A Hypertext-Like Multimedia Document Data Model

Rubén Caudillo’
Michel Mainguenaud

FRANCE TELECOM - INT
9 rue Charles Fourier
91011 Evry France
email : CAUDILLO@FRINTS51.bitnet
MAINGUENAUD@FRINTS1.bitnet

ABSTRACT :

We present a data model and interface specifications for hypertext-like documents. The main goal

is to offer browsing and authoring large general hypermedia documents. This proposition tries to take
full advantage of electronic media. Hypertext links with system-defined semantics are considered as a
way to represent both : the organization of the documents and structured database coupling. The data
model defines two organization levels for the documents. The first level defines the construction of
labelled graphs acting as a representation medium for small cognitive document units. The second
level allows these graphs to act like elementary objects, which are organized in more complex
structures using object-oriented abstraction techniques.
At the interface level, the data model components correspond to the real pages of a document. They
are composed of nested blocks of multimedia contents. The model of the documents and the
Document Definition and Manipulation Languages are proposed to be represented at the interface
level using the same paradigms. They are based on the representation of structures, content and
queries by nested blocks (e.g. rectangles) connected by arrows. The interface considers in an unified
way, all the processing steps for document conception in order to offer a general tool dedicated for
both : the readers and the authors of electronic documents.

1 Permanent address : TELMEX - CENTRO DE INVESTIGACION Y DESARROLLO - Ejercito
Nacional 579 piso 8 Col. Granada C.P. 11520 Mexico D.F.

Acw. T Cu.,g v,

ud wadte Iu-QbMAOJN‘\ c'zJ'.
6.1 Jowwisa Ay
Siua&rom\.

1. INTRODUCTION

Several fields have been traditionally studying electronic documents. Early, only single-media
document modelling was possible and the data models were designed to emulate the style of the paper
documentation. Technology evolved allowing electronic multimedia documents, high storage
capacities and the management of large-sized document applications.

Some approaches from word processors, have continued to propose paper-like ways of
structuring and formatting data. The document processing capabilities are based on multimedia, high
storage capacities and fast searching abilities. However, these approaches have several drawbacks
such as the difficulties to read the electronic documents on line. For instance, structuring is not
adapted to this way of reading because of the small size of available screens. Typical applications are
oriented to document presentation—like document authoring and publishing. Queries are limited to
regular expression searching and several semantic aspects of documents are not treated in depth.
Some recent standardization efforts seem promising for high quality printing and document
transmission [9,12].

Other approaches from the database community propose a particular kind of documents oriented
to business applications. For instance, the typical form-oriented data models are only adapted to
strongly structured documents of small size. A document is a particular display representation of
structured data possibly mixed with unformatted data (e.g., image and sound). The semantics of
structured data, are efficiently treated on these approaches. Unformatted data are not merely treated
because : they are considered like atomic data, and there are no primitives to manipulate them
efficiently. Office automation is strongly based on these approaches. They are oriented to small
documents reading and writing on line. The problem is that these models allow to consider only a
small range of the rich variety of existing documents. The interesting aspects of some of the proposed
data models are their capabilities of mixing the structuring and presentation aspects in a unified way.
From database area, powerful abstraction mechanisms and languages have been proposed for

structured data [4,15][3]. However, unstructured data coupling remains an open problem
[14,16,19].

Some recent approaches from hypertext systems propose to relax the strongly typing and
structuring modalities for documents—like a way to allow reading and writing documents on line [8].
The goal is to be able to take full advantage of the electronic supports [22]. That makes electronic
documents more attractive than their paper versions and better adapted to all kind of readers (e.g.,
casual readers). Several interesting formal data models have recently been proposed [20,21]. The
proposed features help to alleviate the device limitations and allow to propetly read the documents on

line (e.g., document customizing, free structuring, multimedia spatial linking and concurrent
browsing). Some semantic aspects of unformatted data are implicitly treated by means of spatial-
oriented annotations or links. Most data models perform well for small applications, but they have
problems for representing both large-sized documents, and the existing relationships for a high
number of small documents [11].

We present in this paper a data model, which is dedicated to large-sized documents, and which
permits to mix the authoring and reading orientations. In order to take full advantage from output
device technologies, we adopt a relatively free structuring style for documents. At the lower level of
definition, document units are represented by a labelled graph with nodes representing pages and
labels representing hypertext-like links. However to diminish user's bewilderment, the complexity of
these graphs is limited. The labelled graphs should have a size small enough to be represented in a
readable way at the screen. In order to provide more complex organizations, these graphs can be
further organized using data abstraction mechanisms like aggregation or generalization.

For the document page representation, we adopt at the interface level a block metaphor where a
page is considered like a set of nested rectangles or blocks, which may overlap each other. The
blocks have several graphical properties (e.g., transparency, priority) and content types (e.g.,
graphics and sound). Links are blocks with specific semantics and with user-defined representation.
Several semantic links are provided in order to permit both : linking unformatted data (e.g., usual
document links) and the coupling of document contents to structured databases (e.g., by database
query-like links).

In all blocks, dynamical aspects are also considered by the means of the scripts. These scripts are
used to program the behavior of the blocks when they are manipulated at the interface level (e.g.,
opened and closed). Animation aspects, generic scripts and exception conditions may be
homogeneously treated with this approach.

The interface proposes an environment where all the existing steps for document processing are
defined using the same representation metaphor—a block and link world. Therefore editing is a

process of filling up the document blocks and querying consists of filling conditions on empty
blocks.

