Implementation Of A Generalized Transitive Closure
For Relational Queries®

M. Mainguehaud, M. Scholl
INRIA, 78153 Le Chesnay CEDEX

ABSTRACT

The use of transitive closure in expressing and evaluating recursive queries becomes central to
query processing, the more so as it has been claimed that most recursive queries of practical
importance can indeed be expressed by using transitive closure. Because of the iterative nature of

evaluation algorithms, it would be nice t0 have some generalized transitive closures taking into
account selection. [5588] defines such a ¢closwre.

The purpose of this paper is to look at efficient methods for computing the generalized transitive
closure as defined in [SS88].

We review various strategies based on two algorithms. The first one is a regular graph traversal

algorithm,. The other one is a new dlgorithm based on Warshall's one [War62] which provides a
very fast transitive closure,

%pw,. Mt flen Y8

*This work was supported by the French national pregram on Databases, PRC BD3.
1

I. INTRODUCTION

Processing recursive database queries is far from optimal (see for example [BR86, G S87] for
comprehensive surveys on this topic or [AJ87], [LM R87], [Sch83)).

However commonly occurring subclasses of recursions can be evaluated efficiently using
algorithms specially tailored to these subclasses.

Linearly recursive queries are an example of such subclasses. Among these, one-sided recursions

are the simpliest [Nau87].The evaluation of such queries can be expressed as the transitive closure
of a binary relation.

We refer 1o [Nau87] for the definition and characteristics of one-sided recursions. This definition
uses the notion of full argument/variable (A/V) graph. Since there is no simple and intuitive
definition of a one-sided recursion, we rather give two examples to illustrate this notion. First the
transitive closure is the canonical one-sided recursion :

X.7) <- «X2),%2,7)
(X.7) <- b(X,”)

the ''same generation" problem is d two-sided recursion :

3g(X.,”) <- pXW), (Y 2),s9(W2)
3g(X.,”) <- 3go(X,”)

but the following recursion is one-sided :

(X,” Z) <~ UX,UW),e(U,7),d(2)
XY 2) <- %(X,)Y2

Then the use of transitive closure in expressing and evaluating recursive queries becomes central to
query processing, the more so as it has been claimed that most recursive queries of practical
importance can indeed be expressed by using transitive closure. Therefore several authors attack

the problem of extending relational languages by including a transitive closure operator (e.q.
[A gr87]).

In principle, transitive closure should not be restricted to linearly recursive queries. Because of the
iterative nature of evaluation algorithms, strategies should be found to translate any recursion into
some transitive closure. !n practice, this is not the case since queries always introduce some
selection operator and since one cannot in the general case transpose the selection and the closure
operator. It would be nice to have some general transitive closure taking into account selections.,
As an example, take the relation : '

FLIGHTS (SOURCE, D_TIME, DEST, A_TIME)
and the query :

"Find all flights from New-York to Roma"
This query typically requires that if the flight has at least one stop, say in Paris, the arrival time in
Paris be less than the departure time from Paris. Clearly no one-sided rule can express such a
query. However, there exists an operation, the transitive closure of which can express the above

query @ [SS88] generdlizes the transitive closure of binary relations to an operation for n-ary
relations.

A generdlized composition operator is defined on relations R1 and R2 in D (xD2x..xDN as
follows [S588]

g(R1,R2) = TIp (oF (R1XR2))

where oF selects tuples in the cartesian product R1xR2 according to the condition F and TTp
projects columns from R1xR2 such that the result has same degree as R1 and R2.

A very general binary operator is thus defined, the transitive closure of which may be computed

by using efficient methods such as those currently developped for computing the transitive closure
of a binary relation [LuB7].

The purpose of this paper is to Took at efficient methods for computing the transitive closure of g.
We restrict our attention to the case where R1 and R2 are instances of the same relation R
although the algorithms should be extensible to the general case.

In the above query, all possible sequences of flights are defined by :

FLIGHTS * = U FLIGHTS M
n
where

FLIGHTS M = g (FLIGHTS ™1 ,FLIGHTS) n>2

and

FLIGHTSZ = TT(PDEST1= SOURCEz D_TIME2> A_TIME1
(FLIGHTS x FLIGHTS))

The objective of the paper is two fold :

1) We first give a new dlgorithm which allows 1) to provide the regular transitive closure
of binary relations as well as 2) keeping track of the intermediate steps (e.g. keep information on
intermediate connections in flights from L.A. to Roma). This algorithm (section 3) is based on
Warshall's algorithm [War62] and efficient graph traversal. It provides

@) an extremely fast Transitive Closure as Warshall algorithm does

b) as well as complete paths in the graph associated to the transitive relation™

A3 a matter of fact to get complete paths, only a subgraph is traversed and this subgraph traversal
is much faster than that of regular graph traversal algorithms since it does not necessitate any

backtracking. We then study the behaviour of this algorithm in the case of cyclic relations (section
4).

