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Abstract :

In this paper we present a graphical query language for Geographical Information System. This
language is based on a graphical Query-By-Example-like (QBE) philosophy. A set of graphical
primitives (icons) represent data or operations such as inclusion, intersection, etc. The user-defined
query is made by composition of these icons. The application of the icons defines the query as the
data are supposed to be. This graphical query is then transformed into a functional-based-language
query. This expression is compiled into specific Data Management System orders or graphical
operators. The main contributions of this language are its simplicity to express a query and its
representative power.

1- INTRODUCTION

Nowadays, Geographical Information System (GIS) need large investments in time and human
resources. Various domains such as urban planning, remote sensing, military organizations, travel
agencies, etc use geographical data.

A Geographical Database is a collection of two typed data : 1) spatial data {(generally referenced
as point, line and area) and 2) alphanumerical data (i.e. names of towns, population). To manipulate
these data, GIS designers have to define a new Data Manipulation Language (DML) which can take
heterogeneous data types into account. Numerous approaches were based on a SQL-like language
able to deal with new operators [Fran82]. Other approaches were based either on a logic
programming language [Jung84], on an object oriented paradigm [Herr87] or on an algebraic
approach [Giiti89]. The main drawback for these different approaches is the lack of user-friendliness.
Furthermore, all these approaches, except the deductive approach, do not allow to express all kinds
of geographical queries.

The first aim of Cigales is to increase the user-friendliness. To do so, we define a graphical
language which is easier and more natural to manipulate and use a simplified data model independent
from the physical representation. A graphical representation is more complex but richer than a lexical
one. Our second aim is to increase the expressing power allowing to manage a great number of
geographical queries.

This paper presents in section 2, the geographical queries and their expression. Section 3
presents the user-interface of Cigales. Section 4 defines the functional query sub-language.Section 5
presents the architecture of the system. Section 6 deals with the conclusion and further works.

T CIGALES stands for Cartographical Interface Generating an Adapted Language for Extensible Systems.



2- GIS QUERIES AND THEIR FORMULATION :

In this section, a taxonomy of geographical queries and a presentation of available Data
Manipulation Language (DML) are given. :

2-1. Geographical queries

GIS queries can be divided in 1) alphanumerical 2) map-oriented 3) deductive selection criteria or 4)
printing-oriented queries.

Alphanumerical typed queries

These queries can be resolved using a classical Data Base Management System (DBMS) for
alphanumeric data, or using an Extended Relational Data Base System (ERDBMS) for complex
objects. These queries do not need any geometrical operator.

Examples :
1) What are the towns of Aveyron county 7, 2) What is the population of Angers ?, 3) What are the
names of the towns bigger than 50 000 inhabitants of Var county ?

Map oriented queries

These queries can be classified in topological or geometrical classes. For topological queries,
links between different geographical objects (point, line and area) appear, without any notion of
coordinates. Spatial relationships between objects are the most common queries. They need
specialized operators such as inclusion, intersection, etc
Examples :

4) What are the forests near the town of Fougeres ?, 5) Is forest of Fontainebleau bordered by GR7
path ?, 6) What are the roads crossing the TGV railway between Paris and Lyon ?

Geometrical queries manipulate the same geographical objects. For these queries the central
notion is the coordinates. They allow to express distance, surface computation queries, etc.
Example : 7) What is the name of the nuclear reactor less than 10 km far from Amboise ?

Deductive selection criteria queries

Two types of queries can also be distinguished in this case : transitive closure queries and
natural deductive queries. A graph traversal operator [RHDMS86] is required for the first class.
Examples : 8) Give all possible paths from Paris to Nice using a highway, 9) What is the shortest
path from Dijon to Poitiers ?, 10) What waterways may I take to sail from Chateau-Gontier to Le
Mans with a 1.20 meter draught ship?

Natural deductive oriented queries require complex and specific rule programs to be developed.
Examples : 11) What is the extension of a fire initiated at 50 km of Toulon with a S-S-E force 6
wind ?, 12) What would be the radioactivity field if an incident happens in the Saint-Laurent-des-
Eaux nuclear reactor (taking account of parameters such as weather forecasting etc) ?