Lot of applications need the proposed features. For instance, geographical information systems,
library automation, CAD/CAM, project management and videotex applications are characterized by
large-sized documents, multiple media, graphical capabilities. They also need structured database

coupling. An additional requirement is to eliminate the border between the readers and the author(s)
of a document—in order to expand the bandwidth of their communication channel.

The rest of this paper is organized as follows. In Section 2 we present the main factors to
consider in order to define a data model and an interface for electronic documents. We describe in
section 3 the data model for the hypertext-like document. The aspects of the user interface are
developed in section 4. There, we show the visual representation and manipulation aspects of the
documents. Section 5 deals with the conclusions and further works.

2. FRAMEWORK FOR HYPERTEXT DOCUMENT MODELLING

In order to define the data model principles, the first part of this section presents the main issues

for modelling hypertext-like documents. The second part presents the interface aspects for hypertext-
like electronic documents processing.

2.1 Node and Link Taxonomy for Hypertext Documents

Here, a taxonomy of links and nodes is presented. The goal is to determine what kind of links
could be proposed for hypertext-like documents.

Links can be classified into two groups : structured links and weak-structured links. Three main
structured links exist :

—The set-oriented links take into account that the data space could be considered like a set of entities.
Typical examples are Is-A, Is-Instance-Of or Is-Member-Of links, which are used in object-
oriented databases or artificial intelligence.

—The composite links characterize a specific organization of a collection of node corresponding to its
structure (e.g., Is-Part-Of links in aggregation hierarchies).

—The version links are used in some data models (e.g., Last-version, Historical-version or
Alternative-version links) in order to represent the evolution of a document.

Six main weak-structured links exist :
—The user-defined links are required when extensibility is mandatory. The data model must supply a
way to include the definition of the semantics of specific user's links.
—The indexing links allow multiple access points to the data space. They are extensively used in
documents (e.g., From-Glossary, To-Glossary, To-Bibliography, From-Bibliography or
Keyword Reference).

—The annotation links allow the authors of a document to define some remarks. The typical notes
found on paper books (e.g., footnotes) are also possible, as well as more complex ones, such as
guided tours on documents, which correspond to structural annotations [23]. Annotations are not
fully considered in paper-like documents. They allow groups of users (readers or authors) to
comment and communicate ideas to each other.

—The execution links allow the execution of programs. For instance, this facility provides dynamic
changes on data, customized data display, data input and data output.

—The weighted links are frequently used in areas like collaborative work or idea processing (e.g.,
ideas to be submitted to public discussion). The definition of weights is a way to formalize the
discussion in a group. They often represent the public or private relevance of a link.

—The virtual links may be defined using database query-like or information retrieval-like queries
(boolean query or regular expression searching). Therefore, extensional linking is not mandatory,
and consequently, intensive linking could be economically represented (e.g. a single node to a set
of nodes by a query).

2.2 Interface Issues

In a hypertext document system, the data model interface defines the characteristics of the
mapping between the formal nodes and edges, to their page and link representations on a screen.
Links may be indicated with icons, highlighting, underlining, font change, string or special symbols.
Some characteristics of the links may be defined in term of the referencing style :

—They differ in scope. Source and destination parts for a link may be a single node, special node
elements (e.g., string, line, pixel, graphical element and special symbol) or multiple nodes [1].

—They can be directed or non-directed. These links characterize the symmetry of the relationships
between nodes. Browsing semantics in an electronic document system are deeply influenced by
this feature.

—They may be typed. Some complex type mechanisms may be defined allowing links to have
several properties [6).

Therefore, formal nodes correspond to document parts which can be represented in several ways:
—Single or multiple page orientation is possible (e.g., one or several logical pages are associated to a
node). In a multiple page orientation, one can associate either a single window (e.g., normal or
scrolled) or multiple windows (e.g. overlapped or non-overlapped) [2].
—Spatial or non-spatial pages are characterized by link indicators which can be freely positioned and
sized.
~—Composite or simple pages are possible. Simple page means that a node directly corresponds to an
atomic page (at the screen level). For composite pages, a collection of page components could be

implicitly linked by nested composite links. These pages behave like a unity represented in a single
associated window.

—Typed or non-typed nodes depend on the way used to define node contents and structure. If nodes
are typed, node contents may be defined for unformatted data (e.g. sound, animation, bit-map
image, video, text, graphic and program) and formatted data (e.g. integer and float).

The processing model defines the different global states taken by the interface during an
interaction with the end-user. Several processes can be distinguished in processing electronic
hypertext-like documents such as: structuring, editing, communicating, browsing and querying.

Structuring corresponds to the way of defining the type (e.g. the schema) of a document. This
type describes intentionally the structure and contents of the instances. Types for hypertext
documents should be defined as a way to specify the possible structures and contents that the
-documents may take. Defining document types permits to consider structural and content predicates at
the query language level. So it is possible to determine, for instance, the equality or similarity
between two documents. The structuring process defines a linguistic interface equivalent to the Data
Definition Language used in databases.

Editing is a well known process. In hypertext, editing must be defined for the structure and for
the content of documents. The two kinds of editing should be made using a WYSTWYG philosophy.
The dynamical feedback provided for the user's actions executed under different input devices, has to
be considered in this level. For instance, typical pointing devices are tablet, touch screen and mousse.
Cursor treatment may be different such as continuous, jump-arrow or directed by a grid. For linking
document parts, a way of link indication and creation is needed. Guidance for link creation could be
indicated by rubber-banding, browsers, or other ways. Feedback from the conditions of exception
must be also defined (e.g. sound).

