GROG : Geographical Queries using Graphs

MAINGUENAUD Michel

Institut National des Télécommunications
9 rue Charles FOURIER

91011 EVRY

33 1 60 76 40 40
email : MAINGUENAUD@FRINTS51.BITNET

Abstract :

This paper describes a graphical Data Manipulation Language (DML),
GROG. The central notion of GROG is that it allows recursive queries to be

expressed very easily. GROG is a DML for a Geographical Information System
(GIS).

This language is said to be graph-oriented by the way data are modelised,
queries and the results of a query are expressed . '

Keywords : Geographical Information System, Data Manipulation Language,
Recursive Queries.

K\io‘-o 301’0'4
2.8 e %9

I“\Q F’LC«;. ‘334:.” 5&4‘ :i"frru\

GROG : Geographical Queries using Graphs

MAINGUENAUD Michel

Institut National des Télécommunications
9 rue Charles FOURIER

91011 EVRY

33 1 60 76 40 40

email : MAINGUENAUD@FRINTS51.BITNET

1. Introduction :

In current research toward the design of more powerful Data

Manipulation Language (DML), different research groups are simultaneously
concentrating their work on logical-based query language. Because of the
diversity of the Geographical Information System (GIS) applications
[SMSE87] and users, there is a need to design a user-friendly query
language.
Part of GIS applications is network management such as roads,
telecommunications, railways, etc. These data can be easily represented
using graphs. Manipulations of graphs are very often defined with a
recursive (or logic-based) formalism. Starting with a graphical query
language supporting recursion defined in [CMW87] we propose a DML for GIS
applications relying on network management. Section 2 presents various
queries adressed to such a GIS. Section 3 presents the syntax of semantics of
[CMWZ87]. Section 4 presents the limitations of [CMWS87]. Section 5 presents
the extensions [M89]. Section 6 has the conclusions and discussion of futher
work.

2. Network-oriented gqueries :

This section presents various typical queries adressed for example to a
(road) Network Information Management System :

Query 1 : What are the paths from Nice to Paris ? This query can be
evaluated with a graph traversal operator.

Query 2 : What are the paths from Nice to Paris with olny large-city
stages ? This query can be evaluated with a graph traversal operator
and constraints on the nodes of the graph.

Query 3 : What are the paths from Nice to Paris with AIR FRANCE (AF)
company ? This query can be evaluated with a graph traversal operator
and constraints on the edges of the graph.

Query 4 : What is the shortest path from Nice to Paris using motorway ?
This query can be evaluated with a graph traversal operator, aggregates
and constraints on the edges of the graph.

These queries can be written with Horn clauses [CGT88]. But Horn
clauses are not well adapted as a user-interface : 1) Horn clauses are not a
very user-friendly language for the one who is not used to recursive
concepts, 2) Horn clauses can't modelise some typical queries such as :

Query 5 : What are the common parts between a path from Nice to Geneva
(which costs less than 10 units) and a path from Paris to Vienna ?
Query 6 : What are the paths without any cycle from Nice to Paris ?

Therefore Network Information Management Systems need a user-friendly
Data Manipulation Language which allows recursive queries to be expressed.

3. Starting point of GROG [CMW87]:

Data are modelised by a directed graph. A directed graph G is
represented by G(N, E). N is a set of nodes, E is a set of edges between two
elements of N. Nodes and edges are labeled. All the graphs which are used

here will be multi-graphs : two edges with different labels can occur
between two given nodes (to simply multi-graphs will be called graphs).

Definitions :

A graph G is defined by G (Ng, Eg, \yg, Vg, €g) ©
. Ng is a set of nodes Ng ={m,..,np}
. Eg is a set of edges Ec ={ei,..,eq}

. Y is an incident function
Yo: Eg > NgxNg

. Vg is a node labeling function :
VG: NG > In With In = DDO X ..X Dnn
i.e. : Name x Population x Museum.

. €g is an edge labeling function
eG: % ‘> Ie With Ie = Deo X een X Dee
i.e. : Company x Departure_time x Arrival_time

A set X {xq, ... } of variables and sets D;j; {dj;1, ... } (@ = e, n) of constants for all
the domains of the. labeling functions are defined. A hyphen (-) will be
interpreted in the labeling function as any value of domain Dij.