Printing-oriented queries

Results of a query may be pointed out by graphical display. Specified parameters in the query,
or default associated values of the geographical objects can drive the graphical display. These default
values have to be seen as the legend of a map.

Examples : 13) Shadow the towns of Corse such as born rate is superior to dead rate, 14) Display in
red all the main roads crossing the National Parc of Mercantour



2-2, Data Manipulation Languages

In order to express all the queries defined in the previous section, four types of Data
Manipulation Language (DML) are described : Extended-SQL approach, rule language approach,
Object Oriented approach and algebraic approach,

Extended-SQL approach

These languages are based on an already available DML of a DBMS. Manipulation of geometrical
information is performed using specialized operators. The SQL language [FRS88], [SMcDO87] is
not the only way to define a query. A query can also be expressed using a QBE (Query By Example)
philosophy [CI88] or a SQL-like language [Fran82] (Show instead of Select etc).

As an example, PSQL [FRS88] or Spatiarel [Davi87] operators are based on the three standard
geometrical information : point, line and area. Nevertheless, with PSQL approach, physical data
representation is independent of the Data Model by the definition of geometrical elements as Abstract
Data Types ( ADT ). An ADT is an encapsulation of data structures and manipulation operators to
hide all the implementation details from the user. Data manipulation is made through the use of a set
of defined primitives. (A basic example is network management allowing accessibility-oriented
operators).

Example : What is the name of the nuclear reactor less than 10 km far from Amboise (query 7) ?

Such a PSQL query is:
Select Name, Localisation From Nuclear-reactor On France-Map
Where localisation Within circle ((Select X, Y From Town On France-Map
Where name = "Amboise"), 10)

The main advantage 1§ the fact that the philosophy of existing DBMS is respected. The
implementation seems to be simple and realistic. The introduction of the ADT concept allows
modifications of data representation without any effect on the relations defined among these objects.
The main drawback concerns data access. Indeed, no global optimization of data access is performed
for a query. The DBMS realizes optimizations of classical relational operators, but does not take
account of specialized operators (multi-dimensional indexes are not managed by classical DBMS). In
addition, data manipulation languages suffer from a lack of independence between an object and its
logical representation : point, line and area ( though an improvement appears by introduction of ADT
allowing objects not to be anymore dependent of their physical representation). An SQL-like
language is not a very user-friendly interface.

Rule language approach

These languages are based on knowledge representation systems possibly completed with a
spatial component. As an example, IPL [Jung84] proposes a mechanism of icons, windows and
ports (ADT modelizing a logic input/output unit). Information are stored as facts and are post-fixed
by their type. A query is defined as a rule program.

Example : What is the name of the nuclear reactor less than 10 km far from Amboise (query 7) ?

Extensional Data Base: Position (St-Laurent.nuclear-station, 10.c, 2.¢)
Position (Amboise.town, 5.c, 5.¢)

Intentional Data Base: Distance (x.type, y.type, dist) -
Position (x.type, xl.c, yl.c)
Position (y.type, x2.¢, y2.c)
Compute (x1.c, yl.c, x2.¢, y2.c, dist)
(Predicate compute deals with the coordinates)



Query : ? Distance (X.nuclear-station, Amboise.town, dist) A Less-than (dist, 10)

The main contribution of such an approach is the augmentation of the expressive power of the
language [AU79] by the introduction of the recursion concept.
The opposite viewpoint is that deductive mechanisms suffer from optimization problems (recursion).
Indeed, it does not seem so simple and user-friendly to express a query in a language based on a
logical formalism.

Object-Oriented approach

In the object-oriented approach, information are highly structured by the introduction of classes
and inheritance concepts [GR83] [Herr87]. Data encapsulation and overloading provide some
manipulation facilities and independence between physical and logical data representations (as ADTs
do).