Communicating process has to be oriented to both distributed Hypertext documents and
transmitted documents among different processing tools and devices (interoperatibility). Several
important aspects in network or multi-user document systems need special attention (e.g., multi-
authoring and reader's location changes). Interoperatibility is'necessaxy to freely transfer all or part of
a document among different tools. For multimedia applications, device independence is also required
(e.g., for several device types like visual or audible). Hypertext documents are composed of non-
linear elements which must be adapted to the representation device. For instance, visual devices can
be : linear (e.g., printers), single window or multi-window (e.g. prefixed, partitioned space or
overlapping windows). Changing the output device may require to change the document structure

and the style of presentation. For these linear devices some structures need linearization (e.g. a graph
document data model for its printed representation) [18].

Browsing electronic documents has a different meaning than in traditional applications. Because
of the different ways of structuring documents, browsing semantics can be indicated by authors as a
link crossing guidance. Browsing can be either sequential or concurrent. Concurrent browsing has
several advantages. For instance, in multi-windows environment different parallel histories could be
concurrently represented. This possibility enforces understanding, exploits the presentation medium
and takes advantage of human parallel processing capabilities. Browsing can be seen on three
different plans. First, structural browsing relies on the document structure. It may need several
windows simultaneously opened . Scrolling in a high level window could need synchronized
scrolling of dependent windows. Otherwise, in composite link traversals, multiple windows opening
for all linked nodes could be necessary. Primitives for connecting, disconnecting, overlapping
windows or changes of the browsing plan are necessary. In addition, global or local structure views
are needed for user guidance [10]. Next, reference browsing is needed when links could be freely
traversed—specially when the referential network is too complex. Referential or space browsers
which display the reference structure are also needed for navigation. The third class of browsing is
temporal. Arbitrary sequences of link crossing may take place—the user may be bewildered when
navigating. Temporal browsers are useful to remember already visunalized nodes. They often offer an
history of visited nodes and they are also used as a general tool for unlimited undo/redo on traversed
links.

Querying process in hypertext is a content and structure filtering process (against querying in
database, which is content oriented [7]). In document systems, browsing is as important as querying
because of the low intentional nature on document reading. Readers do not know in advance neither
content nor structure, so, usually they cannot specify queries [13]. However when documents are
known, or in "a-priori" querying, searching relies on both content and structure specifications. Four
main elements must be specified in a query : document structure description, content description, the
scope of the query and the structure of the result.

At interface level, all these five processes should be represented using the same visual and
operative paradigm (avoiding multiple user's mental models). So we focus on the structuring,
browsing and querying process. In this paper special attention will be shown for the structuring
process because it is directly related to the data model definition.

3. DATA MODEL

In order to capture node and link semantics a special purpose semantic data model is proposed.
Such a model acts as a logical data model providing a second level of logical data independence. An
additional goal is to represent all kinds of referencing ways found in document applications and
formalize their semantics.

A tension exists between the specificity and the productivity of modelling when using a specific
data model. As a high level productivity tool, this data model tries to supply in an inkerent [5] way
the typical kind of constraints and useful patterns needed for electronic documents. The formal model
components directly correspond to the document elements seen at the user interface level. The
representation style and its correspondence with the data model enforce convergence on multiuser
modelling and document manipulation tasks.

3.1 Informal Discussion

Against conventional existing models of documents, this model is designed to allow writing and
reading documents on line. Hierarchical document structuring is encouraged, however, several kinds
of linking semantics allow flexible construction of virtual or intentional structures. These structures
are built by means of conventionally structured database coupling. Standard hypertext-like link
traversal is the way to implement standard document cross-references or annotations. Concurrent
browsing is an important point to privilege in electronic document structuring. These characteristics
are provided in the model by dividing contents in small subject units (freely structured and browsed)
which are further aggregated and generalized to provide more complex structures.

Two organization levels are distinguished. The first one, at lower level, permits the construction
of small labelled graphs acting as a representation medium for cognitive document units. In that way
free idea structuring in documents is possible to be represented in these chunks. At the second level
of abstraction, these graphs (which eventually could be a single node representing a piece of
document) act like elementary objects. These objects are organized in more complex aggregation
hierarchies built recursively using tuple, set, choice and list (group of ordered components)
constructors. Low level objects are called blocks and high level objects are called graphs. Blocks are
linked together to constitute graphs and these graphs are further aggregated and generalized. All
blocks are differentiated by a unique system defined object-identifier OID.

3.2 Formal Definition

At the block level, two modelling components are considered : static and dynamic components.
First, static contents are constructed from system defined elemental data types such as: number
(NUM), text (TXT), boolean (BOL), video (VID), image (IMA), program (PGM), sound
(SND), query (QRY) and OID (OID). An inherent graphical frame (as a window) is also defined
surrounding the block content. Next, dynamic components are represented in a block script part,
composed of a pre-script with input parameters and actions, a post-script with actions and output
parameters, and an exception-script with exception handler. The pre-script is invoked when blocks
are opened, the post-script when the blocks are closed and the exception-script when an exception
condition takes place. Consequently, helped by the scripts, link traversal in the block graphs could be
made for instance in a concurrent browsing way with animation. Typical actions are : close the block
in 'n' seconds, change priority, visibility, show dependent blocks, execute a generic script and
destruction control.

