MANIPULATIONS OF GEOGRAPHICAL INFORMATION SYSTEM
NETWORK COMPONENT

Langou B.
Mainguenaud M,

France Telecom - Institut National des Télécommunications
9 rue Charles Fourier
F91011 Evry - France
+331607647 14
+ 33 16076 47 80 (fax)
Email: langou@etna.int-evry.fr Michel. Mainguenaud@int-evry.fr

Abstract;

In this paper, we present graph manipulations defined on the Graph Data Model. This data

model allows the notion of abstraction for a node (or an edge). This model is designed to handle
network component of a Geographical Information System.
Graph manipulations are divided into three classes. Basic operators manage the notion of abstraction
(i.e., the DEVELOP and UNDEVELOP operators). Elementary operators manage the notion of graph
and sub-graph (i.e., UNION, CONCATENATION, SELECTION and DIFFERENCE operators).
High level operators manage GIS user interface operators (i.e., PATHS, INCLUSIONS and
INTERSECTIONS operators).

A 1oy database has been developed with an object-oriented database system to validate the Graph Data
Model and its operators.

Keywords:

Geographical information system, Network manipulations, Database operators

AV

P.:wla F@M

wly . Al N

L. INTRODUCTION

A Geographical Information System (GIS) must provide the management of network facilities
(i.e., railway, electricity, telephone). A graph [3] (i.e., a set of labeled nodes and a set labeled edges)
is the most common conceptual notion used to model network-oriented data. To capture more
meaning, a graph data model must provide a mechanism of abstraction. A node (i.e., a town) may
represent the abstraction of one (or several) network (i.e., a local area transportation network). An
edge may also represent the abstraction of a network (i.e., a railway line).
In this paper, we present the manipulations defined on the Graph Data Model presented in [14]. This
data model allies graph theory concepts (i.e., node, edge, graph) and object oriented database
paradigm (i.e., abstraction). Since the data model is richer than a flat graph, specifications of
database operators are more complex. This model is defined at a logical level (i.e., the notion of
coordinates is not present). Several levels of interaction are defined to manipulate network-oriented
data. Basic operators correspond to the first level (i.e., directly linked to the concept of abstraction in
the Graph Data Model). Elementary operators correspond to the second level (i.e., the manipulations
of graphs and sub-graphs). High level operators correspond to the third level (i.e., GIS user interface
operators). We retained three classes of high level operators. They correspond to the most common
queries addressed to a GIS [5]: the path evaluation, the intersection of paths and the inclusion of
paths. Results of a query are influenced by the fact that the Graph Data Model presents a higher level
of abstraction than a flat graph.

Part II presents some short recalls on the Graph Data Model; Part 111 presents the basic
operators; Part IV presents the elementary operators; Part V presents the high level operators; Part VI
presents a conclusion and future work.

II. SHORT RECALLS ON THE GRAPH DATA MODEL

The Graph Data Model allies notions of graph theory such as nodes, edges, graphs and notions
of object-oriented paradigm such as abstraction. A node or an edge may represent the abstraction of
sub-networks. We do not provide any constraint on the topology of this sub-network. In this paper,
we use the notion of logical OID (Object [Dentifier) to define the operators. This notion is similar to
the notion of OID in object oriented database since the semantics is the same. Nevertheless, the OID
defined in the Graph Data Model is completely system independent.

In this part, we present some short recalls of the notions defined in the Graph Data Model and used in
this paper.

IL.1. Basic concepts

The Graph Data Model is based on the concept of nodes, edges and graphs. These notions are
similar to these notions in graph theory [3]. A graph is a couple (N, E) where N is a set of nodes and
E is a sub-set of the Cartesian product N x N. The formal definition is presented Figure I1.1.

N = {n]_,... 3 np}
E={(n,n)/nje N,nje N}

(n; is said to be the initial node and n; is said to be the end node for an edge (n;, ny))

Figure I1.1 - Formal definition of a graph

In this paper, a graph is considered as oriented (i.e., the order, initial node / end node, is relevant).
Several edges may be defined within the same initial and end nodes. We do not limit this number but
we do not allow an edge (n;, n;). A node is used to model for example a town. An edge is used to
model for example a link between two towns. Nodes and Edges are labeled. We do not consider in
this paper the label associated to a node or an edge. Let a semantic information modelled by a node or
an edge be named an object.