2) the second objective of this paper is 10 address the problem of finding strategies for
efficiently implementing a generalized transitive closure operator (section 5). We compare two
basic operators for such strategies :

@) the algorithm defined in section 3

b) a regular graph algorithm, such as that reported in [Puc87, A qr87].

* This graph will be defined in section 2. For the time being, assume that, to each tuple
in relation FLIGHTS, corresponds a directed ed ge labelled by the subtuple < D_TIME,

A_TIME> value and whose origin (target) node is labelled by the attribute
SOURCE(DEST) value.

3

The major result of this comparison (section 6) is that the algorithm of section 3 performs well as
long as the selection oF implied by the operator g does not alterate significantly the graph. This is
typically the case of the above FLIGHTS application. Indeed in the graph associated to the
recursive relation, the number of ed ges corresponding to a given pair of nodes can be very large
(e.g. there are a large number of direct connections between Paris and New- Y ork) and there is a
smdll chance that a given selection deletes this ed ge.

However, the new algorithm, at least in its current implementation, Yequires a precomputation
whose predicted worstcase time complexity is prohibitive for transitive relations of large
cardinality.

We first give some definitions :

1. DEFINITIONS

The generalized composition operator introduced above [5S88] is defined on relations R1 and R2
as foliows :

gp(R1, R2) = TIp (oF (R1XR2))

Let us restrict our attention to the case where R1= R2 and let us denote gpr (R, R) by g (R) (or
g When there is no ambiguity). We further assume that the selection formula F includes one
condition A2 = B where A and B are attributes of R defined on the same domain :

DA U D = D, whose cardinality is denoted by n, and A2 (B 1) is the second (first) instance of

attribute name A(B) in RxR. We are interested in the transitive closure of the following
(mathematical) relation :

X pyiff(x,y) € Tlag g(R)
R is called a (generalized) transitive relation. Tuples of relation R are drawn from :

DxDxD1x..%xDp.
I[.1 Graph associated to a transitive relation

Then to relation R and to attributes A B, one can associate a labelled dirscted graph G (R, A, B)
referred to simply as a graph and defined as the following ordered 4-tuple :

(N, yn, E, g

where N = {12,..n} is the set of nodes, yy is a one-to-one node labelling function that
gssociates to each node a distinct value drawn from D (the set of values taken by A or B in R), E

is the set of edges and yg is an edge Tabelling function which associates with each tuple abdq..dp
of R a directed edge from node pn(a) to node Y(b).

There are no isolated nodes and of course to a given edge there may correspond seyeral tuples in
R.

For the sake of simplicity, yy domain has been taken as a single domain D. However there i3 no
restriction on the node labelling function:

One may extend the above definitions to the case where A and B are replaced by A ¢, ..., Ap and
B4, .., Bp defined on Ay, ..., Ap. Then to each node i€ N, there corresponds d unique value from
Arx .. X Ap: ,

YN IA1X L x Ap =N
where R is defined on

Atyhp, AtyBp, D1, Diy

11.2 Transitive closure

We are interested in the transitive closure of relations R as defined above. If R (A, B,.) is a
transitive relation, its transitive closure R* is defined by :

R*=U RI
i>0

where Rl denotes the ith power of R :
R1=R and
Ri=g(RITR) fori> 1

Then a pair (a, b) where aeTTA(R), be TTR(R) is in the transitive ¢closure whenever there is a path
of non zero length from a to b in the graph G(R, A, B).

11.3 Matrices

A simple and common way of representing a graph is the use of its transition matrix (adjacency
matrix). Let us denote by N(i j} the transition matrix of graph G (R, A, B) defined as an nZ matrix
such that : N(i,j) = 1 if there is an edge from node (e N to node je N, otherwise N(i,) = 0.
We furthermore define the following 'reachibility matrix as follows :

M{i,j) is an n x n matrix such that :

M(i,j) = {k|keN and there is a path from i to j in which k is the immediate
successor of i}

M(i,) = @ if there is no path from i to j.

1.4 Example

Let FLIGHTS (S, D, DATE, D_TIME, A_TIME) represent flight connections between cities

where S is the source town, D the destination town, and D_TIME (A_TIME) is the departure
(arrival) time from city S (at city D).

There are, of course, a large number of direct connections between towns according to the date
and the hours.