Content Blocks (atomic blocks, multi-valued blocks and multi-blocks)

Blocks are recursively defined. Let B be a string defined over an alphabet £* used to name
blocks. The most elemental block is the atomic block (by). The notation B : () is used to define a type
B with its structure.

ba=B:(,S§, Ig, d) is a block

1: Block identifier,

S: Script program.

Ig: Values for the graphical information attributes : Frame and content visibilities, transparency,
priority, state (selected, normal), the dimensions (X and Y) and the origin (taking its values
from NUM x NUM), and the type of the graphical frame.

d: Data for the content information part taken from one of the predefined types : NUM, TXT,
BOL, VID, IMA, PGM, SND.

origin

The description of France is :

Y dimension

¥
A J

X dimension
Figure 1 : Graphical representation of an atomic block instance.

Explicit OID-reference or querying are forbidden on atomic blocks because special semantic link
blocks are in charge of centralizing reference control.

Blocks are recursively constructed from other blocks. So, they may content other blocks called
dependent blocks. Multi-valued blocks (by) store several homogeneous blocks in a block :

bv=B: (S5, Ig, d, {b],bZ,,bn}) is a block
i,S,Igand d : as previously defined.
{b1,b2,...,bn}: is a set of dependent blocks.

Multi-blocks (bm) could also be built from other blocks :

bm=B:(,S, Ig, d, <bi, b2,...,bn>) is a block where
i,S,Igandd as previously defined.
<b1,b2,....bpn>: is a list of dependent blocks.

Multi-valued blocks are used to allow a block to have lists of dependent blocks visible one by

one. On the other hand, multi-blocks allow a list of dependent blocks grouped for presentation
purposes. All blocks form a hierarchy where the highest level block is called roor-block (br) which

represents the granularity unit for version control.

br=B:(, S, Ig, d, Db, V, A) is a block where

1,5,Igandd as previously defined.
Dp : represents the set of dependent blocks.
V : <dc,vn,cu> : version part composed of the date of creation, version number and

creator's user id.
A : is the name of the root-block and sharing possibilities.

10

Sharing blocks is an important issue. This functionality is user dependent. A shared block can not
be deleted while there still exists blocks referencing it (by OID). Existential dependency relies only
on dependent blocks definition (as descendants of a root-block). Therefore to be shared a block must
have a specific owner which defines its existence and all other linked blocks do not determine their

existence.
data part of the
root-block ‘node’

\

.\
Multi-valued embedded
block atomic block
(countries) \ (header) of
\ the figure 1
E T — L
multi-block wme multi-block
without data The description of France is : (contents) with
part invisible
dependent
biocks
L~
[“State of Furo,
Population : .P%
Capital ; Paris.
Cities with maore than 200,000 Inhabitants :
data part of |1
the
rudti-block
‘contents’ \
INSTIIUTIONS
CULTURE AND CIVILIZATION
HISTORY
References :
Muliti-block \
(references) root-block
with invisible (node)
. dependent
{xxx) ; block name blocks

figure 2 : Graphical representation of a 'node’ root-block instance.

Link-blocks.

Links are blocks with special semantics called link-blocks (b]). The system defined link types are
considered at the data model level as a matter of semantic constraint constructors. They represent the
typical kinds of referencing found in document applications.

11

In system defined links the destination block is not always a block identifier. Therefore, linking
(referencing) could be defined in either an explicit way by its OID, or in a virtual or intentional way
by query expressions (QRY). The two forms of referencing accept two modalities : snapshots and
views. The block references can be defined in several ways with its specific semantics.

For explicit referencing five main categories are available.

—First, block-static-version snapshot or view (labels bsvs and bsvv). These link types are used to
allow a local customized display of the target block referenced by OID. In snapshots, the system
creates a mirror block of the target block contents and its dependent blocks The target block is
referenced by a special data part of the link-block (called Information : Ia). As in Database
environments, updates in source data are not propagated. Views are always executed when the
originator block is opened. Both references use the same frame from the source block therefore
preserving attributes, dimensions and origin (allowing the "customizing” of contents).

—The second one is block-last-version snapshot or view {labels blvs and blvv). These links have
the same semantics that the previous links but they (may) reference the last version block. Versional
blocks are specified by the user.

—Third, block-static-version reference (label bsvr) link, represents the typical referential integrity
used in databases. In document applications, this constraint is checked when a block is updated.
The value of block origin must exist in the referenced block.

—Fourth, block-last-version reference (label blvr). This link has the same semantics that the
previous one but it always defines a reference to the last block.

For virtual referencing, two main modalities are available :

—First are the query-based snapshot or view (labels gbs and gbv). They are virtual links
represented by storing a specific text of a query in the information part (I§) part of link-blocks. The
aim is to copy the blocks satisfying the query into the originator block. Therefore, originator block
is multi-valued because the evaluation of the query returns a set of blocks. These blocks are stored
in a mirror block (with or without their descendent blocks).

—Second is the query-block reference (label ¢br). Here, updating the source block constraints its
content to be equivalent to the blocks referenced by the query.

Two sets are distinguished from the system labels : L{(OID)={ bsvs, bsvv, blvs, blvv, bsvr,
blvr } representing the OID-based references, and L(QRY)={ ¢bs, qbv, qbr } representing the
query-based references. So let Ls be a set : Ls = L(OID) u L(QRY).

