.
3
-

IS AN EXTENDED RELATIONAL DATABASE MANAGEMENT
SYSTEM POWERFUL ENOUGH TO DEAL WITH NETWORK
APPLICATIONS ?

MAINGUENAUD Michel
Institut National des Télécommunications
9 rue Charles FOURIER
91011 EVRY - FRANCE
email : MAINGUENAUD@FRINTS1.bitnet
33 1 60 76 40 40

Abstract :

Part of Geographical applications is network management. Travel agencies, gas, electricity,

telephone applications require a computer assisted tool. Network applications are "easier” to manage
than thematic applications from an analytical point of view because networks can be modelized using
graph theory concepts (nodes, edges, paths). In this paper we present a taxonomy of queries for a
Network Management System, a Data Manipulation Language to define a query and describe the
solutions to be used with an Extended Relational Database Management System.
The queries addressed to a Network oriented GIS can be divided in four classes : path from one point
to an other point under constraints, intersection of paths, inclusion of paths and node manipulations.
A user-friendly interface is required to define a query therefore we briefly describe GROG a
geographical query language using graphs and present how to resolve the four classes of queries with
a Relational Database Management System extended with a Transitive Closure operator.

1. Introduction :

In current research toward the design of more powerful Data Base Management System
(DBMS), different research group are simultaneously concentrating their work on Geographical
Information System (GIS). Now GIS needs are well known (SMSE87). The main problems in GIS
design are to define data modelization, Data Manipulation Language (DML), and efficient
implementation.

Part of GIS applications is network management such as roads, teleccommunications, railways
etc. These data can be "easily" represented using graph theory formalism (node, edge, path).
Manipulations of graphs are very often defined with recursive (or logic-based) formalism. Extended
Relational Data Base Management System (ERDBMS) and Object Oriented philosophy (0.0.) can be
used to design a GIS architecture.

In this paper we olny focus on ERDBMS. In section 2 we briefly present some typical queries
for network management system and GROG a DML to defined such queries. In section 3, we define

the organization of an ERDBMS able to deal with such queries. Section 4 has the conclusions and
discussions of further works.

2. GROG : a DML for Network oriented Queries :

This section presents various typical queries addressed to a Network oriented Information
Management System and a Data Manipulation Language to express such queries.

E618 40

Cuuno peam Gf_g?‘,!p,mﬁ I\-{ (!l g

Auns ter clowa
9.3, Ml e

1 f ri

Four main classes can be observed : 1) going (path) from one point (node) to an other
under constraints 2) intersection of paths 3) inclusion of path 4) node manipulations.

Example of queries :

Query 1 : What are the paths from Nice to Paris ? This query can be evaluated with a graph traversal
operator. (Class 1)

Query 2 : What are the paths from Nice to Paris with olny large-city stages ? This query can be evaluated
with a graph traversal operator and constraints on the nodes of the graph. (Class 4)

Query 3 : What are the paths from Nice to Paris using AIR FRANCE (AF) company ? This query
can be evaluated with a graph traversal operator and constraints over the edges of the
graph. (Class 1)

Query 4 : What is the shortest path from Nice to Paris using motorway ? This query can be
evaluated with a graph traversal operator, aggregates and constraints over the edges of the
graph.(Class 1)

These queries can be written with Horn clauses (CGT88). But Horn clauses are not well
adapted as a user-interface : 1) Horn clauses are not a very user-friendly language for the one who is
not used to recursive concepts, 2) Horn clauses cannot modelise some typical queries such as :

Query 5 : What are the common parts between a path from Nice to Geneva (which costs less than 10
units) and a path from Paris to Vienna ? (Class 2).

Query 6 : What are the paths between Paris and Nice usmg motorways between Lyon and Marseille -
without cycles- 7 (Class 3).

Network Information Management Systems need a user-friendly Data Manipulation Language which
allows recursive queries to be expressed.