The query :
“Find the flights from New-York to Roma on January st

should satisfy the constraint that the departure time must be larger than the arrival time in

intermediate connection towns (e.g. Paris). This query can be expressed as FLIGHTS* where the
g operator is defined as :

¢(R) = TIS1 D2 DATE,D TIME1A TIME2
(UD1= S2.DATE=JANI.D-TIMEz>A_TIME1 (RxR))

G(FLIGHTS,S,D) has towns for nodes and the ed ges are labelled by DATE, D_TIME, A_TIME
values,

. A TRANSITIVE CLOSURE ALGORITHM

Most dlgorithms for implementing recursive rules and particularly the transitive closure, use os
basic steps, operators of the relational algebra, more specifically the join operator [Lu87]. The
problem is then to define the best strategies, a good strategy being not necessarily that which
decreases the number of joins, but also that which decreases the size of intermediate results,
However, having in mind the extension of relational algebra with fast transitive closure operators,
a few authors look at-the design of performant algorithms based on dedicated representations of
relations [Puc87, A qr87]. Among those [PucB7] represents a relation by means of its associated
graph as defined in the previous section. This work uses an adjacency structure which is
eq uivalent to the transition matrix and shows that such a structure is well adapted not only for
computing the transitive closure but also for computing more general linear recursive queries.

The simple idea behind such an approach is t© compute from the transition matrix all nodes
reachable from a given node by a graph traversal algorithm. This traversal can be done "'breadth-
first" or "depth-first” according to the query. For example, to a query with aggregate functions™
(applied on the labels of the ed ges traversed) [RHD86], should comrespond a depth-first traversal.

Even for a query without selection condition nor aggregate function calcufus, such algorithms
imply backtracking steps which for some wansitive relations may be extremely large.

There are two causes for backtracking when computing all paths from node i € | C N 10 node
jeJ C N.

1) backtracking occurs when one eventual]y reaches an end-node which is notdesired :j € J

2) backtracking also occurs when one comes to a node dlread y visited (cyclic data).

An alternative is the use of glgorithms such as Warshall's one [War62] which permits by a single
matrix access 10 know whether node j is reachable from node i : after applying Warshall's
algorithm to N(i,j), the interpretation of the matrix is :

NG =1 if there is a path from i to j, otherwise
N,) = 0.
However, with both upprouches one does not memorize any information on the paths when going

from node i ©o node j, or one does not keep track of the edges and nodes visited (except for some
aggregate calculus).

+ Agg)regate functions are understood as functions allowing to choose one (or several)
path(s) among all paths between two nodes in the graph.

6

Such an information may be necessary for several applications. As an example, one might require

information about, New-¥ork, Paris, ..., which are intermediate stops when travelling from Los
Angeles o Roma.

The algorithm presented below is an extension of Warshall's algorithm which allows :

1) As Warshall's algorithm does, to get the transitive closure by a single access matrix and thus
without any graph traversal.

2) To waverse more efficiently a subgraph in order.
a) To compute aggregate functions,
b) to memorize information on node and ed ges visited.

This traversal is more efficient, first because olny a subgraph is traversed, secondly because all
nodes eventudlly reached are desired nodes: In that sense there is no backtracking. Of course some
backtracking is still necessary when we are in the presence of cyclic data, but we show in section
IV, how some permutations on {1,...,n} can reduce the number of cycles to be detected.

1.1 Algorithm A

Forj = ttn,do
For all ie {1,n} such thati=].M(ij} = @&, do

Forail ke {1,n} suchthatk =j M(j, kX) = @, do

MOK—MGKOUMG, D
end k
end i
end j

Description_:
Algorithm A takes as an entry the n x n matrix M (i, j), where:

M,)

{j} if there is an edge from ito j,
M,)

@, otherwise

Then it scans all nodes, and for each of them (column j) looks at all nodes (line i) for which a
path has been detected (from i to j : M(ij) = @).

ATl nodes (k) reachable from j are then detected as reachable from node i through j. Therefore if
1e M{ij) is the first successor of i on a path from i to j, 11s also the first successor of i on a path

from i to k through j (elementary step: M{i,k) — M(i,k) UM).

I1.2 Example

Figure 2 displays the matrix state after each column has been scanned by Algorithm A for the
graph depicted in Figure 1. Step O represents the initial state of the matrix.

25— 1
7N
4 — 3

Figure i an example of graph

7

1
5 2
4 3
5 4
3 5 1 3
STEP O STEP 1
3 4 5 1 2 3
1
5 2
4 3
S 4
3 5 1 3
STEP 2 STEP 3
3 4 5 1 2 3
1
5 2 5 5
4 4 3 4 4
5 4 5 5
3 3 3 5 1 3
STEP 4 STEP 5

Figure 2 M(i j) after each step of algorithm A
8

111.3 Complexity

The complexity of Algorithm A depends on its implementation. If M is to be implemented by a n?
matrix where each matrix node M(ij) is a n-bit vector where the 1th bit of M(i,j) is setto 1if 1is
the i3mmed iate successor of i on a path from [to j (else it is set to 0), then the space complexity is
O(n%) bits.