To supply extensibility, the user defined links allow to construct links with specific semantics by
means of script programming and link labelling. User defined links have no inherent semantics. They

12

always made explicit references. Therefore, there is a single type of link called user-ragged reference
(user's defined label). Link semantics are similar to hypertext links but specific actions (like
animations), concurrent browsing (similar to token passing), user's specific programmed constraints
and multiple representations of data are permitted using nodes and link scripts. Consequently, the
user's defined labels constitute a set called Lu = { utrl, utr2,...,utrn }.

User-tagged reference links are used to build atomic graphs. These graphs are useful for two
purposes. First, to represent document units browsed as a unitary knowledge body. They are called
internal links (ILT). Next these graphs are used to reference other documents or graphs in the same
document. They are called external links (ELT). We made this distinction because at user interface
level, internal-links are seen by default (by an internal graph browser) against external links which
are selectively seen depending on browsing scope (see figure 4). Therefore, a typing mechanism is
defined for the intentional definition of the document units graphs. The system makes the difference
between an internal reference and an external one by means of a graph identifier part stored with the
block identifier. All user tagged links are represented by a user defined symbol stored in its data part

(d).

Links blocks are defined by :

bj=B:(,§, Ig, d, 1, I) is a block where

i,5,Igand d : as previously defined.
1 : is a label of Ls U Lu where Ls.
Ig : is a block destination information part of type QRY or OID.
biock-last-version-view Black-static-version-snap shot
—d

State of Eun! g, [J4F 000 Km2]
Population :

Capital : Paris.
Cities with more than 200 000 Inhabitants :

Marseille,
Lyon, query-based-view
Tzulouse, "

Nice,
Strasbourg,
Nantes,
Bordeaux,
Saint-Ederme,
Montpellier,
Le Havre, usar-tagged-reference
Rennes

mwstrruTions [
CULTUREAND TION
HSTORY [

Figure 3 . Representation of the multi-block ‘contents’ : A referencing example.

13

Using the blocks attributes and playing with their visibility the final look of the example root-
block ('node') is shown in the figure 5.

Recursive construction of atomic graphs allows to construct an aggregation hierarchy where the
graphs are intrinsically linked by an is-part-of relationship. Therefore, they describe a structured
body of knowledge for a whole document. They are represented like complex objects used in others
Database fields (CAD/CAM, OIS,...)[4]. The difference here is that the low level components are
allowed to be small graphs. The highest level component of an aggregation hierarchy represents
complex graph objects which may be grouped in classes. These classes could be further generalized
in other classes called superclasses.

Imruagink g;t:;cn—
W
VU
root-block name \\. é}@o
\ '

L V| Ny foete

, history-
\\) instance

Exigrnal-links

figure 4 : Internal -links and External-links.
3.3 Types and Schemata

A single mechanism is necessary to allow the identification of a block along the data space. So,
the identifier of a block has to be divided in four components allowing its identification at a block
level, a root-block level, a graph level, and a class level (i : (block-part-identifier, root-block-part-
identifier, graph-part-identifier,class-part-identifier) . To simply i is written (b;, ri, gi, ¢i)).

Let I(t) be a function which returns a block (instantiation) of type t. Let TYPE (b) be a function which
returns the type of a block b. Let DATA_TYPE (d) be a function which returns the type of the data
part of a block. Let OID (b) be a function which returns the OID of a block b. Let DATA (b) be a
function which returns the content part of a block b. Let QUERY (Id) returns the set of the relevant
blocks for the query Id. Let Tc = {NUM, TXT, BOL, VID, IMA, PGM, SND}, Tq = {QRY, OID}
and Ts = {NUM, TXT, BOL, IMA}. The notation B : () is used to define the structure of a bloc
instance be.

14

DEFINITION

a) an atomic-type B : T is a type and

bc=IB:T)
bc=B:(,S,Ig,d)=> DATA TYPE({d)=TATe Tc

b) a multi-valued type B : T : {Tj} is a type and
bc=I(B:T:{Ti}
bc=B: (S, Ig, d, {b1,b2,....bn}) =>ViTYPE (bi) =T1 ADATA TYPE(d)=TATe Tc

c) a multi-block type B : T : <T1,12,...,Ty> is atype and
bc=1(B:T:<T1,T72,....Tn>)
bc=B: (i, S,Ig d, <b1,b2,....by>) => Vi TYPE (bi) = TiADATA_TYPE (d) =TA T e Tc

d) an internal-link type B : T : ILT is a type and
bc=IB:T:ILT)
bc=B:(,S,Ig,d, LI Ale Lu =>DATA_TYPE (Id) = OID ADATA_TYPE (d) =T A
T e Ts A i=(by,11,81,61) A Id = (b2,12,81,€1) A
b /OID(b)=IgA b #by ATI#12A
DATA_TYPE (DATA (b)) ¢ Tq

e) an external-link type B : T : ELT is a type and
bc=I(B:T:ELT)
bc=B: (S, Ig, d,1,Ig) Ale Lu =>DATA_TYPE (Id) = OID A DATA_TYPE(d)=T A
T e Ts A i=(by,11,81,61) A Id = (b2,12,82,¢2) A
db /OIDMb)=IgAby #by ATI£T2A g1 £ gy ACLEC2ZA
DATA_TYPE (DATA (b)) ¢ Tq

f) a system link type B : T : SLT is a type and

bc=1I(B:T:SLT)

be=B:(,8,Igd,1,13) Ale L (OID) => DATA_TYPE (Id) = OID A DATA_TYPE (d) =T A
Te Tsadb /OID (b) =Ig A
DATA_TYPE (DATA (b)) ¢ Tq

be=B:(8,1g,d, L, 1j) Ale L (QRY) =>DATA_TYPE (Id) = QRY ADATA_TYPE (d) =T A
Te Tsa Vb € QUERY (I3 A
DATA_TYPE (DATA (b)) ¢ Tq