Example : What are the towns of Aveyron county ? (query 1)

"The data model defined in [MO86] is based on entity :

Type Land_division is entity
Name (Land_division) ->  String
Area (Land_division) -> Polygon

and sub-type :
Type Area_life is Land_division

A query is expressed using system operators (such as OB_INCLUDE : inclusion of objects) :
OB_Include (Select (Area_life), Select (Land_division, Name = "Aveyron'))

Another way to express a query is to use a navigational language (as DML of a Network Data Base
System)

? Area_life.Name > Land_division.Name = "Aveyron"

Complex objets manipulation [AB87], nest/unnest operators have already been studied and their
expressive power evaluated. This approach provides a good data organization, but DMLs suffer from
a lack of friendliness (like the Network Data Bases Manipulation Language), and are unadapted to
muti-media information management. Manipulations rely on a logical formalism [AG87] uneasy to
understand for a naive user. Furthermore, SQL approaches for complex objects "inherit" from the
lack of conviviality of SQL.

Algebraic approach

Arc-Info [More89] Geographic Information System is based on this approach. The user specifies the
operations he wants to realize with a macro language AML. (Arc Macro Language). Another example
is the extensible system Gral [Giiti89] with an algebraic model : Geo Relational Algebra. The query
language also modelizes an execution language. The operators can be parametered (parameters are in
curly-brackets [])

Example : What are the names of the towns bigger than 50 000 inhabitants of Var county ? (query 3)

cities select [population > 50 000] inside county select [county.name = "Var"]
project [city.name)]

The main advantage of this approach is to be well-adapted to optimization problems. In Gral
system, the algebra represents a query language but also an execution language. A query can be



easily translated into an optimized access plan [BG89]. A drawback is that expressing a query with
an algebra is not an easy task. This kind of language suffers from an obvious lack of conviviality.

In conclusion, the main drawback for these different approaches is the lack of conviviality for
the user. Another problem is that all the approaches previously described, except the deductive
approach, do not allow to express all the four kinds of queries previously defined. The deductive
approach provides this possibility, but with rather bad performances.

The aims of this new language are first to increase the conviviality for the user. To do so, we
define a graphical language which is easier and more natural to manipulate and propose a simplified
data model to hide how data are physically stored. Our second aim is to increase the expressing
power allowing to express a great number of geographical queries (see, for more details, the section
in which the expressive power of Cigales is evaluated).

3- USER INTERFACE OF CIGALES

The user interface of Cigales is divided in two parts : 1) geographical data manipulation, 2)
display of the result on a map.

3-1 Geographical data manipulation :

Geographical data manipulation is performed by a specialized editor shown in Figure 1. This
editor provides query construction facilities (mainly using pop-up menus).
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3.2 Display of the results :

Geographical objects (roads, towns, etc) can be represented in a result area window in various
ways according to different views or different scales (these objects are represented by symbols in the
legend of a map). Manipulations on a query result are made using : zoom, clipping and point location
flu?_cti%ns, but other useful functions such as : object modification, surface object measure, etc are

efined. _

Two possibilities are defined for the zoom function : (1) scale variation will increase the number of
displayed information , and (2) zoom without scale variation will enlarge a particular area of the map,
specified by the user (lens effect). The zoom function may be useful in the case of a research by
refinements. Clipping and point location functions allow the obtention of the characteristics of the
selected objects. These functions need : (1) to take account of point location errors (by the definition
of a margin of error for each object) and (2) a geometric index [Gutt84] to provide a reasonable
response time.

To summarize, the user can define a Cigales query with the graphical language, specify a
particular display (i.e. display in red all the main roads crossing the National Parc of Mercantour),
visualize the result, zoom, etc.

4- THE FUNCTIONAL LANGUAGE :

Many propositions concerning models for thematic maps can be found in the literature [Davi87,
Giiti89, SV89]. We will consider a subset of the operators defined in these approaches (only logical
level operators). We do not consider operators such as map overlay because we are not interested
here in physical data manipulation but in user defined query. The formalism is based on a functional
language approach which provides composition of operators. Section 3.1 presents the basic notions,
section 3.2 presents the semantic of this language.