A simple implementation of aigorithm A consists
1. in scanning the n columns, for each column :
2. in scanning the n lines, for each Tine :

3. in testing whether M(ij) = @ (this can be done by adding to the n-bit vector of M(i),
da n+ 1st bit which is set to one if M(i,j) = @),

4. If M(i)= @, then in testing for each column k, whether M (j, k) = @. In the latter
case, ,

5. in performing the union of the two n-bit vectors M(i,k) and Mi).

Therefore steps 3, 4,5 are performed n2 times. The length in time of steps 3, 4,5 depends on the
graph. In the worst case (fully connected graph) it is 0(n2) bit-unions. Then, in the worst case, the
time complexity is 0(n4) bit-unions.

A_motre realistic upperbound on time complexity :

However, for (aimost) all applications, the outdegree of any node (e.g. the number of direct
connections from d given town in the example above) eventhough it is not bound, is far from its
upperbound n.
Then, when n is large, instead of representing M(ij) by an n-bit vector, it is far better to represent
it as a chain of k-bit vectors where k could be the size of, say, @ machine word.
Then, if we denote by m the number of edges, the following is an approximation on the
upperbound on time complexity :

O (m/nx nd) = O (m x n?) bit-unions
Indeed, it assumes as above that for each line scanned, M(i,j) =@ (step 3), and for each
k € [1,n] there is @ test M(j k) =@ which is positive and is followed by m/n bit-unions. Recall
we assumed the outdegree to be large, therefore m/n + 1 is nearly m/n.

O bserve, that as the previsions O(n4) worst case upperbound, it is probably far from the average
case performance, since it relies on drastic assumptions on the result of tests of M(i,)) (step 3),
and M(j k) (step 4).

However in many applications, the outdegree of any node can be considered as bounded. A less
restrictive assumption which corresponds to most applications, would be to consider that m/n is
bounded.

Then, a more realistic upperbound on time complexity would be O(n3) bit- unions.

A3 an example, take n= 1000 and assume an elementary step (bit-union of two words +
overhead) takes 1 micro-second. Then theé O(n4) worst case upperbound gives 10 hours! The
0 (n3) worst case upperbound gives olny 16 mn. However, the latter bound gives, with n= 10000,
11 days|

Clearly, a more thorough analysis or a medsurement experiment for typical applications is
necessary to give a clear idea of the average case time complexity, and to infirm or confirm the
worst case prediction which renders this algorithm not redlistic for transitive closure relations with
large cardinality.

9

Besides, the memory size must be sufficient to hold the entive matrix (whose size is 0(n?),
assuming m/n bounded), otherwise the algorithm would be unrealistic.

In order 1o reduce the number of steps 3 and 4, we are currently studying a data structure where

each line and each column are implemented by means of sorted linked lists of non-empty nodes,
Scanning non empty nodes is then faster, however insertion of a new node in each list is slower.

111.4 Transitive closure

After algorithm A has terminated :

) forallieN,forall j € N such that M(i,j) = @ there is a path from i to j. The proof is
given in appendix A.

ii) The complete paths from i to je {(je N| M(ij)= @} are obtained by traversing the

subgraph represented by column j : {M(i, j)| ie N}, starting from node i (see Algorithm B in
appendix).

'Y CYCLES REDUCTION

Algorithms A and B ensure that all simple paths from i to j (paths without cycle) are obtained by
traversing the subgraph vepresented by column j in mawtix M. However when traversing this
graph, we may encounter cyclic paths as illustrated by the following example :

5—1—4
SN
32

Figure 3 Example of graph

12 3 4 5

1 22242

Figure 4 Matrix M with cycle

Let us solve the following query : "Give dall the paths between 5 and 4"
M(5,4) = @. Then there exists at least a path.

10

Algorithm given B performs a depth-first search on the graph of column 4 :
1) Initially, the Departure Node (DN) is 5, the first Visited Node (VN) is 5.
2) Access M (5, 4) : node 1 is chosen.
DN = 1 VN = {5, 1}
3)4 € M (1,4) ; one path has been found 5, 1, 4:
4) The next choice is node 2, since node 2 € M (1, 4) :
DN = 2 VN = (5,1, 2}
SYM (2,4 = {3}
DN = 3 VN =({5,1,2,3}

6) M (3,4) = {1}. 1 has been marked as already visited, so a cyclic path starting with
node 1 is detected and node 3 is rejected. Backtracking will reject also nodes 2, 1 and 5.

