Graph Manipulations for the Network Oriented Management :
Application to a Telecommunication Network

M. Mainguenaud, J.L. Raffy, X.T. Simatic

FRANCE TELECOM - Institut National des Télécommunications
9 rue Charles Fourier F91011 Evry - France
+331607647 82 + 331607647 80 (fax)
Email : MAINGUENAUD@FRINTS51 bitnet, RAFFY@FRINTS1.bitnet,
SIMATIC@FRINTS1.bitnet

Abstract

This paper presents the manipulation operators defined for a data model allying the
concepts of the graph theory and the object oriented concepts to manage multi-scaled networks.
‘The main manipulations are the union, the weak and strong intersection, the difference and the
graph traversal. The distinction between the weak and strong operators allows distinguishing
the operanons dealing with the structure of the graph and the operations dealing with the
specific data since a basic data element (node, edge) may have several levels of definition

{detail) within an application. We give as an example the network manipulations based on the
new french telecommunication network.

1. INTRODUCTION

Transport networks (i.e. train, plane, water, telecommunication) may be modeled with

the concepts of the graph theory. Early 1970, substantial work was done on the optimization of
the graph operators. The underlying data model was only composed of nodes and edges.
Graph theory applied to operations research represents an important theoretical base [13] for
efficient data manipulation operators. Nevertheless the formalism of the data model has a lack
of semantic power if we compare it to the semantic data models [8] or the object oriented data
models [16].
The main advantage of a Relational Data Base Management System (RDBMS) is its ability to
handle a huge amount of data but the data model [15] cannot represent the structured objects
very easily. In order to improve the representative and expressive power several DBMS offer
an object oriented data model. In fact object oriented concepts such as classification,
aggregation, generalization/specialization can be applied to the alphanumerical information parts
of the network but also to the topology of the network.

The aim of this paper is to present a processing model associated to the data model
defined in [11]. This model allows to handle multi-scaled networks. As an example we use in
this paper the new french telecommunication network. Section 2 presents a short recall of the
data model; section 3 presents the concept of layers defined in this data model; sections 4
presents the operators; section 5 presents the application of these concepts to the management a
telecommunication network and section 6 deals with the conclusion.

2. THE DATA MODEL

This section is a short recall of the data model. We assume the reader to be familiar with
the concepts of the graph theory [3] and the object oriented paradigm [16]. A simple example
introduces the basic concepts of the model : node, edge, network (similar to the notion of node,
edge and graph in the graph theory), master-node, master-edge (which intuitively correspond to
an abstraction of a sub-network). In this paper a network R is defined as R (NR, ER) where Nr
is a set of nodes and ER is a set of edges. Figure 4 represents the network with the maximum
level of abstraction, TLi are the nodes of this network. Figure 3 is the same network with more
details (decomposition of the TLi nodes). Figure 2 is the decomposition of the TL3 node and
figure 1 is the network with the maximum logical decomposition.

An edge ek is a couple of nodes (ni, nj) i.e. : (P2, P3), P2 is the initial node, P3 is the end node.
A master-edge is an abstraction of a sub-graph i.e. (C25, A22). A master-node is an abstraction
of a sub-graph i.e. figure 4 for the graph of the figure 3. The sub-graph is called an associated
network. A simple node (resp. a simple edge) is a node (resp. an edge) with no associated
network. The nodes of an associated network are called the specialized nodes, the master-node,
their generalized node.

Each basic data element (node, edge, network, master-node, master-edge) is identified by a
logical OID (Object [Dentifier). To take into account of the various levels of abstraction this
OID is stratified using the following rules :

(1) A node belongs to a hierarchy of node. Let N be the depth of this hierarchy. The OID
has N layers (from 1, the lower level of abstraction, to N, the higher level of abstraction). Let n
(a node) belongs to the layer k. Two cases may happend :
* 1 1s located at the top level of the abstraction (k = N). The first layer has the local OID -
an integer- and the other layers are null (equal to 0) (i.e. TL1 figure 4).

* n is not located at the top level (1 £k < N), The (N - k) first layers contain each local
OID -an integer- of the generalized nodes. The layer k contains the local OID. The
(k - 1) last layers are null (i.e. t11 figure 3).