Pr rties : A graph G is such as :

.VvneNg 3FJeeEg/Yg(e)=(m,a)vyg(e)=(an)/ae Ng
(There is no isolated nodes). X

.Vei € Eg,e5€ Eg W (&) =V (¢j)) = € (¢j) # € (g)
(two edges with the same extremities have different labels) -

Queries :

A graphical query Q defined on a graph G is a set of labeled and oriented
graphs {Qu, ..., Qp}. The labels of the nodes can be variables, or constants.

Graph Q (Nq, Eq, Vq, Vq, €q) is such as :

Vne Ng, Vg(n) € Dpu X x Dyix...x Dyp (Dgp : set of node-constants)
Vee Eq, €Q(e) € DgguUX xDgy X..X Dgg (Dgp : set of edge-constants)

Edge-labeling :

A simple label is a tuple of constants (€ Dj;), variables or hyphens.
(CMW87) generalises labels with a regular expression. These expressions are
recursively defined as :

. A label 1 € I, is such that 1 is a regular expression

.If §; and Sy are regular expressions then S;1 S, (8; or S7) is a regular
expression. _

. If S; and S, are regular expressions then <Si, Sp> (S; then Sz)is a
regular expression

. If S is a regular expression St (Transitive Closure) is a regular
expression.

Labeling examples : AF AF*t <AL, AF>+ <AIl AR+ _t+

Query 3 can be expressed (with Ie = Deo) by :

@ AF +

4. Limitati f MW87

Part of the limitations can be found in [CMWS87]. To sum up the main
limitations are : 1) type of recursive queries which can be expressed, 2) path
management (aggregates, cycles, intersections, etc) 3) conditional
expressions, 4) definition of the results of a query. These limitations are
studied in detail in [M89].

This section olny presents the limitations of the intersection-typed queries.
- Query 5 cannot be expressed by the following graph (query) :

The reasons are :

1) It does not allow the whole path Nice-Geneva (resp. Paris-Vienna) to
be part of the Paris-Vienna (resp. Nice-Geneva) path.

2) It does not allow to define any aggregate on the path Nice-Geneva.

3) Defining the result graph as the union of differents graphs leads to
wrong results in case of aggregate in a multi-graph approach.

4) Defining the result graph to be an edge-independent subgraph
homeomorphism between a query-graph Q and a data-graph G
gives partial answers for variables x and y (out of the edge-
matching between graph G and graph Q)

5. Extensions :

Limitations presented in section 4 lead us to define some extensions.
The main extensions presented here are : 1) the manipulation of graph
hierarchies, 2) the definition of the variables for path management 3) the
definition of new edges 4) the definition of a "global query”.

Let D be the set of convinient attributes on graphs, nodes, edges, let d; (sub-
set of D) be the set of atiributes defined on type t (graph, node, edge).
Let O be an alphabet to define names of variables.

5.1 Hierarchies of graphs :
To manipulate a graph G (N, E), I' a graph labeling functioﬁ is defined :
r GN,E) > I with Iy = Dygo x ... x Dy
Let G1 (Ng1, Eg1, WG1, Vg1, €g1) and G2 (Ng2, Eg2, Ye2, Vo2, £G2) be two different

graphs :

a) IIL: NxN > E
ML (n1, m2) = {erx /Wi (erx) = (n1, n3) m € No1 A 2 € Naz)
Eo = {erx /Wi(ery) = (ni, nj) ni € Ni, nj € Nj A Ni <> Nj}

b) WpL:Ey => NxN

Wi (erx) = (ny, np) such as n; € Ngi A np € Ng2
¢c) €.: Ep > Iy such as Iy, = Dyg x ... x Dg
€L (eLk) = (iro, « - iLg)

After extension of node n; (nj € N;) with the graph Gz (N3, E2), the result
graph G' is defined by G' (Ng', Eg', WG, Vg, €61 ¢

ErL.={ec€ Ey/ dn;,n,n € NiAange Ny A
ex € IlL (ny, n2) U IIL (n2, my)}

Ng : Ni U N3
Eg : EiVvE; U EL
Yo : Yo=¥Yi1(e) ifege E

Yo (ex)=¥2(ex) ifexe By
Y (o) =YL (ex) ifex € Ep

Vg vg' () = vy (n) if nje Ny
vg' (n;) = Va (ny) if nje Nj
€z : €qg (ex) = €1 (ex) if ex € Ep
EG' (ex) = €2 (ex) if ex € B
eg (ex) = €L (ex) if ex € Ep

5.2 Extension of variables :

Graph-typed variable (called g;):

Y . s > G(NsE"PGs vGaeG)
gi > Gi®gi,Eci, Yai, Vai €Gi)

A graph can be represented by a set of [dg, {nj, nj, de}]. dg is a set of data
on the graph (history, ...). {nj, nj, de} represents the set of edges.