In conclusion, a cyclic path is generated by Algorithm A and stored in M (i,) which cycle is
detected when traversing the graph.

Now, suppose we change the node labelling function so as to obtain the following permutation M5
of 5 nodes :

M5(1) =5 M5(2) =3 M5(3) =4 M5(4) =1 M5(5) = 2

2 — 5 — 1
SN
4 3

Figure 5 Graph after permutation

1 2 3 4 5

1
215 515 1[5
31| 4 4 4_ 4
4 |5 515 15
511 .3 3 |3
Figure 6 Matrix M of the new graph

11

Clearly the cycle 5, 3, 4, 5, t has not been generated : M (5, 1) = {1} while in figure 4,
M(1,4) = {4, 2}.

Therefore a change in the node labelling function allowed to get rid of the cycle. We shall see

below that in the general case we cannot find a node labelling function which allows to get rid of
all cycles.

| —— k —]
/ \
m €— — — -~ |

Figure 7a Elementary cycle

i —» k —
4
/7 \
m &4 — — |
¢ N\
. l-

Figure 7b all cycles satisfying condition |

Lete = {k],..m,.k} be an elementary cycle in graph G (Fig 7a) satisfying the foTlowing
conditions :

1) There exists a path fromk 0 j,j € ¢

2) forall m € ¢, all paths from m o j go through k

Let C = Uc be the union of such cycles, i.e. the set of nodes n which are on the same cycle as k
(see example of Fig 7b) and such that all paths from m 0 go through k

Lemma

If the permutation T of N is such that :

k = MAX (m|[m e C), then1 & M (k, j) after Algorithm A has terminated, otherwise
1e M (k,j), foralll, immediate successors of konc € C

Proof : see appendix C

i2

Corollary

Given a path p :i..k...j, if k is an integer larger than the label of nodes

1) on the same cycle as k

2) and not connected to j, then we are ensured that Algorithm A will not praduce the
paths with a cycle starting with k.

Clearly, dll cycles produced by Algorithm A are not eliminated, das illustrated by the example on
Fig8

w— 1

k2
e — 2
|

Ny

ki —» — — - j3

Figure 8 ATl cycles are not eliminated
if k1 > k2, the following paths are eliminated :
ikt ...k2 ...kt .1
ik1...k2 ... K1 ..J2
but the cyclic path :i k2 ... k1 ... k2 j3 remains.

The above lemma does not suggest a simple way of minimizing the number of cycles produced by
algorithm A ; although the following node labelling function might in most cases reduce the
number of cycles.

Let O(i) be the outdegree of node i € N.
Let T be a permutation of N such that nodes are sotted by increasing outdegree :
T: i< iff od < o

V. STRATEGIES FOR IMPLEMENTING THE GENERALIZED
TRANSITIVE CLOSURE

We consider the extension of relational systems by including an operator for computing the
transitive closure of ;

g(R) = Tlp (¢cF(RX R))

13

We dlso assume that queries may involve some aggregate calculus as well as some memorization
about the path followed when computing the transitive closure. As examples of aggregate calculus,
on the FLIGHTS relation, one may be interested in selecting the flights from L.A. o Roma, the
cheapest or with @ minimum number of connections, ...

We Took at strategies based on the implementation of the transitive closure by means of two
algorithms :

a) Algorithm A of section ||
b) A regular graph traversal algorithm [Puc87, A gr87]

Both algorithms assume the eXistence of data structures representing the graph associated to the
transitive relation R. Such data structures allow fast transitive closures but imply more complicated
relation updates.

[n the second algorithm, all we need is the graph transition mawix N (i, j), while in the first case
the basic data structure is the matrix M (i, j) produced by algorithm A (see section I11).

V.1 Queries
In the general case a selection oF on RZ implies that paths will be selected on G(RA ,B)
according, not only to the edges label value, but also according to the nodes label value. In other
words, paths in the graph can be eliminated because d condition is not satisfied for

1) some edge on the path,

2) some node on the path

3) the aggregate function {e.g. +,*,..) on the values of the ed ges of the path.

In general, the verification of condition 3) requires scanning all solutions to the query, ie.
traversing all paths associated to the transitive closure.

As for as selection conditions 1) and 2) are concerned, whether the selection and the closure
operators are transposed or not will give various strategies.

Before reviewing theses strategies, let us specify the selection operator oF :
Assume F may be writen as

F = FA1and Fp2 and F'and (A2 = B1)
where !

1) To each value of A or B corresponds a node In G (R, A, B).

2) In the schema of the product R X R, A1, B1 (A2, B2) comespond to the first (second)
instance of attribute nameés A, B.