We define the notion of Master_node and Master_edge. They represent an abstraction of a sub-
network. Such a sub-network is called an Associated_network. An Associated_network is defined as
a graph G (N, E). Elements of N are called specialized nodes. Elements of E are called specialized
edges. To connect this network to the different levels of abstraction, we define the concept In_edges
and Out_edges. The In_edges (resp. Out_edges) of an Associated_network of a Master_node
represent the set of edges "arriving to" (resp. "leaving") this graph. The In_edges and Out_edges are
defined as presented Figure I1.2,

In_edges={ (n;, n))/nj& NAanje N}
Out_edges = { (nj,n) /nje Nanje N)

Figure I1.2 - Formal definition of In_edges and Out_edges for a Master_node

The In_edges (resp. Out_edges) of an Associated_network of a Master_edge (ei) represent the set of
edges "leaving" (resp. "arriving to") the initial node (resp. end node) of a Master_edge. Let us define
the function Initial _node (resp. End_node) of a Master_edge (ei) such as Initial_node (ei) (resp.
End_node) returns the initial (resp. end) node of an edge (ei). The In_edges and Qut_edges for the
Associated_network G (N, E) of a Master_edge, ei, are defined as presented Figure II.3.

In_edges = { (n;, n;) / n; = Initial_node (ei) Anje N }
Out_edges = { (n;, nj) / nj € N A nj=End_node (ei) }

Figure 113 - Formal definition of In_edges and Out_edges for a Master_edge

11.2. Abstraction

The notion of abstraction [4,13,15] is introduced by the concept of OID. Each basic component
(i.e., node, Master_node, edge, Master_edge, network, Associated_network) of the Graph Data
Model has an OID. This OID is structured in several layers from L to 1. Each layer corresponds to a
level of abstraction. To simplify the presentation, we present in this part the structuring of a node
OID to take into account the notion of abstraction. The other OIDs are defined on the same principles.
The structure of the OID will evolve along this paper to provide a complete structure whenever all the
operators are defined.
The very beginning structure of an OID (i.e., the abstraction part) is defined by the rules presented
Figure 11.4 and with the database tuple constructor [].

The abstraction part of an OID is defined by a list of integer. An element of this list is called a
layer. An object (0) in the layer k of abstraction is defined by:
- 0 is located at the top level of abstraction (i.e., k = L). The first layer has the local
identifier (i.e., an integer) and the other layers are null.
- 0 is not located at the top level (1 £k < L). The (L - k) first layers contain each local
identifier of the higher levels of abstraction. The layer k contains the local identifier. The
(k - 1) last layers are null,
QID ; [hierarchy_of_abstraction : list of integer]

Figure 11.4 - The rules to build an OID

I1.3. Conclusion

The Graph Data Model provides a structure to handle networks in a GIS context. The central
notion is the abstraction of sub-networks. The notion is valid for nodes but also for edges. The
Associated_networks, In_edges and Out_edges allow to model several levels of abstraction. The
following sections present the various operators defined on the Graph Data Model.

HI. BASIC OPERATORS

In this section, we present the operators directly linked to the concepts of the Graph Data Model
(i.e., abstraction). Two basic operators are defined: the DEVELOP operator and the UNDEVELOP
operator. The DEVELOP operator provides more specific details by merging a sub-network
associated to a Master_node or to a Master_edge with the studied graph. The converse operation, the
UNDEVELOP operator, provides a more restricted graph by the replacement of a sub-network by a
Master_node or a Master_edge.

1IL.1. DEVELOP operator

The DEVELOP operator is applied to a set of graph. Each graph represents a path (i.e., only a
unique Associated_network by Master_node and only a unique In_edge and Out_edge by
Associated_network). On these graphs, some Master_nodes and/or Master_edges have to be
developed. The Associated_networks are merged with the studied graph. The signature of this
operator is presented Figure II1.1.