Remark : Let n be a node of the layer k { k < N - 2). The generalized node of the node n may

not belong to the layer k+1. Therefore a shadow node is created with an arbitrary local OID at
the level k+1.

(2) The OID of an edge is divided into three parts. The first part (resp. the second)
contains the OID of the initial node (resp. end node) of the edge. These OID are built following
the rule defined in (1). With the same philosophy an edge belongs to a hierarchy of edges. The
layer is defined by the layers of the initial and end nodes. The third part contains the local OID
of an edge (since several edges with the same initial and end nodes may exist).

To manipulate the structures of the data model several functions are defined. The function
St (ej) returns the OID of the inital node of a given edge ej. S¢ (¢j), a similar function, returns
the OID of the end node of a given edge ej. The function Simple_node (ni) is true whenever ni
is a simple node (resp. Simple_edge). The function Master_node (ni) is true whenever ni is a
master-node (resp. Master_edge).

3. THE LEVELS OF DEFINITION

The databases were introduced in order to avoid the redundancy of data. The concept of
view allows various users to work on the same database with different levels of details. The
data model is well suited to introduce the concept of views. In the following we consider a
network as a part of a unique database. This section presents the basic manipulations defined
on the logical OID of an object and the comparison between the level of detail of two objects.

3.1 The basic manipulations on the logical OID

This sub-section presents several functions used in this paper to manipulate the nodes and
the edges. Each of them is presented in an informal and formal ways :

S returns the local OID for a given layer :

S: OIDxN -> N
#S returns the set of relevant layers of an OID (i.e. 0j) :
#5: OID -> [i/ie N}

#S (0f) = {1/8 (0j, 1) # 0)

oid returns the OID of an object :

0id: Object -> QOID
id 1s true iff the two OID (i.e. oi, 0j) are equal :
id: QOIDxOID -> Boolean
id (o4, 0j) = True <=> #5 (oi) = #S (0j)

¥V k € #5(oi) S{oi, k) =S (0}, k)

inc is true iff the non-null data part of the first OID (i.e. oi) is a sub-part of the (non-null part of
the second OID (i.e. 0j) :

inc: OIDx QID -> Boolean

inc (oi, of) = True <=> #§ (0]) 2 #S (oi)

Y ke #5(0i) S{oi, k} = S (0], k)

trunc transforms the OID (i.e. oi) into an OID (i.e. oj) with the n last layers equal to null (the
total number of layers is N) :

trunc : QI x W -> QID

ke #S (oi)

trunc (03, X) = 0/ V1hi/li<k S{oj,11)=0
VI/k€<I2<N S (oj, 12) = S (o4, 12)

o+ returns all the edges "leaving” a given node (i.e. ni)
w+: OID -> {OID)
w+ (oid (ni)) = { oid (ej) / S (ej) = 0id (ni)}

- returns all the edges "arriving at" a given node (i.e. ni) :
w-: OID -> {OID}
w- (oid (ni)) = { oid (ef) / S¢(&j) = oid (ni)}

3.2 The level of an object

Three levels - IDentical, Look-Like and Hierarchical Look Like - are defined for an object
- n for a node, ek : (ni, nj) for an edge -.
Two nodes (resp. edges) are identical IDn (resp. IDe) iff they have the same OID and they are
simple nodes (resp. edges) :

IDn; Node x Node -> Boolean
IDn (ni, nj) = True <=> id (oid (ni), oid (nj)) = True A
Simple_node (m) = Simple_node (n;j) = True
IDe: Edge x Edge -> Boolean
IDe (e}, €)) = True <=> id (oid (ei), oid (ej)) = True A
Simple_edge (ei) = Simple_edge (ej) = True

Two nodes (resp. edges) are look-like LLn (resp. LLe) iff they have the same OID and they are
not two simple nodes (resp. edges) :
Lln: Node x Node -> Boolean
LLn (ni, nj) = True <=> id (oid (ni), oid (nj)) = True A
Simple_node (ni) = Simple_node(n;j) = False

LLe: Edge x Edge -> Boolean
LL {ek1 : (na, nb), €k2 : (nc, nd)) = True <=> LL (na, nc) A LL (nb, nd) A

ekl : (Nna, Nb) A €k2 : (Ne, Nd) A
Simple_edge (eki) = Simple edge (ek2) = False

Two nodes (resp. edges) are hierarchically look like HLLn (resp. HLLe) iff they have a
common generalized node (which may be equal to one of these nodes).