3) Fa 1 (FB2) contains all relational predicates involving A1 (B2) and none of the others
{condition on the node)

4) F' contains all relational predicates involving other attributes (condition on the ed ges).

For the sake of simplicity, we assume there is no projection condition : all attributes are projected.

14

V.2 Strategies based on Algorithm A

V.2.1 First strategy :

A natural and efficient strategy consists in selecting the edges to be eliminated (because of the
selection condition oF?), then two cases may happen in the resulting graph :

a) no node is

eliminated : this might occur in some applications for which the number of tuples

associated 10 an edge is large. Then

1) either access directly M(i,j) if only the transitive closure is required,

2) or waverse the graph (Algorithm B)

b).some nodes must be eliminated. Then mark them and apply Algorithm B in all cases.

This strategy is presented in the following algorithm :

Algorithm C
begin
R1 —TA B (¢F(R))
R2 — R - R1
if R2 = @&
then
K — @
else
R3 «— TaA (R2) U g (R2)
K — ¢n(R3)
end if

end

*/ Ke{1,..,n} is the subset of nodes to be bypassed when traversing the graph /%

F—on(TF, 1(R))
(o 'PN(GFBZ(R))

/ | and O C{1,..,n} are the subsets of entry (output) nodes in the graph /x

LOOK—PATH (I, 0, K)

LOOK-PATH (Algorithm B, see Appendix B) traverses the graph and Tooks for all paths
from i€l 10 0e O, such that ke K is forbidden.

Notes

1) We have assumed that in all cases we are interested in the whole path. If just the
transitive closure is desired (and K = @) then it is given by M(i0),i€l,0€0.

2) For the sake of simplicity there is no aggregate function in the computation of PATH.

15

3) The calculation of R2 (one selection, one projection and one difference) can be reduced
to a single selection/projection if R is in N INF (see for example [JV87]).

V.2.2. Second strategy :

It consists in traversing the graph and checking at each ed ge traversal the selection condition o :
if the tuple does not satisfy the condition, the path is abandonned. (Algorithm B).

V.2.3. Third strategy :

Findlly, the third strategy applies the selection first : R"—aF{R), recomputes matrix M (i j) for R
(Algorithm A), then accesses M(i,j) or traverses the graph (Algorithm B).

In practice, the two last strategies are too expensive in time, and one should prefer the first
strategy even though the selection condition o ¢ is such that the graph G(R,A ,B) is much altered.

However in the case where G(R', A, B), (where R' = o (R)) is expected to have a small humber
of nodes, one might apply the second strategy (recompute M (i)).

V.3 Strategies based on a regular graph traversal algorithm
If G(R,A ,B) is represented by the nxn matrix N(iJ), then there are three strategies analoguous to
that of section V.2 .

1) select and mark nodes to be eliminated, then traverse the graph. This is exactly
Algorithm C, except that LOOK -PATH Is implemented by means of Algorithm D (see Appendix
D).

2) when traversing each ed ge of the graph (Algorithm D), condition oF* is checked.

3) one applies first selection o'F*, then N(ij) is recomputed, then the graph Is traversed.

It is worth noting that in all cases :

1) the whole graph is traversed: in the previous section one traverses only the graph
corresponding to one column (one end point) which is eventually reached,

2) backtrdcking in this graph is done not only because of cycles, but especially because we
do not come up to a desired end point,

3) graph traversal is required even if the query is a simple transitive closure and does not
imply memorizing information about the path followed.

Of course, the more the query is selective, the better the third strategy is.
Algorithms for these three strategies are almost identical to that of section V2. The only difference
lies in the use of a different graph traversal algorithm, (Algorithm D, see Appendix D) used also

for simple transitive closure, and taking as an entry the whole graph represented by the transition
matrix N{iJ).

16

Vi CONCLUSICN

We have introduced in this paper a new dlgorithm for implementing a generalized transitive closure
operator as defined in [SS88]. This algorithm is a mixture of a Warshall like algorithm [WarG2]
and graph traversal.

We reviewed then a few strategies for implementing the transitive closure. Those strategies use as
¢ primitive the algorithm introduced above or any regular graph traversal algorithm [Puc87,
A gr87). A performance comparison of these strategies with both algorithms is under study.

Whether the new algorithm performs better than a regular graph algorithm will depend on the
application.

The new algorithm presents the following advantages :

1) a fast transitive closure, while with a graph traversal algorithm, the transitive relation is

represented by its associated graph and computing the transitive closure requires traversing the
graph which may be time consuming

2) as a regular graph traversal algorithm, but at « lower cost ;
1) the choice of paths on the basis of aggregate functions calculus
2) to memortize information on the path followed.