DEVELOP (Go, {Gi}) : {G'i}
where Go :is a graph with the set of nodes and /or a set of edges to be developed
Gi : a graph to be expanded i=1, .. n)

G'i : a graph after being expanded (i =1, ..., n)

Figure IIL.1 - The signature of the DEVELOP operator

A difference is introduced between the development of a Master_edge and a Master_node. The
development of a Master_edge implies the deletion of this Master_edge in the result since the
Associated_network is merged with the studied graph. The development of a Master_node does not
imply the deletion of this node since it may be the initial node (or the end node) of an edge (or a
Master_edge).

As a convention, the DEVELOP operator provides a single development of Master nodes and/or
Master_edges. To provide a recursive application of the DEVELOP operator, a similar operator,
DEVELQP#*, is introduced.

I11.2, UNDEVELOP operator

The UNDEVELOP operator is applied to a set of graph. Parts of these graphs are reduced. The
sub-networks are reconstructed and transformed into Associated_networks. The Master_nodes
and/or Master_edges are introduced into the studied graph.

The signature of the UNDEVELQOP operator is presented Figure 112,

UNDEVELOP ({Gi}): {G'i}
where Gi: a graph to be reduced (i=1,..n1n)
G'i : a graph after being reduced (i =1, ..., n)

Figure 1I1.2 - The signature of the UNDEVELOP operator

To be able to reconstruct a sub-network as an Associated_network, the initial OID of this sub-
network must be present in the OID of nodes and/or edges. The definition of the OID is therefore
augmented with the abstraction of dependent networks. The semantics is the same as for the node
hierarchy of abstraction. Figure III.3 presents the new structure of an OID.

OID: [hierachy_of_abstraction : list of integer

hierarchy_of_network : list of integer|

Figure II1.3 - The new structure of an OID

As a convention, the UNDEVELOP operator provides a single reduction of sub-networks into
Master_nodes and/or Master_edges. To provide a recursive application of the UNDEVELOP
operator, a similar operator, UNDEVELQOP#*, is introduced.

II1.3. Conclusion

The DEVELOP and UNDEVELOP operators are the core of graph manipulations. They allow
to take full advantage of the abstraction defined in the Graph Data Model.
They are very similar to the NEST and UNEST operators in the algebra for complex objects | 16]. Let
R be a relation in Non First Normal Form. Let G be a graph structured with the Graph Data Model.
Let Go be the graph containing the nodes (and/or the edges) to develop. Let G' be the graph G after
applying DEVELOP (Go, G). Figure I11.4 presents the properties.

UNNEST (NEST (R)) =R
NEST (UNNEST (R)) # R

DEVELOP (Go, UNDEVELOP (GY) =G’
UNDEVELOP (DEVELOP (Go,G)) =G (from the Graph Data Model point of view)
UNDEVELOP (DEVELOP (Go, G))#G (with the introduction of alphanumerical data)

Figure I11.4 - Properties of DEVELOP and UNDEVELOP operators

The DEVELOP operator may lead to deletion of Master_edges. The UNDEVELOP operator is able to
reconstruct these edges. Unfortunately, alphanumerical data associated to these edges are no longer
available. So, from the Graph Data Model point of view, the topology of the graph has been re-built.

From the alphanumerical data point of view, information has been lost (as it is for the
NEST/UNNEST configuration),

IV. ELEMENTARY OPERATORS

The elementary operators correspond to the second level operators. They defined operations on
graphs and sub-graphs. They are similar to graph theory operators. Four operators are defined: the
UNION, CONCATENATION, SELECTION and DIFFERENCE operators.

IV.1l. UNION operator

The UNION operator provides the graph theory operator of union. This operator is defined
between two sets of graphs. The main difference is introduced by the notion of abstraction. The
union between a node and a Master_node representing the same object is defined as the Master_node.
The union is recursively applied on sub-networks as soon as the two graphs have a common
Master_node or Master_edge.

The signature of this operator is presented Figure [V.1.

v ({Gi}, {Gl)): {G")
where Gi:isa graph i=1,..,n)
G'i : is a graph i=1,..p
G"i : is a graph after the application of the UNION on graph Gi and graph G'
i=1,.,nxp)

Figure IV.1 - The signature of the UNION operator

This operation does not imply a modification of the OID definition since no change is applied to

the structure of the networks. New graphs are created but the intentional construction of an OID is
not affected.