Derived variables :

Node-typed variable (called v;) :

v U > DgxNuX in fact DygxNuUXxgxg
vi > {dg ng} {dg, {(n, 1, 1)} }

where L represents the undefined symbol
(representation of an "node-edge")

A node-edge is an edge with a unique known extremity (initial one). It
does not exist any data about this edge. Function € applied to this edge will
respond the undefined symbol L. A node-typed variable is a set of graphs.
These graphs can be represented by : (dg, {(n, L, L)} }.

Path-typed variable (called Vj) :

g U > DgxNuUXxNuXxDe
Vl_] > (dg, {(nla ﬂq, del), ee oy (nms nz, dem)})
Vi = {Vg}

A user-hidden variable Vj; represents a unique path. Data are defined
on this variable such as length or aggregates on the edges of the path (a path
from n1 to n2 is a set defined as : {(n, ng, de1), ... , (N, N2, dem)}). A path-
typed variable is a set of variables Vi;.

These variables allow to extend the definition of the language allowing :

1) to take into account not olny € (e;) where e; is an edge of a path but the
whole path (g').

2) to define aggregate functions (such as Min, Length, Count, etc) defined on
path-typed variables orfand recursively on these functions
(i.e. : Min (Length (V1))), and classical aggregate-typed variables to
memorise the value of an aggregate.

5.3 New edges :

The homeomorphism defined in [CMWS87] has to be changed for the
language to be able to take into account aggregates. The constraint on the
paths such as they have to be disjoint node-to-node has fo desappear. An
answer is now a set of graphs {R;} and each element of this set is a result
graph (a possible answer to the query). This graph has not to be connexe.
The final answer is a logical OR of all the result graphs. But the union of all
the result graphs is not a result graph (out of the aggregate functions).

Result _graph :
A result graph R (graph Ri) is defined as a graph G (see section 3)
R (NR, Er, YR, VR, €R)
but the constraint :

.VneNr 3JecEr/yYr()=(n,a)vyr(ec)=(a, n)olaec Nr
(there is no isolated node).

desappears. An answer can be an intersection such as a node-edge (n, L1).

The constraint becomes :

.Vne Ng 3Jee Egr/yr(e)=(n,a)v Ygr () = (b, n) with ae Ngu {L},
, be Nr

Edges :
Three types of edges are available :

Link Edge —_—
direct/transitive

. Inclusion Edge -'-'-'-'-'-"-'-ﬁ:i"’

Intersection Edge ““””"”“'““"

General properties :
These edges follow the same rules : 1) these edges are oriented, 2) these

edges represent the results of sub-queries, 3) these edges are a binary

operator (one initial point, one end point), 4) these edges represent paths
without cycle.

General definiiions :
An edge is defined by IIT such as : It o xp >y

Let o, 3, Y be the type of the initial and end points of an edge.
Let T represents the type of an edge : T € {D, T, Is_e, Ic_e, Ic_ne, Is_n, Ic_n}

Manipulation of edges :

Link : 1)- Direct Link Ilp
2)- Transitive Link It

3)- Intersection of paths (edges) Iy ¢

4)- Inclusion of paths (edges) Il e

Manipulation of nodes and edges :

5)- Inclusion e _ne

Manipulation of nodes :

6)- Intersection of nodes 15 n
7)- Inclusion of nodes I »

Defimiti operators

To define the operators of GROG, a formal system is thus presented :
F (G, M, Do) such as :

Let G be a graph (with the previous definitions) |
Let M be a set of manipulations M = {My, ..., M7}

Function I is defined by : T G > Dgox..xDg

Function € is defined by : €g E > De0x..xDe

Function vg is defined by : vg N > Dnox..xDn
Definitions :

Let OIDe, OIDn, OIDr be bijective applications such as :

OIDe : E > Ded (therefore OIDe"! exists)
OIDv : N > Dno (therefore OIDv-! exists)

with Deo = {e1, ..., ee} and Dno = {n1, ..., mn}

Let Pr; be a set of graphs {gi, ... , gg} obtained by the decomposition of a
graph Ri(path of a result graph Ri). Edges of graph gi belong to a sub-set of
Egri (path or non-connexe edges). gi is a sub-graph of graph Ri. Each gi
represents an instanciation of an edge of a query-graph Q.