HLLn: Node x Node -> | Boolean
HLLxn (ni, nj) = True <=> Ja,be N/
trunc (oid (ni), a) = tronc (oid (nj), b)!

Hlle: Edge x Edge -> Boolean
HLLe (ek1 : (na, nb), ek2 (nc, nd)) = True <=> HLLn {(na, nc) A HLLn {nb, nd) A
ekl (na, nb) A €k2 : (nc, nd)

Let the figures 1 and 3 be two views of the same initial network. The node P3 and 13 are
identical, +31 and T31 are look like, C32 and C34 are hierarchically look like.

Assn returns the nth associated network of a given master-node :
Assa: Node x N -> {Node} x {Edge}

Asse returns the associated network of a given master-edge :
Asse : Edge -> {Node} x {Edge}

4. THE DATA MANIPULATIONS

Let R (NRC, Er®), S (Ns9, Es0) and T (NT, ET) be three networks. The operators are
defined by :

T (NT, ET) = <operator> (R (NRY, ErRY), § (Ns¢, Es))

A naive general case evaluation of an operator follows the step (1) to (4) :
(D k<-0,Tx<-R
{2) The construction of §'
Es' = {ei} eiis an arbitrary edge chosen in Esk
Ns' = {nj/oid (nj) = Si(ei) } v {nj/oid (nj) = Se(ei)}
(3) The application of the basic rules of the operator with Tk (NTk, ET¥) and S'(Ns', Es")
(for the nodes of Ns' which have not already been studied then for the edge)
(4) The recursive application of the step (2) to (4) until Esk = @ with
Esk+l = Egk - [ei})

Nsk+! = Nsk - {ni e Nsk/ @+ (oid (ni)) = & A @- (oid (m)) = @)

The basic manipulations are : the union, the intersection (weak and strong), the
difference. The distinction between the weak and strong operators allows distinguishing the
operations dealing with the structure of the graph and the operations dealing with specific data
(or a specific level of detail i.e. IDn, IDe, LLn, LLe functions). This section presents the basic
manipulations but do not detail the HLL level.

lif o (resp. b) is null then ni (resp. nj) is a generalized node of nj (resp. ni)

4.1 The union

The union of two independent networks is defined by :
¥nie NR,V nje Ns
IDn (ni, nj) = False A LLn (ni, nj) = False A HLLn (ni, nj) = False ->
VR, S)=T(NT,ET)/NT = {nk} AET=02

such as nk is a master-node of level N+1. Two associated networks are defined for this node :
Rand S

General formulation :

The general formulation of the union operator is :
Tktl (NTk+E, ETk+1) = U (Tk (NTX, ETK), §' (NS', ES")
Case study :
Leinie NT¥ nje Ns',eie ETk, eje Es':
IDn (ni, nj) = True -> Nrk+l = NTK

LLn (i, nj) = True

Simple_node (ni) = Master_node (nj) = True -> NTk+l = NTk - {ni} W {nj}
Master_node (ni) = Simple_node (nj) = True -> Nrk+l = Ntk
Master_node (ni) = Master node (nj) = True -> Npktl = Nk

Let di (resp. d;) be the number of the associated networks of ni (resp. nj) obtained
by Assn (ni, k) (k = 1, ..., di) (resp. Assn (nj, m) (m =1, ...,dj)). (Ndki, Edki)
(resp. (Namj, Edmj)) is one of the associated networks of ni (resp. nj) . The basic
treatrnent of (Ndmj, Edmj) is-

Vme {1l,..,dj}/Vke {1, .., di} nae Ndki, nb € Ndmj

IDa (na, nb) = False A LLn (na, nb) = False A HLLx (na, nb) = False ->
ni has a supplementary associated networks (Ndmj, Edmj)