22 Grog : D Manipulation Lan

The starting point of Grog can be found in (CMW87). An adaptation to GIS applications can be
found in (M89). We give here very briefly the main orientations of Grog.

Data are modelised by a directed graph. A directed graph G is represented by G(N, E). N is a
set of nodes, E is a set of edges between two elements of N. Nodes and edges are labeled. All the
graphs which are used here will be multi-graphs : two edges with different labels can occur between
two given nodes (to simply multi-graphs will be called graphs).

Definitions :

A graph G is defined by G (NG, Eg, Y16, W26, V3G VG, £G)
. Ng is a set of nodes Ng = {nl,..,np}
. Eg is a set of edges Eg ={el,...eq!}

. Y1 is an incident function between nodes
YiG: Eg > Ngx Ng

. YA is an incident function between a node and an edge

Yoi ! Eg -> NgxEg

. Y3 is an incident function between edges

YiG: Eg -> EgxEg

. Vg is a node labeling function :

Vg: Ng -2 In withIn=Dp(x ... X Dnn
i.e. : Name x Population x Museum.

. €g is an edge labeling function :
£q: Eg -> Ie with I, = De) X ... X Dee

i.e. : Company x Departure_time x Arrival_time
Queries :

A graphical query Q defined on a graph G, is a set of labeled and oriented graphs. Let Q be
defined as {Q1, ... , Qp}. The labels of the nodes can be variables, or constants.

Edges :
Three types of edges are available :

Link Edge —_—
direct /transitive

Inclusion Edge '-'-'-‘-'-'-'-'E;.k'“

Intersection Edge nm||||u|n||||]|-

General properties .

These edges follow the same rules : 1) these edges are oriented, 2) these edges represent the
results of sub-queries, 3) these edges are a binary operator (one initial point, one end point), 4) these
edges represent paths without any cycle.

Definitions of the various manipulations of data :

Manipulation of edges :

Link : 1)- Direct Link (i.e. query 3) D
2)- ‘Transitive Link (i.e. query 1, 3, 4) Tt

3)- Intersection of paths (edges) (i.e. query 35) s e

4)- Inclusion of paths (edges) (i.e. query 6) Tc_e

Manipulation of nodes and edges :
5)- Inclusion (i.e. query 2) Tle_ne
Manipulation of nodes :

6)- Intersection of nodes (i.e. common nodes between two paths) Tis n
7)- Inclusion of nodes (i.e. paths using the same nodes even if the edges are different) Trc n

With such definitions query 5 is expressed by :

@
@

>, Cost < 10

||||||n|n||1||||||||||||n.

® ®

3. Implementation :

Nowadays two main philosophies can be used to design a GIS : Extended Relational Data Base
Management System (ERDBMS) and Object Oriented (O0Q). Various prototypes can be found such as
(RS88),(D*86, S*88),(G*89, $*86), (Exodus, Genesis, ...) for ERDBMS and (B*87),(B*88),
(Gemstone, ...) for Object Oriented Systems. The persistance of data is still a very difficult problem if
we want to have good performances with 0.0 system. In this section we study how network
applications can be managed by an ERDBMS.

3.1 DB organization :

To simply, without lost of generality, we define our toy application with a DB relation Network.
To help comprehension let the schema of Network relation be (even if it is not the best
implementation) :

Network (#Edge, Origin, Destination, Edge_Information)
where Edge_information can be seen as a set of attributes.

The system is supposed to have a Transitive Closure operator able to evaluate a path without
cycles, to define a numerotation of paths and inside a path, to deal with aggregates. This is not a
restrictive condition because numerous work have been done on Transitive Closure operator in 2 DB
context (for further information see (BR86)). '

This operator manipulates relations (sets) : Sub_Network, Set_Origin, Set_Destination, and a list of
constraints defined over nodes or edges. The general form of the TC operator will be

TC [oc1 (Network), Set_Origin, Set_Destination, Constraints] _
where 0C1, Set_origin, Set_destination will be defined for each operation.