OIDr : Pri = Dg (therefore OIDr-1 exists)

with Dg0 = {g1, ..., g}
From now let Do be Deo U Dno U Dgo
Axiom 1 : Edge identifier

OIDe allows to associate to each edge of graph G (ei € EG), a symbol
(ei € Do). OIDe(ei) = ei

10
Axiom 2 : Node identifier

OIDv allows to associate to each node of graph G (nj € NG), a symbol
(nj € Do). OIDv(nj) = nj

Axiom 3 : Path identifier

To each path, p, of a sub-query (an edge of graph Q) a symbol (gk € Do)
and a word, M(p), are defined. M(p) is obtained by concaténation (+ or X) of
the symbols (eie Do) of the edges respecting the order within the path,

Example : Let p = [e1 e2 e3 e4] be a path
4
M(p)=e1 +e2+e3+e4 =X ek = ele2eles
k=1
Axiom 4: Node-of-a-path identifier

To each node identified by (nj € Do) belonging to a path identified by gk
(gk € Do) is defined a couple of symbols (gk, nj)

OIDrv : Pri X Nrij > Dg0 x Dno

Axiom 5 : Definition of a word and sub-word

Let a and b be two words of the paths p1, p2 and ek be the symbols of
the edges of the paths.

a=M(p1)=c¢i+..+e¢
b=M(@P2)=e1+..+¢p

ais asub-word of b <> b =e1+..+ei+..+e+..+ep
(written a £ b)

All the definitions here will refer to a unique result-graph Ri. Pri = {gi]
represents the instanciations of each edge of the graph Q. Without lost of
generality, in the following we olny consider a graph gi (the instanciation of
an edge of the graph Q). Pi will refer to an edge, NPi will refer to a set of
nodes for a path (the elements of NPi ook like (gk, nj) and all gk are equal).

11

To each edge definition o, B, and Y will take their value in {Vv', €'}. They
represent the starting-point, the end-point and the result of a query. An
example of a query will be given for each definitions.

Direct Link edge : Edge between two nodes n; and nop
Ilp and I17 are obtained using ot = =v' and y=¢'

Direct :

The goal is to find the nodes j such as j is a successor of a
nodei. ({iand j/je TH(i)})

IIp: DgxNuUB)x Dgx(Nud)) > DgxNxNxD,

Example :

Give all the one-edge paths (direct links) between Nice and Paris

Manipulation 1 :

After IIp(ni, nj) :
IIp (ni, nj) « {p / M(p) = ek A PG (OIDe! (ex)) = (ni, nj)}

(p is a one-edge-path)

12

Transitive Closure form :

The goal is to find all nodes j such as there exists at least one
path between i and j ({i, j/j € T't(i) v 3 a path from itoj})

Ilt: DgxNuU)x Mgx(NUD) > DgxNxNxD,

Example : Query 1 is defined by
o=

After Ilt(ni, nj) :

Manipulation 2 -

IIT (ni, nj) « {g/M(g) = el +... + ek A WG (OID:! (e1)) = (ni, *¥) A
¥YaG (OIDe ! (ek)) = (*, nj)}
(g is a one-path-graph)

Intersection edge : The goal is to find the common parts
between two paths

Iy ¢ is obtained using o= =y=¢

Even if the intersection is a symetric manipulation, the edge is still
oriented to be as close as possible to the natural language
(which requires an order in a sentence).

Example : Query 5 (without aggregates) is defined by
G—
& i

13

Manipulation 3: :
After Il ¢ (P1, P2)
1/ P1 is unchanged
2/ P2 is unchanged
3/ Iljs e (P1, P2) « P3
P3={p/ M) £ M(P1) A M(p) £ M(P2)}

In this example, P1 represents for a result graph, Ri, a path from Paris to
Vienna, P2 a path from Nice to Geneva and P3 the set of sub-paths (p) which
belong to the path P1 (M(p) £ M(P1)) and to the path P2 (M(p) £ M(P2)). P3 is
a set of graph (sub-path). Each graph may not be connexe and represents the
intersection of two given paths. The notion of set is defined for P3 out of the
fact that the answer may not be connexe.

Inclusion Edge : The goal is to find a path which is contained in
an other path.
Il . is obtained using o =P =y=¢'
Mie: (DgxNxNxD)x(DgxNxNxDy) > DgxNxNxDe
Example : What are the paths from Paris to Nice and from Lyon to

Marseille such as the path Lyon-Marseille is included in
the path from Paris to Nice ?