Yme {1,..,dj} /T ke [I,..di} I nae Ndki, 3 nb € Nomj
IDn (na, nb) = True v LLn (na, nb) = True v HLLn (na, nb) = True ->

A recursive application of the union operator is performed on the
associated networks (Ndki, Edki), (Ndmj, Edmj). A recursive application
of the union operation may be performed on two associated networks
A1 (Ndu, Edu), A2 (Ndsi, Edsi) (such as A1z A2)if ;

3 nt € Ndii / IDn (na, n1) v LLn (na,n1) v (HLLn (na,n1) A
A n2 € Ndsi/ IDn (nb, n2) v LLna {(nb, n2) v HLLn (nb,n2)
This operation leads to the withdrawal of A2 as an associated network

of ni after the recursive application of the union operator between A1l
and Az.

¥ ni € NTX / [Dn (ni, nj) = False A LLn (ni, nj) = False A HLLn (ni, n;) = False ->
NTk+! = NTK U {nj}

IDe (ei, €j} = True -> Erktl =gtk

Lle (ei, &) = True

Simple_edge (ei) = Master_edge (ej) = True -> ETrktl = ETk - {ei} U {ej)

A recursive application of the union operator is performed with the associated
network of ej - Asse (ej)- and the network defined by :

({nj / oid {nj) = Si(ei) v oid (nj) = Se(ei) }, {ei})
Master_edge (ei) = Simple_edge (ej) = True -> Erktl =ETkK

A recursive application of the union operator is performed with the associated
network of ei - Asse (ei)-and the network defined by :

({ni/oid (ni) = §' (ej) v oid (ni) = S¢ (e}, {e&j})
Master_edge (ei) = Master_edge (gj) = True -> Erk+l = ETk
A recursive application of the union operator is performed on the associated

networks since the initial node and the end node belong to the two associated
networks : w (Asse (ei), Asse (€)))

V eie Er¥ IDe (ei, ¢j) = False A LLe (&, ej) = False A HLLe {ei, ¢j) = False ->
ETktl = ETk U (e}

4.2 The intersection

The intersection of two independent networks is defined by :
Vnie NR,V nje Ns
IDn (ni, nj) = False A LLn (ni, nj) = False A HLLn (ni, nj) = False ->
NR,S)=T(NT,ET)/NT=0AET=0

General formulation :

The general formulation of the intersection operator is
Tk+1 (NTk+1 ETk+1) = n (Tk (NTX, ETK), §' (N§', ES")
First Step :

¥V nie NTK /¥ nje Ns':
IDn (ni, nj) = False A LLn (ni, nj) = False A HLLn (ni, nj) = False ->
Ntk+l = Ntk - {ni)
Erktl = Btk - {ex / §i(ex) = oid (ni) } - {ek / S¢{ek) = oid (ni)}

Case study :
Let ni € NTX, nje Ns', cie ETX, eje ES':

Strong intersection :

IDn (ni, nj) = True -> NTk+1 = Nk

LLx (ni, nj) = True

Simple node (ni) = Master_node (nj) = True -> NTk+! = NTK - {ni}
ETk+l = BTk - {ek / Si(ek) = oid (ni) } - {ek / S¢ (ek) = oid (ni)}

Master_node (ni) = Simple_node (nj) = True -> NTk+l = NTX - {ni}
ETktl = ETk - {ek / S (ex) = oid (ni) } - {ek / S (ek) = oid (ni)}

Master_node (ni} = Master_node (nj) = True -> Nrk+l = Ntk
A recursive application of the intersection operator is performed on the associated
networks of ni and nj. If all the intersections are empty, ni becomes a simple node

else the associated networks are the results of the strong intersection operator.

e (ei, €i) = True -> Erk+l = BTk

Lle (ei, €j) = True
- Simple_edge {(ei) = Master_edge (ej) = True -> Erktl = ETX - {ei}
Master_edge (ei) = Simple_edge (¢)) = True -> ET¢l = ETk - {ei}
Master_edge (ei) = Master_edge (ej) = True -> Erk+l = ETk
A recursive application of the strong intersection operator is performed on the

associated networks of ei and ej. If the set of edges is empty ei becomes a simple
edge else the associated network is the result of the strong intersection operator.