15

int
3Tl'mt'.cﬁnm-insr.llsst:z'iplinrnsnlB:

The description of France is :

Stare of Europe, 549 000 Km2,

tion : 56 000 000 Inh.
Capital : Paris.
Cities with more than 200 004 Inhahimnn :

HETORY |5
Rsferences:
Help I | Links I I operations I

root-block
(node)

figure 5 : Final representation of the root-block 'node’.

Root-blocks and internal links modelled by a graph-schema, represent an oriented local graph for
a local browser. Root-blocks and external links modelled by a graph-schema, represent an external
graph for an external browser. These graphs can be further aggregated to form more complex
documents.

Recursive use of these constructors forms a type hierarchy. The highest element of the type
hierarchy is called root-block type and the root-block schema is defined as the regular expression
(following the type definition of section 3.2) representing all its component blocks. For example, the
regular expression defining of the root-block type of figure 2 (without any detail for ELT and ILT) is :

Node : (io, So, Igo, Logo : IMA,
{Country : (i, 81, Ig:,
Intro ; TXT, { (i3, S3, Ig3, d3,
<Header : TXT,
Contents : (i4, S4, Iga,d4, <Km : bsvs, Hbt : blvv, Intro : TXT, City : gbv,
Inst : ILT, Civ : ILT, Hist : ILT >)}),
References (i2, S2, Ig2, intro : TXT, <help : ELT, links : ELT, operations : ELT>)
}, Vo, Ao) with I(d3) = &.

16

The root-block schemata are grouped in order to constitute elementary graphs representing an
atomic graph type. These graphs represent a document part browsed as a unit.

DEFINITION :

Let Sr1,Sr2,...,Sm be root-block-schemata :
An atomic graph type B : 18r1,5r2,...,5rn 1is a type.

Let GT1,GT2,...,GTn be atomic-graph-types :
a) a set-graph type =B : {GT1} (set of)
b) a choice-graph type =B : $ GTI, GT2,...,GTn $ (one of these types is instanced)
¢) a tuple-graph type =B : [GT1,GT2,...,GTn] (aggregation of components)
d) a list-graph type =B : %GT1,GT2,...,GTn% (group of ordered components)
are types describing domains in the same way that the complex object models do [3].

4. INTERFACE CONSIDERATIONS

Interface design should consider the way of displaying both the formal document objects and
the processing model. Formal document objects are atomic blocks, multi-valued blocks and multi-
blocks. Each kind of these blocks have its own representational characteristics (Figure 2). So, each
block can easily be identified by its frame shape and contents. Atomic and multi-blocks are
represented using the same single frame having a simple shape. They can be easily identified because
multi-blocks have embedded blocks as contents. Multi-valued blocks have a special frame which
suggests that their contents are a set of blocks. Link-blocks are represented by a single frame with a
user-defined content symbol from the system defined available types (see Figure 3).

Considering a document like a graph, content blocks and system-defined link block correspond to
graph nodes. User-defined links correspond to usual directed edges (e.g. hypertext links). So, nodes
can, be single or multi-page -(e.g. atomic and multi-valued blocks). They are also spatial in the sense
that they may be positioned anywhere in the space limited by the frame of their parent block. Root-
blocks (having no parent block) may be considered as embedded in a system defined universal frame.
Nodes are also single or composite (e.g. atomic blocks and multi-blocks), and they are always typed
(see section 3.2).

17

Links blocks are directed, typed and are treated like a special kind of document objects (always
embedded in content blocks). Inside these blocks, they may be freely positioned. System-defined
links behave at representational level like content blocks. They permit a personalized display
representation of the target block content (see Figure 3). Therefore, they are able to represent blocks
with virtual contents, oriented to data sharing and structured database coupling.

User-defined links are aimed to cross-referencing. Internal links are used to represent a weak-
structured body of information behaving like a whole unit represented by a graph (Figure 4). External
links permit weaker forms of referencing and are oriented to represent non-restricted document links.

4.1 Structuring

Structuring process should be related to a description language aimed to intentionally define
the contents and the structure of documents. A natural way is to define a visual interface allowing the
construction of the types and schemata described in section 3.3. For flexibility reasons, this type
system is enhanced to allow (1) to store generic structures, generic scripts, generic contents shared by
all instances of a type, (2) variant definitions for types, and (3) some data constraints. Normally,
types of electronic documents share generic data. This facility does not increase the power of the type
mechanism but defines an "interface sugaring” to the underlying language making easier to use the
document system. Some directions for instantiations and constraints have also to be included in the
" type language. Variant type definition is necessary because electronic document cannot be easily
characterized by attributes of a simple type. Variant types force to define instances as dynamic
instances (e.g. instances which carry out their type description). In general, using dynamic values
allows a more flexible typing system. It permits for example, to specify the way of matching instances
to types at query language level (e.g. structural, name or mixed matching criteria).