Manipulation 4 :
After Il;; o (P1, P2) :

1/ Pt {pt / pi path (of P1), p2 path (of P2)
M(p1) £ M (p2)}

14

2/ P2« {p2 / p2 path (of P2), p1 path (of P1)
M(p1) £ M (p2)}

3 / l_.[ic_e (Pl, P2) «— Pl

Let PN be the word of a path from Paris to Nice and LM be the word
of the path from Lyon to Marseille :

(1) The edge defined with the nodes Lyon and Marseille
symbolises a path p1 from Lyon to Marseille (M(p1) = LM).
This path is included in PN (M(p2) = PN)(with the
definition of the inclusion M(p1) £ M(p2)).

'(2) The edge defined with the nodes Nice and Paris (p2) symbolises
a path p2 from Paris to Nice such as the word (path)
containts a sub-word (path) LM (with the definition of the
inclusion M(p1) £ M(p2)) after application of point (1).

(3) The edge defined with point (2) and point (1) symbolises the
same path as in point (1).
Cycles :
In the previous query the cycles are forbidden (by definition of

the edges). But the query defined here which may seem similar authorizes
cycles to appear :

(>l ———()
Each edge is a path without cycle (by definition), but there could exist a node
in common between a path Paris-Lyon and Marseille-Nice.

Definitions for nd mnodes manipulations :
Inclusion Edge : The goal is to find a node (or a set of node) which

belongs to a path.
Ic_ne is obtained using o = y=Vv' and B =€’

IMicne: (DgxNu D) x (Dgx NxNxDe) > DgxN

15

What are the stage-cities of a path Paris-Nice ?

Example :

Manipulation__5:
AftCI' Hic_ne (Nl, Pl) .

1/ Nt <« {ni/ OIDv(ni) is the origin or
the extremity of an edge ek such as ex £ M(P1)
(¥ (OIDe! (ex)) = (ni, *) v ¥ (OIDe1 (ek)) = (*, ni))}

2/ P1« {p1} if N1 # &
1] otherwise

3 / l_.[is__ne (Nl, Pl) — Nl

Definitions for mnode-manipulations :

Intersection edge : The goal is to find nodes which belong to
two paths

ITys_n is obtained using =P =y=V'

Example : What are the common stage-cities of two paths Nice-
Paris using tool-roads (a) and using major-roads (RN) ?

a+

IIIIIII|||||

&

16

Manipulation 6:
After II;s , (NP1, NP2):
1/ NP1 is unchanged
2/ NP2 is unchanged
3/ Ilijsn (NP1, NP2) ¢« {ni/ ni€ NP1t A nie NP2}

In this example, intersection edge represents the set of nodes (ni)
which are stage-cities of two given paths Paris-Nice.

Inclusion Edge : The goal is to find the set of nodes included in an
other set of nodes.

Il1c n is obtained using a=pf =y=V'

Hien: DMgxP)x(Dgx) > DgxN

Example :

What is the set of stage-cities of a path Lyon-Marseille
such as each of them is also a stage-citie of a path Paris-Nice ?

_+

_+

17
Manipulation 7:
After Il;; , (NP1, NP2) :

1/ NPi« {nie NP1/ nie NP2}

2/ NP2 is unchanged

3/ Il n (NP1, NP2) < NP1

The difference between the intersection and inclusion notions is such

that the inclusion leads to a reduction of the cardinality of set vi because set
v1 has to be included in set v2.
A node which is a stage-city in a path between Lyon and Marseille but not a

stage-city between Paris and Nice will not be considered (even if it is a
stage-city of a path Lyon-Marseille).

By the end query 5 can be expressed like :

T

Sum (Cost) < 10

g_

5.4 Global gueries :

The juxtaposition operator // does not generate a graph but a global
query (by definition). This allows to defined queries with a logical OR such as
i.e. What are the direct paths (without any stages) from Nice to Paris with AF
company or if we have to stop, we must have a stop at Marseille whatever
the company is. A global query Q is a set of sub-queries Qq, ..., Qp :

. Qi (Ny, E;, Wi, vi, &) and N;j, E;, W, vy, €; are defined as previous.
Q = Q1 (Ny, Ey) // ... / Qp (Np, Ep)

The juxtaposition operator // allows queries to be defined in parallel.

18

Properties :

The juxtaposition (//) and the fusion (&&) are associative and fusion
(&&) is distributive on the juxtaposition (//). The results in case 2 and 3 are
global queries.