The result of such an operator will be a relation containing paths. To help comprehension let the
schema of the relation Resulti be :

Resulti (#Path, #In_the_Path, #Edge, Origin, Destination).

2 rations :
To simply without lost of generality we do not deal with constraints over edges or nodes
(because these constraints can be introduced in C1 selection criteria or with variables). Manipulations

will be expressed using Relational Algebra (let IT be the projection, o the selection and M the join
operators) or with an Extended-SQL-like language when it is not possible to express the query
otherwise.

Let G be the following graph :

./

121 M2 GN_ 10 ,p

D

For our example let Result]l and Resuli2 be defined as in Figure 1.

Resultl (#Path #In_the_path #Edge Origin Destination)

1 1 1 A B
1 2 2 B C
1 3 3 C D
2 1 1 A B
2 2 4 B E
2 3 5 E C
2 4 3 C D
3 1 6 E F
3 2 7 F G

Result2 (#Path #In_the_path #Edge Origin Destination)

1 i 1 A B
1 2 2 B C
2 1 8 J A
2 2 1 A B
3 1 9 M N
3 2 10 N P
4 1 11 G A
4 2 1 A B
4 3 4 B B
4 4 12 E K
4 5 13 K C
4 6 3 C D
4 7 14 D J
Figure 1

Remarks :

Path 1 of relation Result2 is fully included in a path of Resultl. Path 2 has an intersection with a
path of Resultl. Path 3 has no intersection with any path of Resultl. Path 4 has a non-connexe
intersection with a path of Resultl.

Manipulation 1 : (i.e. query 1) TD evaluates the direct edges between two nodes

The general formis: 7D = OC1 (Network)
Value of C1 depends on the following cases :

Origin : Oi and Destination : Dj are known
C1 : Origin = Oi A Destination = Dj

Only Origin : Oi (resp Destination : Dj) is known
C1 : Origin (Destination) = O1 (Dj)

Manipulation 2 : (i.e. query 1, 3, 4) TT evaluates the paths between two nodes

The general form is 7tr = TC [Gc1 (Network), Set_Origin, Set_Destination, Constraints]
Values of Set_Origin, Set_Destination depend on the following cases :

Origin : Oi and Destination : Dj are known
Set_Origin = {Oi} and Set_destination = {Dj}

Only Origin : Oi (Destination : Dj) is known
Set_Origin (Set_destination) = {Oi (Dj)}
Set_destination (Set_origin) = Il Destination (Origin) (Network)

Neither Origin or Destination are known
Set_Origin = [lorigin (Network)
Set_Destination = I IDestination (Network)
Let Set_Origin, Set_Destination and Constraints be defined, the ESQL-like will be :
Insert into Result

Select TC (Sub_Network, Set_origin, Set_destination, Constraints)
From Sub_Network, Set_origin, Set_destination, Constraints

(where Sub_Network = OCt (Network))

Manipulation 3 : (i.e. query 5) Tis_e evaluates the intersections between two sets of paths.

Iet Resultl, Result2 be the relation obtained by TC operator for sets of paths P1, P2 as in
Figure 1 : :

Tis_e is obtained by : Tis_e = Resultl M Resul2
#Edge

Non-empty intersection constraints is obtained by :

T1 = [T#pam1 (Tis_e)
T2 = IT#Pan2 (Tis_e)

1l

Resultl M T1
#Pathl

Resultl

Result2 = Result? M
#Path?

Tiis_e will be defined as in Figure 2.
Result (#Pathl #Path2 #Edge)

(SIS N SV R R e
O O L N O S
) ot et e) DD et =

Figure 2
Manipulation 4 : Tic_e evaluates the inclusion of paths

Tlic_e is one of the most complex operation. This operation cannot be expressed using Relational
Algebra (but it can be expressed using SQL-statements), because this manipulation is a kind of
generalized division.