Link types may also enhanced to specify the type of the destination link : for both internal and external
link types. This mechanism is equivalent to the types pointers implemented in some programming
languages. Internal, external, user-defined and system-defined links make clear the semantics of
referencing in documents. The data model offers a clearer semantics of referencing than in object-
oriented databases (where object identity references may be used for composition with dependent
objects, for sharing or for other kinds of referencing in an indistinct way).

Types are associated to document classes. Classes may be seen like folders containing atomic
graphs. Therefore, atomic graphs are like traditional files, but they may be freely structured and cross-
referenced. A class behaves like an Abstract Data Type hiding its implementation and showing an
interface by means of commands. It defines the semantics of types : directing the instantiation and

18

incrementally checking the types of its instances. Classes also know some system defined operations
allowing the manipulation of its instances.

Structuring process may operate under existing types by derivation or it may create any new type.
Derivation uses the fact that an existing type can be used like a prototype or a generic type in order to
define other new types. So, to define a type similar to an existing one, the actions are (1) derive from
the existing type, (2) rename it, (3) introduce the transformations, (4) save it. In consequence, all
defined types behave like parametric types where parameter changes are atmed to new type definition.
The available transformation commands are for a block : to change the name of a block type, to cut the
selected blocks, to paste these blocks, to add a dependent block, to select a block and its descendent
blocks, to change the system type of a block, and to change a block from multi-valued to multi-block
or vice-versa.

The available transformation commands are for a link : to rename the link, to define link aliasing, to
delete a link, to add a link, to change the type of a link, to define or to change a target type for a link,
and to change the attributes of a link (e.g. mandatory link or optional).

This process also offers the integration of a view definition style operating by graph
transformation. Each user has a private view of the underlying document. The view concept is aimed
to implement a security control, to allow personal annotations and to define personal transformations
of the underlying document. Views may be also used like document abstractions controlling the level
of detail for a document (e.g. in a hierarchical way). Each view is considered like a data structure
operating over the document or over other views. Each view stores also a local state, which permits to
make persistent the last display representation of a document (preserving certain document aspects
among the different sessions). Several commands are required to manage a view : to define, to create,
to derive, to save, to cancel, to hide a block, to show a hidden block, to rename a block or a link, to
define link aliasing. |

Structuring process may be also used to define some document constraints : (1) browsing
constraints used to show an icon when opened or when closed a given block (for concurrent
browsing), (2) spatial constraints to define a position range for a block or to forbid the overlapping of
some blocks, (3) block cardinality constraints (e.g. the number of allowed instances in a multi-valued
block), (4) structure constraints like cardinality constraint to limit the permitted maximal and minimal
number of some link type (e.g. define optional or mandatory user links), and to limit the maximal
number of links arriving to a given block and (5) domain constraints to specify, for instance, the
range of an atomic block of number type.

19

4.2. Editing, browsing and querying

These processes are not fully considered here for space limitations. Communication process is
not of interest in our project. However, in order to show the general philosophy of these processes,
this section presents what should be some of their main characteristics.

Editing process has to rely on a WYSIWYG philosophy. It must consider a kind of dynamic type
checking executed when an edited instance is saved. Type checking must consider the types of all the
blocks of the instance and the type of the structure (e.g. check optional or mandatory links). Editing
by instance derivation has to be possible.

Browsing process must indifferently allow browsing in the documents or in the interface. So, an
interface is like document or vice-versa. The problem presented for temporal versus spatial browsing
must also be considered. A certain kind of abstraction of blocks and graphs must be taken into
account to diminish user's bewilderment and cognitive overhead [8]. Browsing should implement a
form of navigational language intended for low intentional aspects on reading electronic documents.

Querying process has to be implemented as another hyperdocument. Querying must be
designed for the structure and for the contents of electronic documents. In order to define a structure,
the user specifies the blocks and their types in a similar way that he derives new types in the
structuring process. This derivation provides a general structure (like a form) with empty blocks. In
order to specify content conditions, he specifies them in a fill in the form philosophy. Both, the
navigational language of the browsing process and the declarative language of the querying process,
compose an ad-hoc query facility to the low intentional nature of electronic document reading.

5. CONCLUSIONS

The first part of this paper defines a framework for hypertext (hypermedia) document modelling,
We show the main link semantics required for hypertext-like documents and describe the interface

characteristics in order to provide a general framework, which could be used to design other
document data models.

Next, we have proposed a document data model that considers content, structural and
presentation aspects. This model allows general abstraction techniques and extensible semantics for
information structuring with: (1) A stratified method to represent multimedia document data. (2)
Several linking modalities, which offer a flexible way to represent the multiple relationships in data—
oriented to the "structure-intensive” and data-intensive nature of multimedia document management,

20

Links allow information sharing specifications and multiple styles for elaborating and structuring
documents. Some system defined links (e.g., query-based) propose a view mechanism, which
permits to consider a view, not only as an information filtering process, but as an information
adding, transformation and multiple representation process. This links also allow structured database
coupling.

The user interface offers a page model based on a nested block philosophy, which is the basis of
all the interface process. This interface proposes a unified environment that could be used like (1) An
authorship tool with a simple way of editing the structure and content, managing versions, defining
types and structures. (2) A reader’s tool with a unified query language for structure and content
queries, as well as, a flexible browsing style useful for the weak intentional nature of reading
unstructured data. (3) A multiple indexing method allowing to increase the precision and recall {17]
by means of free cross-referencing and structural queries.