1) Gi (N1, E1) && (G2 (N2, E2) && G3 (N3, E3)) =
(G1 (N1, Ep) && Gy (N2, Ez)) && G3 (N3, E3)

2) G1 (N1, Ey) // (G2 (N2, E2) // G3 (N3, E3)) =
(G1 (N1, E1) /1 G2 (N3, Ep)) // G3 (N3, E3)

3) Gy (N1, E1) && (G2 (N3, Ez) // G3 (N3, E3)) =
(G1 (N1, Ey) && Gy (N, E2)) // (G1 (N1, Ey) && Gz (N3, E3))

The juxtaposition operator (//) can be seen as a logical "OR" between two
queries

oee//lo-0-e

is by definition different from the fusion (&&), which can be seen as a logical
"AND". Therefore this graph is different from the previous graph :

An other expression for the fusion (&&) is :

19

Results :

A global query is such as :

Q = Qi/../Q

/I Qi i=1,..,p)

Q has no solution if :
Vie {1,..,p}, Qi has no solution
Qi has no solution if :
. An edge of graph Qihas no instanciation or

. A variable has no instanciation (value equal to &) unless if it is required.
Asking a value to be equal to & is a way to express the negation concept.

6. nclysion :

Part of Geographical Information Systems (GIS) is network-oriented
information management applications. This paper presents a Data
Manipulation Language based on [CMWS&7]. This language allows the user to
define easily graph-manipulation-oriented queries. The implementation of
this language is realistic [P87, M89]. Graphical screens and Extended Data
Base Mangement System are very convinient tools. Transitive closure
algorithms in a Data Base context have been widely studied [BR86].

The partial implementation (recursive queries without variable) was done
two years ago. It was based on a weak couplage between a non-first normal
form RDBMS [S88] and Prolog. Transitive Closure operators with aggregates
were taken into account by Prolog and paths were stored in the RDBMS. A
macintosh-like interface allowed the user to define a simple recursive query
(are very complex queries realistic?) and to get information from an edge of
the result graph.

Future work will be oriented toward the definition of a thematic Data
Manipulation Language and a study of the links between the network
component approach and the thematic component approach to define a
complete Geographical Data Manipulation Language.

BR 86

CGT88

CMW 87

M89

P87

S88

SMSE 87

20

REFERENCES

F. Bancilhon R. Ramakrishnan
An amateur's Introduction to Recursive Query Processing

Strategies
Proceedings of the ACM SIGMOD conference
Washington May 1986

S. Ceri G. Gottlob L. Tanca
Logic Programming and Databases
Springer Verlag 1988

IF Cruz AQO Mendelzon PT Wood

A graphical Query Language supporting recursion
Proceedings of the SIGMOD conference

San Fransisco May 1987

M. Mainguenaud

Un langage visuel de manipulation de graphes :
Application aux Bases de Données Géographiques

Doctorate Thesis - Université Paris VI 6/28/89

P. Pfeffer

LGV : un langage graphique de manipulation de réseaux
DESS Report
Université de Paris-Sud Orsay July 1987

M. Scholl and all

VERSO : a DBMS based on Nested Relations

Nested Relations and Complex Objects Workshop - Darmstadt
Lecture Notes in Computer Science

Springer Verlag December 1988

TR Smith S. Menon JL. Star JE Ester

Requirements and principles for implementation and
construction of large scale GIS

International Journal of GIS Vol 1 n°1 1987

ONa0uTLUoT33313%

I0AN3
H3ILLIND
20y

J35NKW
Lyods

NG I1BINdod
HON
¥IAITA

pNaouTUOTLI3T8s

B

B B e A R

A A e A e P A A e R R AR A
0 A

nice

VERSO INRIA Rocguencourt 1987

grenoble
“marseille

avignoin
\l

lyon
montpetier

o
=]
g .’" £ g 2
o 9 2 o4 2
M [a g 3
2 [H om =
E . ﬁ\.la =
3 \57
ic =%
@
"
=
N =2
[=
) 2
-
-
]
B
il
=
]
]
g
-
e
o2
“ /
@
3
=
«
e 1
@
3 2/
=
g, - =
EELETYE
=S v
S 2RRE 8]
o
53
%z -
=4 8
et oy N L [
= @t
a sTw= -] £
FRow.. %
ETHOx3E
e ®a
Hmuw':g,ﬂ
(=R = - -F-0) 2 4

