3.44

Table 5: Results of the 1039 networks cascade on the IAM dataset.

4.5 Processing time

We analyze now one potential drawback of the approach,
which requires many networks and thus a large amount
of processing time. However, the cascade architecture is
very effective regarding computation cost, because once
a candidate is accepted by the verification stage, it does
not pass through the rest of the cascade. Regarding
the lexicon verification processing time, it is below one
microsecond, even considering the gigantic lexicons. Fi-
nally, when considering our system with 2100 networks,
the mean processing time per word is 729 milliseconds.
80% of the words are processed in less than 0.175s, af-
ter 14 networks or less, and 90% in less than half a sec-
ond (after 41 networks or less)2. As our code has not
been optimized nor parallelized, we believe that there

2 evaluated on an Intel CPU i7-3740QM.

is room for strong improvements. Considering memory
issues, the networks involved in these experiments do
not require a lot of memory space, as the whole set
2100 networks fit into 6GB, even with double precision
encoding (64 bits).

Above timing consideration, one would ask whether
the whole cohort of networks is necessary, or if a sub-
set of them would perform similarly, which in this case
would also alleviate the processing time. This point is
addressed in the next section.

4.6 Pruning classifiers from the cohort

The aim of the selection is to decimate the cohort of
classifiers so as to keep the most efficient reduced set of
classifiers. This has been achieved by simply removing
the networks providing the poorest performance on the
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validation dataset. Networks which don’t recognize new
words, or which yield too much false acceptance are re-
moved. By doing so, we manage to reduce the number of
networks from 2100 to 118. We observed a very accept-
able performance drop compared to the cohort of 2100
networks with an accuracy of 92.96%. Nearly similar
results are obtained when using Viterbi decoding of the
rejects: the WER is 3.64% (previously 3.48%) and the
CER is 1.49% (previously 1.34%). Note that this re-
duced architecture still improves state-of-the-art perfor-
mance. The mean processing time of this pruned cohort
is decreased to 197 milliseconds (previously 729ms).

5 Extending the cohort principle and lexicon
verification to handwritten lines recognition

The previous results are very interesting and we won-
der how to extend the cohort principle and the lexi-
con verification to operate at line level. Text lines are
more difficult to recognize because the system has to
cope with line segmentation into words in addition to
the recognition. The word segmentation is provided im-
plicitly by optical character recognizers and explicitly
by lexicon-driven decoding methods. However the word
segmentation may vary between different recognizers
like LSTM RNN, or different lexicon-driven methods.
In order to combine multiple recognition systems, the
state-of-the-art method is the Recognizer Output Vot-
ing Error Reduction (ROVER) [15]. ROVER proceeds
the outputs of multiple classifiers with two modules:
alignment and voting. ROVER combines multiple rec-
ognizers by aligning the multiple recognition outputs
with dynamic programming. Then, the ROVER vot-
ing module selects the best solution according to the
frequencies of word hypothesis and their recognition
score. The ROVER voting module is closely related to
the voting module that we have introduced in our cas-
cade combination scheme. The main difference being
the lexicon verification operator which was very rele-
vant in our case for combining many recognizers. This
is why we slightly modified the ROVER voting module
so as to introduce the lexicon verification operator in
the ROVER voting module. This can be done simply
by giving a score to each word hypothesis depending
whether it belongs to the lexicon or not. This score is
substituted in place of the classifier score that is asso-
ciate to each word hypothesis.

Then we perform this new Lexicon Verification ROVER
scheme by combining multiple LSTM RNN cohorts.
For that, we generate four LSTM RNN cohorts on the
Rimes text line dataset, as we did with the cascade.
We use the Rimes text line training dataset lexicon
only, as a consequence there are OOV words on the

test dataset. The evaluation uses the same methods as
in [12,46] to compute the Word Error Rate (WER) and
the CER. 454 networks of the 4 cohorts have been ex-
tracted to perform the ROVER combination. Results
are presented in Table 6. We compare our results to
two state-of-the-art methods [46,12] which are classic
recognition systems with a LSTM RNN followed by a
lexicon-driven decoding and a n-gram language model
train on the Rimes corpus. We achieve state-of-the-art
performance with the proposed ROVER combination
with the the cohort principle and the lexicon verifica-
tion operator. These results are very interesting as they
outperform standard methods that use lexicon-driven
decoding with language models.

System CER WER
ROVER + cohort + LV (this work) 2.6 8.4

Voigtlaender et al. [46] 2.8 9.6
Pham et al. [12] 3.3 12.3

Table 6: Results of a ROVER combination with lexicon
verification of 454 networks on the Rimes dataset.