Weak intersection -
IDn (ni, nj) = True -> NTk+l = NTK
LLn (ni, nj) = True

Simple_node (ni) = Master_node (nj)) = True -> NTk+1 = NTK
Master_node (ni) = Simple_node (nj) = True -> NTk+! = NTkK- (ni} U {nj}
Master_node (ni) = Master_node {(nj) = True -> Ntk+l = N7k

A recursive application of the weak intersection operator is performed on the
associated networks. If all the intersection are empty, ni becomes a simple node
else the associated networks are the results of the weak intersection operator.

IDe (ei, ej) = True -> ETk+l = Eyk
LLe (ei, €j) = True

Simple_edge (ei) = Master_edge (ej) = True -> Erktl = ETk
Master_edge (ei) = Simple_edge (e)) =True -> Erktl = ETk- {ei} U {ej}
Master _edge (ei) = Master_edge (¢j) = True -> Erktl =Erk

A recursive application of the weak intersection operator is performed on the
associated networks. If the set of edges is empty, ei becomes a simple edge else the
associated network is the result of the weak intersection operator.

4.3 The difference

The difference of two independent networks :
¥ nie NR,V nje Ns
IDn (ni, nj) = False A LLn (ni, nj) = False A HLLn (ni, nj) = False ->
-(R,S) =T (NT, ET)/NT=NR A ET=ER

General formulation :

The general formulation of the difference operator is :

Tkl (Ntx+1, ETk+1y = - (Tk (NTK, E1k), §' (N5, ES"))
Case study :
Let nie NTK, nje Ns', eie ETX, gje Es':

IDn (ni, nj) = True -> N1kt = NTK - {ni}
ETk+l = BETK - {ek / Si(ex) = oid (ni)} - {ek / S¢ (ex) = oid (ni)}

LLna (ni, nj) = True -> Ntk+l = NTK - {ni}
ETk+t = BTk - {ek / Si(ex) = oid (ni)} - {ex/ S¢ (ex) = oid (ni)}

IDe (ei, €j) = True -> ETktl = ETk - {ei)

LLe (ei, €j) = True -> ETktl = BTk - {ei}

5. THE APPLICATION TO A TELECOMMUNICATION NETWORK :

This section presents in a first part the various queries addressed to a GIS for the
management of a telecommunication network and the second part presents the resolution of
such queries using the operators defined in the previous section.

5.1 The queries

The queries may be divided into two classes : (1) the queries about the alphanumerical
data part of the networks and (2) the queries about the topology of the network.

About alphanumerical data part :

These data can be modeled using a classical data model. The queries defined on these data
are fully application dependent. The ability to answer such queries depends on the
representative power and the data manipulation language power of the DBMS in charge of
managing the data. We do not consider this kind of queries in this paper.

About the topology of the network :

These queries are principally based on a graph traversal operator with or without
constraints. Four queries may be considered as representative of the classical queries :
Query I : What are the paths joining C31 to C24 7
Query 2 ;: What are the paths joining C32 to Az1 without visiting specific nodes (i.e. with a bad
quality of service, i.e. T32 and T2t) ?
Query 3 : What are the paths joining C2s to C21 without using specific edges (i.e. with a charge
greater than 70 %, i.e. C25-A22-ED1) ?

Query 4 : What are the common sub-paths between the paths C32-C14 and C38-C11 ?

5.2 The resolution

Evaluating a path in a graph between two nodes in the database context is equivalent to
define a recursive query [1, 5]. Substential work has been done on this subject [6]. [10]
presents the management of the basic queries with a flat data structure (relational-like structure)
and [9] presents the management of the complex queries with a flat data structure with an
Extended Relational DBMS. We do not detail [14] here the transitive closure algorithm since it
involves several specific telecommunication routing rules. These specificities allow an
evaluation with a mixture of the breath first and the depth first methods.