4.1 Basic notions :

A basic object (Of) is a graphical-typed object (G-type) : either a line (L.) or an area (A). A point
is considered as an area with a null surface. Each operator (op) is defined in a standard way :

op: Of x 0o - {Ok} for binary operators
O; ->  {Ok} for unary operators

Oj and Oj represent objects which are instanciated during query evaluation ; {Ok]}, the query
result, is a set of objects. Two kinds of operators are defined from the user's point of view : Static
operators rely on existing data while the dynamic operator (extension) is based on user-defined rules
and existing data to compute a specific result (i.e., What is the extension of a fire instiated at 50 km of
Toulon with a S-S-E force 6 wind 7). Two operators are available from the system point of view to
be able to manage the notion of current object. From the user's point of view, the operators are the
inclusion, the intersection, the adjacency, the path, the link and the extension. They are defined by
the following rules :

Inclusion : C (01, 02) = 01 ifOr CO2
= @ otherwise
Integrity constraint:  G-type (O1) = A => G-type (O2)=A
Intersection : M (01, 02) = {Ok} if there is a geometrical intersection

between O1 and O2 (this intersection
may or may not be connected)
= @ if O1 and O2 do not intersect



Adjacency : (01, 02) - = {Ok} if there is a common geometrical
element for O1 and O2 (coordinates)
= 4] otherwise

Integrity constraint :  G-type (Ox) =L
Path : -> (01, 02) = {Ok}
Integrity constraint: M (01, 02) = @ and G-type (Oki) =L ATk1 /O1n Ox1 # B

Adk2/ 2N Orz= @
Link : v (01, 02) = x

Integrity constraint: O1n2= @

G-type (Ox) =L where L is a (logical)line with the minimal distance between O1 and O2.
Extension : ->> (01) = {Ok}

Integrity constraint:  G-type (01) = A => G-type (Ox) = A

From the system's point of view the operators are the union and the difference :

Union : U (01, 02) = {Ok]} {geometrical union)
Difference : A (O1, O2) = {Ok} | (geometrical difference)
Integrity constraint :  G-type (O1) = G-type (O02) = A

The language is enhanced with a Composition operator to construct a query. Classical relational
algebra operator (selection), and aggregate functions (sum, min, max, avg, count) are available to
define a label (selection criteria over an object or an operator). Labels are not formally defined in this
paper.

The following grammar defines a query :

Query n= Composition (functional _expression elaborated_query)
elaborated_query = , functional_expression elaborated_query
/ & :
functional_expression = label operator (argument_list)
operator n= >/-5>/N/ /AN /8/C
argument_list = argument argument_list
/ elaborated_query argument_list
/ %,
argument = label obiject object_list
object_list = , label object object_list
/ &
object = L

/ A



This grammar is regular (a query is equivalent to an elaborated_query). This characteristic allows
recursive definition of a query using a previously defined query (the new one has to be seen as a

refined query). Therefore, we can easily express the intersection between a new object and a subset
of objects defined in a previous query.

4.2 Semantic of the language :

Each geometric operation is assumed by default to give back a set of objects. Yet, an unicity
constraint can be explicitly specified by the user.
Figure 2 is the graphical representation of the following query (query area window) : What are the
roads crossing the TGV railway between Paris and Lyon ? No unicity constraint is defined on this
query. So, (1) the roads may cross the TGV railway one or more times, and (2) several roads may
also cross this railway. Figure 3 represents a possible result (result area window).

Paris Road  pamis
Sl N1 5‘&&“
. o
\‘}k = “\%\\\\“ﬂﬁ\\\‘\
| S
TGY ! 1\?\ ‘ .
Figure 2 Sl

Two roads (N15 and N7) cross the TGV railway, and N7 does it several times.

Defining a semantic leads to set a default semantic. The default semantic will be the
independence between two operators unless it is explicitly modified by the user. The default semantic
is supposed to be known by the user, and the possibility to modify this semantic is offered. A
graphical solution is adopted to indicate the modified semantic (use of different textures, etc). For
example the following graphic (Figure 4) represents an intersection between two areas A and B, and
the intersection of the path between two areas C and D and the previously defined object A :

Figure 4

Two interpretations are possible :
1)  intersection between the path from C to D and the object A without the intersection between A

andB:  Composition (N (A, B),n (= (C, D), A(A, B))

2)  intersection between the path from C to D and the object A (ignoring the object B) :
Composition (N A, B),n(—>(C,D), A)

The default semantic is the second interpretation.