To validate these results we carried out the same
experiment on the IAM text line dataset, on which we
extracted 377 networks from four cohorts. The modified
ROVER combination results are presented in table 7.
Contrary to other methods in the literature [12,46,47],
we only use the lexicon of the LOB corpus. Whereas
methods like [12,46,47] rely on many English corpus
(LOB, Brown, Wellington) to learn powerful language
models. These corpora have syntactical properties that
fit the IAM dataset very well. As one can see in ta-
ble 7, our results are comparable to [12] on the val-
idation set, which contains easier examples on which
the LSTM RNN performs better, but these results are
worse on the test set. The difficulty that our method
faces in this situation is that it relies mostly on the
performance of the LSTM RNN. The CER of a LSTM
RNN on the IAM dataset is about 3 points higher than
on the Rimes dataset. We deduce that the performance
of the LSTM RNN is the key point to perform better
than systems based on language models in a context
where many linguistic resources are available. In [47],
the authors built a ROVER combination of BLSTM
with neural network language models (NN LMs) and
ANN/HMM with the same NN LMs. In this study, we
obtain better results than this previous state-of-the-art
method without using any language model.

Since the performance of the LSTM RNN model is
the key issue, we have also applied the cohort combi-
nation scheme using identical convolutionnal and re-
current neural networks architectures (denoted CNN
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LSTM) as presented in [48]. In this experiment we have
trained two identical CNN LSTM from which we ex-
tracted a cohort of 164 CNN LSTM following our method-
ology. The results are shown in table 7. By combining
the CNN LSTM cohort with ROVER we significantly
improved (2.3 decrease of CER on eval) the perfor-
mance obtained during previous experiments, and we
now reach nearly the state of the art results. This ex-
periment with CNN LSTM shows that the cohort prin-
ciple can be extended to other neural network architec-
tures than BLSTM and MDLSTM. That is to say that
other tasks where neural network are used like docu-
ment segmentation, object detection or speech recogni-
tion may benefit from the cohort principle to improve
performance.

System WER
dev

WER
eval

CER
dev

CER
eval

ROVER + cohort
(BLSTM) + LV (this

work)
10.9 16.1 3.9 6.7

ROVER + cohort
(CNN LSTM) + LV

(this work)
7.3 11.5 2.4 4.4

Voigtlaender et al. [46] 7.1 9.3 2.4 3.5
Pham et al. [12] 11.2 13.6 3.7 5.1

Zamora-Martinez et al.
[47] - 16.1 - 7.6

Table 7: Results of a ROVER combination with lexicon
verification of 377 networks on the IAM dataset.

These results show that the concept of cohort con-
trolled by a lexicon verification operator can be im-
plemented easily for text line recognition. The results
outperform the state of the art on the Rimes text line
dataset, whereas good results are obtained on the IAM
text line dataset. This demonstrates the interest of our
proposition when language models may be difficult to
estimate, in the presence of few training data.

6 Conclusion

This works presents a new recognition paradigm that
substitute the traditional lexicon directed recognition
by a lexicon verification procedure. It is exploited in a
cascade framework involving hundreds of LSTM recur-
rent neural networks. The networks are obtained dur-
ing a single training procedure, therefore requiring no
hyper-parameter optimization and a limited training
duration. As we have seen, the combination of hundreds
of networks called a cohort lead to a great improvement
of the performance both for isolated word recognition
and text line recognition.

Another important part of the success of the cas-
cade combination is due to the lexicon verification op-
erator.The combination shows a low probability of false
acceptance, and has also a very low sensitivity to lex-
icon size. Besides, our method runs with gigantic lex-
icons without extra processing time, which has never
been done before. We successfully achieve state-of-the-
art results for both Rimes and IAM datasets of isolated
words.

We also proposed a modified ROVER combination
scheme that can benefit from combining a cohort of
classifiers controlled by a lexicon verification voting scheme.
We achieved state-of-the-art result on the Rimes dataset,
although the IAM results are less convincing when us-
ing the same feature set due to the weaker performance
of the BLSTM network, the results have significantly
improved when using a CNN LSTM architecture, reach-
ing near state of the art results. Combining the cohort
principle with the lexicon verification strategy performs
very well in situations were resources, like training cor-
pora, are rare. As the lexicon size is not an important
issue anymore, it also opens new perspectives for large
lexicon applications such as processing of multilingual
documents, or named entity recognition. Moreover the
cohort principle could be extended to other network ar-
chitectures like pure CNN in the aim to get performance
gains in other computer vision tasks.
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