Electronic documents should exploit hypertext-like characteristics. Realistic electronic document
processing is related to richer ways of structuring, presenting (hypermedia) and indexing documents
(multiple access). These characteristics try to alleviate output device limitations (e.g., small screens).
However, the existing flat documentation, (e.g., paper documents or electronic mail), should be
adapted to Hypertext structures. Logical structure and content analysis research are necessary in order
to determine how the existing documents may be adapted to the new models or restructured.

The future research works will be dedicated to the further definition of the visual langnage for
document manipulation and browsing. Therefore, document definition, editing, browsing and
querying will be defined with the same principles avoiding multiple representational models.

10.

11.

12.

13.

14.

15.

21

REFERENCES

AKSCYN, R. M., MCCRAKEN, D. L., AND YODER, E. A. KMS: A distributed hypermedia
system for managing knowledge in organizations. Commun. ACM 31,7 (July 1988), 820-835.
AMBLER, A. L., AND BURNETT, M. M. Influence of visual technology on the evolution of
language environments. IEEE Computer 22, 10 (Oct. 1985), 9-22.

BANCHILON, F., AND KHOSHAFIAN S. A calculus for complex objects. In Proceedings of the
ACM SIGACTISIGMODI/SIGART Symposium on Principles Of Database Systems (Cambridge,
MA, USA, Mar. 1986) 53-59.

BANERIJEE, J., CHOU, H., GARZA, J., KIM, W., WOELK, B., BALLOU, N., AND KIM, H.
Data models issues for object oriented applications. ACM Trans. Off. Inf. Sys. 5, 1 (Jan. 1987),
3-26.

BRODIE, M. L. On the development of data models. In On Conceptual Modelling, Brodie, M.
L., Mylopouios, J., and Schmidt, J. W., Eds. Springer-Verlag, New York, 1984, 19-47.
CAMPBELL, B., AND WOODMAN, J. M. HAM : A general purpose hypertext abstract machine,
Comm. of the ACM 31, 7 (July 1988), 856-861.

CHANDRA, A. K. Theory of database queries. In Proceedings of the ACM
SIGACTISIGMOD{SIGART Symposium on Principles of Database Systems, (Austin, Texas,
Mar. 1988), 1-9.

CONKLIN, J. Hypertext : An introduction and survey. I[EEE Computer 20,9 (Sept. 1987), 17-
41.

ELLIS, C. A., AND NAFFAH, N. Design of Office Information Systems. Surveys in Computer
Science, Springer-Verlag, New York, 1987.

FEINER, S. Seeing the forest for the trees : Hierarchical display of hypertext structures. ACM
SIGOIS bulletin 9, 2 & 3 (Apr.-Tune 1988), 205-212.

HALASZ, F. G. Reflections on Notecards: Seven issues for the next generation of hypermedia
systems. Comm. of the ACM 31,7 (July 1988), 836-852.

HORAK, W. Office Document Architecture and Office Document Interchange Formats : Current
status of international standardization. IEEE Computer 18, 10 (Oct. 1985), 50-60.

M ARCHIONINI, G., AND SCHNEIDERMAN, B. Finding facts vs browsing knowledge in
hypertext systems. IEEE Computer 21, 1 (Jan. 1988), 70-80.

ORENSTEIN, J. A. Can we meaningfully integrate drawings, text, images and voice with
structured data?. In IEEE Proceedings of the International Conference on Data Engineering (Los
Angeles, CA, Feb. 1988). IEEE Computer Society Press, Washington, D.C., 1988, 603.
PECKMAN, J., AND MAYANSKI, F. Semantic data models. ACM Computing Surveys 20, 3
(Sept. 1988), 153-189.

16.

i7.
18.

19.

20.
21.
22.

23,

22

PHILLIPS, B. Multimedia systems and text. In IEEE Proceedings of the International Conference
on Data Engineering (Los Angeles, CA, Feb. 1988). IEEE Computer Society Press,
Washington, D.C., 1988, 601.

SALTON, G., AND MCGILL, M. I. Introduction to Modern Information Retrieval. McGraw-Hill,
Inc., New York, 1983.

SHASHA, D. When does non-linear text help?, In Proceedings of the International Conference on
Expert Database Systems, (Chatleston, South Carolina, Apr. 1986), 163-174.

SHETH, A. Managing and integrating unstructured and structured data : Problems of
representation, features, and abstraction. In IEEE Proceedings of the International Conference on
Data Engineering (Los Angeles, CA, Feb. 1988). IEEE Computer Society Press, Washington,
D.C., 1988, 598-599.

STOTTS, P. D., AND FURUTA, R. Petri-net-based hypertext : Document structure with browsing
semantics. ACM Trans. Inf. Sys. 7, 1 (Jan. 1989), 3-29.

TOMPA, F. W. A data model for flexible hypertext database systems. ACM Trans. Inf. Syst 7,
1 (Jan. 1989), 85-100.

YANKELOVITCH, N., MEYROWITZ, N., AND VAN DAM, A, Reading and writing the electronic
book. IEEE Computer 18, 10 (Oct. 1985), 15-30.

ZELLWEGER, P. T. Active paths through multimedia documents. In Document Manipulation and
Typography, J. C. van Vliet, Ed. Cambridge University Press, Apr. 1988, 19-34. Proceedings
of the International Conference on Electronic Publishing, Document Manipulation and
Typography (Nice, France, Apr. 1988).