Relational division finds sub-tuples in a unique relation satisfying a sub_relation, The problem
here is to find sub_relation of Resultl satisfying a sub_relation belonging to a different relation
(Result2).

The main idea is :

P(Resultj) = P(Resulti) <=> Card (P(Result))) = Card (P(Result)) n P(Resultj))) P :set partition

Let generalize this notion to sub_sets (Paths)
¥ P1 € Resulti, P2 € Resultj P12 P2 <=> Card (P2) = Card (P1 N P2)

The paths in Resulti and Resultj are numeroted independently P1 m P2 is obtained using a join
operator over #Edge (and not with the relational algebra operator Intersect).

Let Result] and Result2 be defined as in Figure 1, the following statements allow to define the
inclusion of path (a path of Result2 in a path of Result1):

1/ Let Jointure represents the relation obtained by : Jointure = Resultl M Resulr2
#Edge

This operation allows to define all the common edges between the sets of two paths (see Figure 2).

2/ Let Number_Edge represents the relation obtained using the Group By and Count SQL-statements
over relation Jointure. Let relation Number_Edge defines for each couple of paths the number of
common edges (Nb) : Number_Edge (#Pathl, #Path2, Nb)

Insert into Number_Edge
Select #Path1, #Path2, count (*)
From Jointure
Group By #Pathl, #Path2

Number_Edge (#Pathl #Path2 Nb)

(S R S
oS Y e o A
[FC R oS I

3/ Let Size_Path represents the relation obtained using the Group By and Count SQL-statements over
relation Result2. Let Size_Path defines the length of each paths (Nb) : Size_Path (#Path2, Nb)

Insert into Size_Path
Select #Path2, count (*)
From Result2
Group By #Path2

Size_Path (#Path2 Nb)

1 2
2 2
3 2
4 7

4/ Leét R3 represents the join between the Number_Edge relation and the Size_path relation over
#Path2 and Nb '

R3 = Number Edge M Size_Path
#Path2, Nb
R3 (#Pathl #Path2 Nb)
1 1 2

The Group By clause defines the length of the path for the relation Size_Path and the number of
the common edges between the two paths for the relation Jointure. A path P2 is inctuded in a path P1
if the number of common edges between P1 and P2 is equal to the number of edges of path P2.

Manipulation 5 : (Query 2) Tic_ne evaluates the set of nodes of a path

Let Resultl be defined as in Figure 1 :

Tic_ne = 1 [#Pah, Origin (Resultl) U I1#Path, Destination (Resultl)

Manipulation 6 : Tis.n evaluates the set of common nodes between two paths

Let Resultl and Result2 be defined as in Figure 1. Let Ni (resp N2) be the set of nodes of paths
P1 and P2 (see manipulation 5). The schema of N1 (resp. N2) is (#Path, Node).

wisn= NI M N2
Node

Manipulation 7 .

As Thic_e, Tic_n is a complex operation. It cannot be expressed using Relational Algebra. Let
Resultl (resp Result2) be defined as in Figure 1. Let N1 (resp N2) be a relation defined over the
schema (#Path, Node) (see manipulation 5). The following statements (similar to manipulation 4)
allow to define the inclusion of node

1/ Let Jointure represents the relation obtained by : ~ Jointure = Nt M N2
Node

This operation allows to define all the common nodes between the two sets of paths.

2/ Let Number_Node represents the relation obtained using the Group By and Count SQL-statements.
Number_Node defines an aggregate value for each path (number of nodes). Let Number_Node be
defined as (#Path1, #Path2, Node)

Insert into Number_Node
~ Select #Path1, #Path2, count (¥)
From Jointure
Group By #Pathl, #Path2

3/ Let Size_Node represents the relation obtained using the Group By and Count SQL-statements.
Size Node defines an aggregate value for each path (number of nodes). Let Size_Node be defined as
(#Path2, Node)

Insert into Size_Node
Select #Path2, count (*)
From N2
Group By #Path2

4/ Let R3 represents the join between the Number relation and the Size_Node relation over #Path2
and Node.