To solve query 1 to query 4, a combination of the operations presented in section 4 with

the specific graph traversal operator is required.
Query 1 is solved using a graph traversal algorithm. Query 2 is solved with a recursive use of
the union operator (breath first method) between the initial departure node and the arrival node.
The stop is defined by the multi-level structuration of the OID. Each step of this recursive
process guaranties by applying the difference operator the withdrawal of the specific nodes and
the edges arriving at or leaving these nodes. Then the graph traversal operator can be applied.
The resolution of the query 3 follows the same philosophy as the resolution of the query 2.
Each step of the recursive process of the union operator guaranties by appling the difference
operator the withdrawal of the specific edges. The resolution of the query 4 involves the strong
intersection between the path C32-C14 and the path C33-Ci1.

6. CONCLUSION

This paper presents the basic data manipulation operators defined on a logical multi-

scaled network. The operators are the union, the weak and strong intersection, the difference
and the graph traversal. The difference between the weak and strong operators allows the
distinction between the operations dealing with the structure of the graph and the operations
dealing with the specific data since a basic data element (node, edge) may have several levels of
definition (detail) within an application. The answer of a query is obtained by combination of
these operators. Queries about the management of a telecommunication network give an
example of such a resolution.
We are currently implementing a toy application using an object oriented Data Base
Management System O2 [2]. The next step is to support this data processing model in the
context of the CIGALES prototype [12, 9] and compare the object oriented philosophy and the
Extended Relational DBMS philosophy [7] to manage network oriented data.

REFERENCES

10.

11.

12.
13.
14.

15.
16.

Aho A., Ullman J.D., Universality of Data Retrieval Languages, ACM Principles Of
Programming Languages, San Antonio, USA, January 1979

Bancilhon F. and al : The design and Implementation of O2, an Object Oriented Database
System, Proc. of the 2nd Int. Work. on Object-Oriented Data Base Systems,
K. Dittrich (Ed) Bad-Munster, FRG, September 1988

Berge C. : Graphes, Gauthier-Villars, 1983

Codd E.F., A Relational Model of Data for Large Shared Data Banks, Communications
of the ACM, Vol 13, n°6, 1970

Cruz LF., Mendelzon A.O., Wood P.T., A Graphical Query Language supporting
Recursion, ACM SIGMOQD, San Fransisco, USA, May 27-29 1987

Eck (van) J.R., De Jong T. : Adapting Datastructures and Algorithms for Faster
Transport Network Computations, 4th Spatial Data Handling Symp.,
Zurich, Switzerland, July 24-27 19950

Gardarin and all : Managing Complex Objects in an Extensible Relational DBMS, 15th
Int. Conf. on Very Large Data Bases, Amsterdam, The Netherlands,
August 22-25 1989

Hull R., King R. : Semantic Database Modelling : Surveys, Applications and Research
Issues" ACM Computing Surveys, Vol 19, Sept 1987

Jourdas C., Mainguenaud M., An Extended relational DBMS to Manage Network
Applications, European Geographical Information System 91, Brussels,
Belgium, April 2-5 1991

Mainguenaud M., Is an Extended Relational DBMS Powerful Enough to Deal with
Network Applications, European Geographical Information System 90,
Amsterdam, The Netherlands, April 9-13 1990

Mainguenaud M., X.T. Simatic : A Data Model for Multi-Scaled Network, UGI-IGU
Conference - GIS Multiple Representation and Multiple Use, Brno -
Czechoslovakia, April 22-25 1991

Mainguenaud M., Portier M. A. : CIGALES : a Graphical Query Language for GIS, 4th
Spatial Data Handling Symp., Zurich, Switzerland, July 24-27 1990

Nato Conference : The Application of Operations Research to Transport Problems,
Sandefjord, Norway, 14-18 August 1972 _

Raffy J.L., Modélisation d'un Réseau de Télécommunication, Rapport de D.E.A.
Université de Paris VI Jussieu, France, September 1990 (in french)

Ullman J. : Principles of Databases, Academic Press, 1980

Zdonic S., D. Maier (Eds), Readings in Object-Oriented Database System, Morgan
Kauffmann, 1989