With this new algorithm, for some queries, graph traversal is even the olny possible way of
computing the trdnsitive closure,

Futhermore computing the data structure required by the new algorithm has been predicted 10 be in
the worst case time consuming unless the relation is of limited 3ize. This comes from the fact that
all path associated to the transitive relation are partially precomputed in order to render any query
fast at run-time.

We are currently studying another implementation of this algorithm in order to reduce the time
compiexity of the data structure construction and undertaking a measurement experiment for typical
applications in order to get an evaluation of the average case time complexity and infirm or
confirm the worst case prediction. We believe that in some situations even with large relations, the
data structure construction should be fast enough. In particular, we are studying the case of
relations whose associated graph is a set of clusters sparely connected. An example of such a
situation would be an intercity communication network whose intracity communications would
correspond to clusters.

17

[A gr87]

[AJB7]

[BR86]

[G 587]

[JV87]

[Lu87]

[LMR87]

[Naus7]

[Puc8?]

[RHD86]

[S588]

[Sch83]

[War62]

REFERENCES

R. Agrawal, "Alpha : An extension of relational algebra to express a class of
recursive queries”, Proceedings of the 3rd Data Engineering Conference,
Los Angeles, CA, February 1987.

R. Agrawal, H.V. Jagadish, "Direct Algorithms for computing the Transitive
Closure of Database Relations", Proceedings of the 13th International VLDB
conference, Brighton, England, September 1987, pp 255-266.

F. Bancilhon, R. Ramakrishnan, "An amateur's introd uction to recursive query
processing strategies', Proceedings of the ACM SIGMOD 86 conference

G. Gardarin, E. Simon, "Les systéemes de gestion de bases de données
déductives", T.S.l., Vo1 6, N° 5, 1987, pp. 347-382.

Jules VERSO, "VERSO : A database machine based on N1INF relations",
INRIA report n® 523, May 1986.

H. Lu, "New strategies for computing the Transitive Closure of database
relations”, Proceedings of the 13th VLD B Conference, Brighton, 1987,

H. Lu, K. Mikkilineni, J.P. Richardson, "Design and Evaluation of Algorithms to
compute the Transitive Closure of a Database Relation", Proceedings of the 3rd
International Data Engineering Conference, Los Angeles, CA, February 1987,

J.F. Naughton, "One-sided Recursion", Proceedings of the 6 th ACM, PODS
Conference, 1987.

P. Pucheral, "Les structures d'adjacence : Un support adapté au traitement des
régles récursives linéaires", 3éme Journées Nationales des Bases de Données,
Port-Camargue, 1987,

A. Rosenthal, S. Heiler, U. Dayal, F. Manola, "Traversal recursion : A practical
approach to supporting recursive applications”, Proceedings of the ACM
SIGMOD Conference, 1986.

S. Sippu, E.S. Soininen, "A generalized transitive closure for relational queries",
Proceedings of the 7th ACM PODS Conference, A ustin, Texas, March 1988.

L.Schmitz, "An Improved Transitive Closure Algorithm", Computing, Vol 30,
1983, pp 359-371.

S. Warshall, "A theorem on boolean matrices”, JA.C.M. 9,1, 1962.

18

APPENDIX A :Proof ot the validity of algorithm A

it is obvious that as in the case of Warshall's algorithm, Algorithm A adds only arcs that should
be added, i.e. if it sets :

M(i, k) — M, k) UM, j
then it adds one (or several) path(s) from i 1o k through j.
The only thing deserving proof is that algorithm A adds all the paths (i, j) existing in the graph.

This can be proved by induction on the length of any path from a to b. We just give a sketch of
the proof :

If the path length is one, then the edge (a, b) is already present : b € M(a, b).
Assume that for all paths of length T > 1, Algorithm A adds the path (a, b) and we have :
s(a) € M(a, b)
where s(a) is the immediate successor of a on the path (a, b).
Now take a path of length 1+ 1 and let m be the column that algorithm A processes last : m is the

highest numbered node on the path :

a..m..b
Assume m = a, b (The cases m = aorm = b can be treated similarily). We are now leaved
with two shorter paths (a, m) and (m, b). By the inductive hypothesis, they have already been
added to the graph by algorithm A, when it is processing column m, since all other columns
corresponding to nodes of the path have been dlready scanned.