IV.2. CONCATENATION operator

The CONCATENATION operator is very similar to the UNION operator. To provide a result,
the CONCATENATION operator requires a common object in the two graphs. Two graphs may
have a common node without having common edges. Two graphs may have a common edge without
having common nodes (i.e., the cross product of Master_node and node as initial and end nodes).
Two graphs may have no common node and no common edge but a common object (i.e., an edge
defined between two nodes and a Master_edge defined between two Master_nodes representing the
same objects as the edges and the nodes do).

The concatenation is recursively applied on sub-networks. Whenever two graphs have no common
object, the UNION operator provides a bi-graph. The CONCATENATION operator provides no
result in such a configuration,

The signature of this operator is presented Figure IV.2.

@ ((Gi}, {G'}): {G"i}
where Gi:isagraph (i=1, .., n)
Gli:isagraph (i=1, ..., p)
G"i: is a graph after the application of the CONCATENATION on graphs Giand G'i
i=1,..,k / k<=nxp)

Figure IV.2 - The signature of the CONCATENATION operator

This operation does not imply a modification of the OID definition since no change is applied to
the structure of the networks. New graphs are created but the intentional construction of an OID is
not affected.

IV.3. SELECTION operator

The SELECTION operator provides a sub-graph from a graph. The notion of selection criteria
allows to reduce the number of nodes and edges. A selection criterion may be defined at various
levels of abstraction (i.e., node, edge, network). As an example "A town having a number of
inhabitant greater than 100,000" corresponds to a selection criterion associated to a node; "A cost less
than 100 units” corresponds to a selection criterion associated to an edge; "Inter-city railway lines”
correspond to a selection criterion associated to a network.

The main difference with a graph theory operator of selection is introduced by the notion of
abstraction. The selection criteria are recursively applied to specialized nodes (or edges).

A Master_node (or a Master_edge) may be transformed to a node (or an edge) whenever the
Associated_networks become empty. A Master_node may be removed and replaced by the result of
the DEVELOP operator whenever it does not respect the selection criteria. A Master_edge may be
changed to an edge whenever at least one edge of its Associated_network does not respect the
selection criteria. Its Associated_network is merged (i.e., the DEVELOP operator and the UNION
operator) with the studied graph.

The signature of this operator is presented Figure 1V.3.

¢ (Criteria, {Gi}) : {G'i}
where Criteria : represents the modelling of the selection criteria
Gi:isagraph (i=1, .., n)
G'i 1 is a graph after the application of the SELECTION on graph Gi
i=1,..,k / k <=n)

Figure IV.3 - The signature of the SELECTION operator

This operation does not imply a modification of the OID definition since no change is applied to
the structure of the networks. New graphs are created but the intentional construction of an OID is
not affected.

IV.4. DIFFERENCE operator

The DIFFERENCE operator provides the graph theory operator of difference. This operator is
defined between a set of graphs and a graph. To introduce a change, the DIFFERENCE operator
requires a common object in the two graphs (i.e., a node, Master_node, edge or Master_edge). The
difference is recursively applied on sub-networks. A Master_node (or a Master_edge) may be
transformed 10 a node (or an edge) whenever the Associated_networks become empty.

Whenever a Master_node (or a Master_edge) with a non-empty Associated_network has to be
removed, the Associated_network is merged (i.e., with the DEVELOP and UNION operators) to the
studied graph.

The signature of this operator is presented Figure TV 4.

({Gi}, G'i): {G"i}
where Gi : is a graph i=1,..,n)
G'i:is a graph
G"i @ is a graph after the application of the DIFFERENCE on graph Giand G'i
i=1,..k / k <= n)

Figure IV.4 - The signature of the DIFFERENCE operator

This operation does not imply a modification of the OID definition since no change is applied to
the structure of the networks. New graphs are created but the intentional construction of an OID is
not affected.