4.3 Example of queries



We now give some examples of queries translated into the functional language :

Query 1: What are the names of the towns bigger than 50 000 inhabitants of Var county ?
Composition (C (O (A1), Op2 (A2) ))

Of1 : [Type = Town, Population > 50 000]
Om : [Type = County, Name = Var}

Query 2: What are the forests which distance from the town of Fougeres is less than 5 km ?
Composition (O3 (-> (O (A1), OF2 (A2))))

OF1 : [Type = Forest]
(47) : [Type = Town, Name = Fougeres]
Ors : [Distance < 5 km]

Query 3: What are the roads crossing the TGV railway between Paris and Lyon ?
Composition (N ( O3 -> (OF1 (A1), OF2 (A2) ), OF4 (L1)) )

Or1 : [Type = Town, Name = Paris]
O : [Type = Town, Name = Lyon]
Op : [Type = Railway, Name = TGV]
Or4 : [Type =route]

5- THE ARCHITECTURE :

The introduction of new functionalities in a DBMS leads to different solutions of architecture :
Extended DBMS, new DBMS or definition of a new layer on a top of a DBMS. In the first approach,
new components (operators, domains, ...) are added to the system kernel [RS86], the second imply a
complete modification of the DBMS [B*88] (This operation may be time consuming and costly). In
the third approach, the DBMS is not modified : a layer is added at the user interface level to perform
new functionalities ; the Data Manipulation Language and the external model of the DBMS are used
as an entry point.

Our aim is to validate a new query language and not a complete system, so we adopt the third
approach, the definition of a new layer, which is a more simple and realistic solution. In a first
version, we are fully aware that our prototype will suffer from some weaknesses at the optimization
and query evaluation level, but will offer a very user-friendly interface for geographical applications.
The main vocation of Cigales is to be independent of physical data management. Figure 5 represents
Cigales architecture : -
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We now briefly describe the components involved in the architecture : the query is deﬁned by
the user with a graphical interface. The parser compiles this graphical query into a functional
expression using Cigales operators ; logical optimization is performed on this expression to avoid
redundancy and useless computation of expressions. The functional expression is then translated into
specific DML orders according to the physical storage of data : Extended Relational Data Base
System [G*87], Object Oriented Database [B*88], or GIS [BDQV90]. The query result is
transmitted by the Physical Data Management System to the translator module, formatted into data
structures associated to the logical query expression. Information about graphical display constraints
defined by the user are also included in these structures. The result of the query is then transmitted to
the user interface by the parser.

The main advantage of this architecture comes from the independence of the physical data
management. The translator is the only module concerned with physical data storage.

6- CONCLUSION AND FURTHER WORKS

Geographical DMLs suffer from a lack of friendliness, and are too dependent of physical data
representation. As relational DBMS introduced the concept of independence between physical and
logical information, we need to introduce the concept of independence between logical (point, line
and area) and physical (coordinates) geographical data. Abstract Data Type (ADT) is an attempt to
provide this functionality. Furthermore, it seems necessary for semantic objects (town, road, etc) to
be independent from their logical representation (point, line and area).

The approach we use for this new language is based on a graphical philosophy. The user
defines a query with the help of a set of graphical primitives which modelize intersection, inclusion,
etc. The graphical query is translated by a parser into an optimized functional expression using
geometrical and classical alphanumerical operators. This functional expression is then translated into
DML orders 'which are specific of a DBMS (extended DBMS, Object-oriented DBMS,. ..} in charge
to manage physical data.

This architecture do not perform a global optimization of classical and geometrical operators in
a first version. Our main contribution is to define and realize a graphical tool for a Geographical
DBMS independent of physical data storage. A first prototype is currently under implementation
using Sun workstation and an extended RDBMS [G*87].



The main advantages of Cigales are its ease-of-use and its expressive power. The ease-of-use is
due to a natural approach to define a query by graphical specifications. The user defines the properties
that must be verified by an object. This language is a new approach of geographical DML, and can be
seen as a good complement to a language such as SQL for these applications. In further works, we
will study the introduction of negation in our language.
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