More specifically, Tet n(p) be the column that algorithm A processes last when adding the path
(a,m) (the path {m, b)) :

a,s{@,...,n,...,m,...,p,...b
When processing column n, we insert s(a) in M{a,m) :

M(a, m) — M{aq,m) UM(a,n) iff M{a,n) = @ and M(n, m) = &.
Indeed, M(a, n) = @ since there is a path from a to n, and

M{n, m) = @ since there is a path from n to m, therefore

M{a,m) = @ (n
Similarily, when processing column p, we have :

M{m, b) — M{m, b) U M{(m, p)

then, M(m, b) = @ (2)
Finally, when processing column m and line a we insert s(a) in M(a,b). Indeed we have :

M(a, b) — M{a, b) U M(a,m)
since by equations (1) and (2), M(a, m) and M{m, b) are not empty. Then we have indeed added

the path (a, b) of Tength n+ 1.

19

APPEND B

In this appendix we give a trivial algorithm for graph depth-first traversal, when the graph is
represented by matrix M(ij).

Let A be a n-vector whose value is initially :
A () = True, if i is the destination node of an ed ge which does not satisfy the selection

condition oF' : i € YN (R3), (see Algorithm C, section V.2.1)
A () = False, otherwise

During the graph traversal, each time a node, say i, is visited, A(i) is set to TRUE to avoid cycles.

Procedure LOOK-PATH (1.0, A)

begin
foralie |,je O
ifMCG,j)) =@
then
if i =
then
A (i) = True
endif
PATH = <i>
FIND~PATH (i, j, A, PATH)
A() = False
endif
endfor
end

PATH is a (set of) finite sequence(s) of nodes starting with i and finishing with j.
| i3 the set of departure nodes, O is the set of arrival nodes.

Procedure FIND-PATH (i, i A,PATH)

begin
forallk e M (i,)
do
ifk = j
then
output (PATH + <j>)
else
if A{k) = False
then
A () = True
FIND-PATH (k,j, A, PATH+ <i>)
A (k) = False
endif
endif
endfor
end

20

APPENDIX C

Let us denote by T a permutation of N = {1.2,...,n} and by M{G) the matrix associated 10 G. G
denotes the graph obtained from G by appling to its n nodes the permutation T.

Lemma :
If the permutation T of N is such that :

k = Max (m | m&C), then 1T #M(k,j) after Algorithm A has terminated, otherwise
1 eM(k, P, for all 1 immed iate successors of k on cycles ceC.

Proof :

Letp = MAX (mimeC). There are two cases :

Dp=k:

Then column k is processed after ali other columns meC.

@ Forallm € C, m=k, M(m,) = @, before Algorithm A processed column k.

Indeed before the latter step, the path m...k...] has not been detected yet and by assumption, there
i3 no other path from m to j. M(m,j) is modified when processing column k.

b) Before Algotithm A starts, M(k, j) = {j} and of course 1§ M (k, j).

Then, the only way of modifying M(k,j) is, when processing column m and line k through the
step :

M,) — Mk, DUMK, m), iftM(m,j) = @

Observe first that m = k : when processing column k, line k is not mod ified.
Then there are two cases

i) meC, then M(m, }) = @, by argument a) above; therefore M(k, j) is not modified.
i) meC, then assume M(m,]) = @ :there is a path between m and j.

Then,
-either this path goes through k, which is in contradiction with the assumption that m eC,

-or,if 1 € M (k, m), then there is a path from 1 to m and therefore there exists a path from 110 j,
which does not go through k, which is in contradiction with the assumption.

2)p= k:
We shall show in three steps that1 € M (k,)) after column p has been processed :

@) We first show thatl e M (k, p) :

Before processing column p, all paths on C from k to p have been detected. For all m on these
paths, we have :

21

m < p
1e Mk, m)
M{m,p) = @.

Therefore there exists such an m column which, when processed, provides the following update of
Mk, p) :

M(k,p) — Mk, p) U M(k, m)
then 1 eM (k,p).
b) We then show that when starting to process column p, M(p,j) = @ :

Using the same argument as in a) a path has been detected between p and k on C just before

processing p. Since there is an edge from k 10 j, there is a path from p to j and before starting
processing p, M(p,j) = @..

¢) Finally, when processing column p, on line k, we have :
MKk —MKDPUM®KD), if M, = @
then, from a) and b) :

1e Mk,j.

22

APPENDIX D

Algorithm D

The following graph traversal algorithm computes a path in a graph represented by its adjacency
matrix N (i, j). It is very similar to Algorithm B.

LOOK-—PATH (10 A)

begin
ifi=j
then
A() = True
endif
PATH = <i>
FIND—PATH (i, j, A, PATH)
A(i) = False

end

EIND-PATH (i, |, A, PATH)

begin
for allk € {1,n}
do
if NC,k) = 1
then
ifk = j
then
output (PATH + <k>)
else
if A(k) = False
then
Alk) = True
FIND-PATH (k,j, A, PATH+ <i>)
A(k) = False
endif
endif
end if
endfor
end

23