IV.5. Conclusion

The elementary operators allow to construct a graph on which high levels operators are applied.
They are very similar to the operators of the relational algebra [16] (i.e., selection, union, difference).
A GIS query may be complex and involves several operators, The notion of execution plan of a

relational query is similar to the composition of elementary operators from a high level operator.

V. HIGH LEVEL OPERATORS

In this part, three classes of operators based on classical graph manipulations are presented.
Nevertheless, they are defined in the context of the Graph Data Model. They are designed to manage
most part of GIS queries. The PATHS operator is the evaluation of paths between an origin and a
destination [2,8,9,11,12]. The INCLUSION operators are defined from an operator of extraction by
the inclusion of nodes in a path and the inclusion of a path in a path. The INTERSECTION operators
present the same dichotomy: the intersection of two sets of nodes provided by two paths and the
intersection of two sets of edges provided by two paths.

V.1. PATHS operator

The network management is not correctly handled by classical commercial GIS products.
Generally, network processing queries are solved by an extra-component of the GIS. Path evaluation
operator (often restricted to the shortest path) is not integrated in the data base operators. This
weakness [10] is also present in the database query language since no extended SQL has a correct
management of the path operator (even those dedicated to the transitive closure management).
Defining a complete framework to express network-oriented queries 1s not so simple. [5] presents a
set of "path" queries. These queries involve a transitive closure query with fifteen classes of
interactions (such as constraints on nodes, edges, nodes and edges).

Furthermore, the definition of the result as a unique result graph is not relevant for the GIS context.
The result of a path query must be a set of paths. As an example in the airplane applications, the
shortest in time is generally far from being one of the less expensive (but what is the correct cost
function?). The cheapest is generally far from being one of the more convenient and so on.
Unfortunately, a graph defined by the union of the individual solutions is not relevant as a result as
soon as aggregate constraints are defined in the query (which is generally the case).

The "classical" DBMS are based on the principle of the Close World Assumption: "If a datum does
not logically follow from a set of database operations, then we conclude that the negation of this
datum is valid." Therefore, the path operator provides an answer only if the complete (from the initial
node to the end node) path exists. This option is coherent in the case of a flat network. The Graph
Data Model allows to introduce several levels of definition. Therefore, we introduce the principle of
the Open Graph Assumption: "While evaluating a path operator at a level of abstraction i, if a datum
does not logically follow from a set of Graph Data Model operations, then the same evaluation is
performed at level i+1." The Open Graph Assumption introduces the notion of a global direction
since the level i+1 is a more general edge. Therefore, the path operator (->) presents two options: the
exact operator and the approximated operator. The exact operator is the equivalent of a classical path
operator. It requires the existence of the complete path. The approximated operator takes full
advantage of (1) the node hierarchy and (2) the network topology to provide a multi-levels solution,
The signature of this operator is presented Figure V.1.

10

-> (G, G', Criteria) : {G"})
where G:isagraph (NNE)suchasE=@
G':isagraph (NJE)suchasE=9@
Criteria : the path criteria [7] and constraints

G"i : is a graph after the application of the PATHS operator on graph Gi and G%

Figure V.1 - The signature of the PATHS operator.

This operation does not imply a modification of the OID definition since no change is applied to
the structure of the networks. New graphs are created but the intentional construction of an OID is
not affected.

V.2. INCLUSION operators

High level operators of inclusion provide three kinds of results. These distinctions are linked to
the construction of a graph (i.e., a set of nodes and a set of edges). Ile_ne represents the operator for
the extraction of nodes in a path; [lic_n represents the set operator for the inclusion of nodes; and
[lic_e represents the set operator for the inclusion of edges.

V.2.1. EXTRACTION of nodes from a path

The 1le_ne operator is applied to a set of graphs. This operator provides for each graph the set

of nodes involved in the edge definition (i.e., there is no isolated node). The signature of this
operator is presented Figure V.2. '

IMe_ne ({Gi)) : {G'i}
where Gi @ 1s a graph G(N,E)
G'i : is a graph (such as E = &) after the application of the Ile_ne on graph Gi

Figure V.2 - The signature of the Ile_ne operator.

This operation does not imply a modification of the OID definition since no change is applied to
the structure of the networks. New graphs are created but the intentional construction of an OID is
not affected.