R3 = Number Node X Size_Node
#Path2, Node

The Group By clause defines the number of node for the relation Size_Node and the number of
the common nodes between the two paths for the relation Jointure. The set of nodes of path P2 is
included in a path P1 if the number of common nodes is equal to the number of nodes of path P2.

4. Conclusion :

In this paper we present a taxonomy of various queries addressed to a Network oriented
Information System and then a graph-oriented query language is briefly described. We show that a
Relational Database Management System extended with a Transitive Closure operator (Relational Data

Base Management System using a weak couplage with Prolog for instance) is powerful enough to
deal with the main queries addressed to a Network oriented Information System.

Implementation of such system is a real problem but technology is now available in a Data Base
context. The aim of Cigales system (MP90) is to unify Network approach and Thematic approach in
an unique user-friendly query language. Object Oriented approach has to be evaluated to deal with
suc;l applications : What is the query resolution model ?, Is it very realistic ? ... (an open problem to
see).

REF E

B*87 J. Banerjee and all, Data Model Issues for Object Oriented Applications, ACM
Transaction on Office Information System, 5(1), April 87

B*88 F. Bancilhon and all, The Design and Implementation of O2, an Object Oriented Database
System, Proc. of the OODBS II Workshop, Bad-Munster - FRG, September 1988

BR86 F. Bancilhon, R. Ramakrishnan, An amateur's Introduction to Recursive Query
Processing Strategies, Proc. of the ACM SIGMOD Conference, Washington - USA, Mai 1986

C*86 M. Carey and all, The architecture of the Exodus Extensible DBMS, Proc of the Int.
Workshop on Object-Oriented Database System, Pacific Grove, Ca - USA, Sept. 1986

CGT88 S. Ceri, G. Gottlob, L. Tanca, Logic Programming and Databases, Springer-Verlag 1988

CMW87 LF.Cruz, A.O. Mendelzon, P.T. Wood, A Graphical Query Language supporting
Recursion, Proc. of the ACM SIGMOD Conference, San-Fransisco - USA 27-29 May 1987

D*86 P. Dadam and all, A DBMS Prototype to support Extended NF2 Relations : An integrated
View of Flat Tables and Hierarchies, Proc. of the SIGMOD Conference, Washington - USA,
May 1986

G*89 G. Gardarin and all, Managing Complex Objects in an Extensible Relational DBMS, Proc
of the VLDB Conference, Amsterdam, The Netherlands, 22-25 Aug 89

M*86 D. Maier and all, Development of an Object-Oriented DBMS, Proc. of the ACM
QOPSLA Conference, Portland - USA, 1986

MB89 M. Mainguenaud, GROG : Geographical queries using graphs, Advanced Database
System Symposium - IPSJ, Kyoto - Japan, 7-8 Dec. 1989

MPS0 M. Mainguenaud, M. A. Portier, Cigales : A graphical Query Langunage for Geographical
Applications, to appear in 4th Int. Symposium on Spatial Data Handling, 23-27 July 1990,
Ziirich - Switzerland

RS8R L. Rowe M. Stonebraker, The Postgres Data Model, Proc. of the 13th VLDB
Conference, Brighton - GB 1987

S*86 P. Schwarz and all, Extensibility in the Starburst Database System, Proc of the Int.
Workshop on Object-Oriented Database System, Pacific Grove, Ca - USA, Sept. 1986

S*88 M. Scholl and all, Verso : A DBMS based on Nested Relations, Nested Relations and
Complex Objects Workshop, Darmstadt - FRG, 1988, L.N.C.S. Springer-Verlag

SMSE87 TR Smith, S. Menon, JL Star, JE Ester, Requirements and principles for implementation
and construction of large scale GIS, Int. Journal of Geographical Information Systems, vol 1,
n°l1, 1987, pp 13-31