11

v.2.2. INCLUSION of nodes

The ITic_n operator is applied to two sets of nodes. This operator is not symmetric. It requires
the first set of nodes to be included into the second set of nodes. The result of this operator is the first
set of nodes whenever it fulfills the requirements. The signature of this operator is presented Figure
V.3.

IMicn (G, G) : G"
where G :is a graph G(N,E) such as E = J
G':is a graph G(N,E) such as E = &
G":Goragraph G" (NE) suchas N=J and E = &

Figure V.3 - The signature of the Ilic_n operator.

This operation does not imply a modification of the OID definition since no graph is created.

V.2.3. INCLUSION of edges

The [lic_e operator is applied to two sets of edges. This operator is not symmetric. It requires
the first set-of edges to be included into the second set of edges. The result of this operator is the first
set of edges whenever it fulfills the requirements. The signature of this operator is presented Figure
V.4,

Ilic e (G, G): G"
where G : is a graph G(N.E)
G': is a graph G(N,E)
G":Goragraph G" (N,E) suchas N=J andE= &

Figure V.4 - The signature of the Ilic_e operator.

This operation does not imply a modification of the OID definition since no graph is created.

V.3. INTERSECTION operators

High level operators of intersection provide two kinds of results. This dichotomy is linked to
the construction of a graph (i.e., a set of nodes and a set of edges). [lis_n represents the operator for

the set intersection of nodes and ITis_e represents the operator for the set intersection of edges.

12

V.3.1. INTERSECTION of nodes

The ITis_n operator is applied to two sets of nodes. The intersection operator is recursively
applied to the sub-networks. A Master node may be transformed to a node whenever
Associated_networks become empty. The intersection between a node and a Master_node
representing the same object is defined as the node.

The signature of this operator is presented Figure V.5.

Ilis n (G, G') : G"
where G:isagraph G(N,E) suchas E= @
G':is a graph G(N,E) suchas E=@
G" : is a graph after the application of the ITis_n on graph G and G'

Figure V.5 - The signature of the Ilis_n operator.

This operator does not imply a modification of the OID definition since no change is applied to the
structure of the networks, New graphs are created but the intentional construction of an OID is not
affected.

V.3.2. INTERSECTION of edges

The Ilis_e operator is applied to two sets of edges. The intersection operator is recursively
applied to the sub-networks. A Master_edge may be transformed to an edge whenever the
Associated_network becomes empty. The intersection between an edge and a Master_edge
representing the same object is defined as the edge.

The signature of this operator is presented Figure V.6.

Ilis_e (G, G') : G"
where G :isa graph
G' 1 is a graph
G" : is a graph after the application of the Mis_c on graph G and G

Figure V.6 - The signature of the Ilis_e operator.
This operator does not imply a modification of the OID definition since no change is applied to the

structure of the networks. New graphs are created but the intentional construction of an OID is not
affected.

V.4, Conclusion
The main difference between graph theory and GIS is based on the cost evaluation function. To

simplify, the time to evaluate a cost function of a node (or an edge) is considered as negligible in
graph theory during the detection of a path from one node to another. Unfortunately in a GIS context,

13

these functions are far from being negligible since they involve several database operations. GIS
queries are more interested in the properties defined on the nodes or on the edges than on the
topology of an answer. Nevertheless, the notion of abstraction and the notion of global direction are
very important. The Graph Data Model provides the topology of a graph. This assumption is based
on the fact that topologies of geographical networks (i.e., railway lines, rivers, roads) are not
modified very frequently (although alphanumerical data may be frequently updated). A pre-compiled
structure becomes realistic. The data model takes full advantage of this condition. The PATHS
operator offers therefore a higher expressive power (i.e., abstraction and direction).

VI. CONCLUSION

Geographical Information Systems are now widely used for several applications (i.e., transport

analysis, urban planning). Most part of the time, the network analysis component is not directly
integrated into the database system. This weakness is due to the lack of common data structures
between thematic-oriented data (i.e., town, forest) and network-oriented data (i.e., railways,
electricity).
In this paper, we present the operators defined on the Graph Data Model allowing the notion of
abstraction. We define three levels of operators. Basic level operators, the DEVELOP and
UNDEVELOP operators, are directly linked to the concept of abstraction present in the data model.
The DEVELOP operator provides more details for a graph. The converse operation is the
UNDEVELOP operator. Elementary operators manage the notion of graphs and sub-graphs. The
SELECTION, UNION, CONCATENATION, DIFFERENCE operators, are similar to the basic
operators of graph theory (i.e., extended to a data model allowing abstraction for nodes and edges).
High level operators, the PATHS, INCLUSIONS and INTERSECTIONS operators, correspond to
the most common classes of queries addressed to a GIS.

The high levels operators introduce a new conception in graph operators for GIS since the
result is defined with several levels of abstraction. This notion changes the visualization of a result. A
toy application is defined with the O2 object oriented database system [1] to validate the Graph Data
Model and its operators. The Cigales language is used as a user interface to define a query [6]. Next
work is to define a formal Data Definition Language for the Graph Data Model. The notion of view
can now be integrated since the data manipulation operators are available.

14

References

[11 Bancilhon F. et al: The design and Implementation of 02, an Object Oriented Database System,
2nd Int. Workshop on Object-Oriented Data Base Systems, K. Dittrich (Ed) Bad-Munster, FRG,
September 1988

[2] Becker RA et al: Network Visualization, 4th International Symposium on Spatial Data
Handling, Zurich, Switzerland, 23-27 July 1990

[3] Berge C. : Graphs and Hypergraphs, North Holland, Amsterdam, 1973

[4] Borgida A, Myropoulos J, Wong HK, Generalization/Specialization as a Basis for Software
Specification, Brodie, Myropoulos, Schmidt Eds "On Conceptual Modelling perspectives from
Artificial Intelligence, Database and Programming Languages, Springer Verlag, 1984

[51 Boursier P., Mainguenaud M.: Spatial Query Languages: Extended SQL vs. Visnal Languages
vs. Hypermaps, 5th Intemational Symposium on Spatial Data Handling, Charleston, SC, USA,
3-7 August 1992

[6] Calcinelli D., Mainguenaud M.: The Management of the Ambiguities in a Graphical Query
Language for GIS, 2nd Symposium on Large Spatial Databases, Zurich, Switzerland, August 28-
30, 1991, Lecture Notes in Computer Science n°525, Springer Verlag

[7] Cruz IF, Mendelzon AO, Wood PT: A Graphical Query Language Supporting Recursion,
ACM SIGMOD Conference, San-Fransisco, USA, May 1987

[8] Dayal U. et al : PROBE - A research Project in Knowledge-Oriented Database Systems:
Preliminary Analysis, Technical Report CCA-85-03, July 1985

[9] Eck (van) JR, De Jong T.: Adapting Datastructures and Algorithms for Faster Transport
Network Computations, 4th International Spatial Data Handling Symposium, Zurich,
Switzerland, July 24-27 1990

[10] Garey MR, Johnson DS: Computers and Intractability: A Guide to the Theory of NP-
Completeness, WH Freeman and Co Eds, New York, 1979

[11] Giiting RH: Extending a Spatial Database System by Graphs and Object Class Hierarchies,
International Workshop on Database Management System for Geographical Applications, Capri,
Italy, May 1991

[12] Haas LM, Cody WEF: Exploiting Extensible DBMS in Integrated Geographical Information
Systems, 2nd Symposium on Large Spatial Databases, Zurich, Switzerland, August 1991,
Lecture Notes in Computer Science n® 525, Springer Verlag

[13] Hull R, King R: Semantic Database Modelling: Surveys, Applications and Research Issues,
ACM Computing Surveys, Vol 19, September 1987

[14] Mainguenaud M, Simatic XT: A Data Model to deal with Multi-scaled networks, Computer,
Environment and Urban Systems, Vol 16, p 281-288, 1992

[15] Smith JM, Smith DC, Database Abstraction: Aggregation and Generalization, ACM TODS, Vol
21n°2, 1987

[16] Ullman JD: Principles of Database and Knowledge-base Systems, Computer Science
Press, 1988

