Query Models and Languages for Geographical
Information Systems

Michel Mainguenaud

TLaboratoire Perception, Systeme et Information
Institut National des Sciences Appliqueces (INSA)
Site du Madrillet - Avenue de I'Universite
F76800 Saint Etienne du Rouvray - France
Fax:(+33)(0) 232959708
Michel.Mainguenaud@insa-rouen.fr

Abstract. This paper presents a synthesis on the query models and languages
to manipulate & geographical database. We present the different classes of
query languages : based on predicates, based on operaiors without
composition and based on operators with composition. We analyze the
consequences on the data model, on the expressive power and on the query
modefing. The introduction of operators as query primitives requires the
closedness of these operators on geographical data, The introduction of
operators increases the expressive power allowing queries involving a
composition of operators. As a path operator (with the same arguments}
provides several answers and may appear several times in a query, the query
modeling must provide such an opportunity. Depending on the required
expressive power, we present the different classes of interfaces at the user's
level. '

1 Introduction

A lot of efforts are under progress to elaborate innovative solutions for the
representation and exploration of complex database applications. Different research
groups are simultaneously concentrating their works on Geographical Information
Systems (GIS). GIS needs are very well known [1 1,12]. Nevertheless, several
problems are still open. In this paper we focus on the analysis of a query modeling
and the user interfaces of such systems.

Geographical data are defined with two major components : an alphanumeric part
and a spatial representation. Conventional databases provide an efficient way to
manage alphanumeric data. The spatial representation requires to extend the
conventional data types (e.g., integer, string). With these new types, some basic
manipulation primitives must be defined. The graphic representation of
geographical data is very important. Geographical data are visual by essence. The
user interface has a very important role in the acceptation of a new tool. Visual
techniques may have a tremendous opportunity to play an important part in a query
of a2 GIS database at the user's level. We distinguish two levels of manipulations.
The first level involves the programmer of an application. The second level
involves the end-user. The development of conventional database applications can
be performed with two main orientations. The first orientation is the introduction of
database manipulation primitives in a conventional programming language (e.g.,
C, C++, Java). The second orientation is the use of a new development language

N o Vhwﬁ 2000
LNVS.’\ “ijqu Wh . (»‘J(' o Viswok
pp S - Sorm. Systes
hlw‘ Fww.u_

Now. 2-4 , Tee

(often named Fourth Generation Language - 4GL). A geographical application
requires the same tools. These tools are a set of database manipulations and a set of
programming constructors. The expressive power of the programming level (i.e.,
the class of queries a user can express) depends on the expressive power of the
database geographical manipulations since programming constructors nowadays
are very conventional (e.g., sequence, alternative, iteration). Graphical screens and

_graphical co-processors increased the opportunity to define new kinds of user
interfaces. We distinguish the static querying and the dynamic querying. We define
the static querying as the use of a predefined scenario of database manipulations
(alphanumeric and spatial). This approach is very well adapted to define very
repetitive queries. We define the dynamic querying as the full use of the visnal
nature of geographical data. A query is therefore represented with a drawing that
expresses the semantics of a query. Obviously, the expressive power depends on the
ability of the database to manage geographical operators. The user friendliness ofa
dynamic querying language must be favored whenever some degrees of freedom are
required.

In part 2, we present the various philosophies of geographical database
extensions to handle a spatial database. In part 3, we study the consequences of the
introduction of a composition of operators as a query. In part 4, we study the
associated user interfaces to handle an end-user query. The conclusion presents a
synthesis and gives some research guidelines.

2 Query Model

The query model defines the way a query uses the notion of operators. We
consider here the treatment applied on geographical data with a Data Base
Management System. The treatment of the spatial representation outside the DBMS
(i.¢., a software component able to extract data from the database world, to apply a
spatial operator and to re-introduce data inside the DBMS) is not considered here.
The first step is the definition of geographical (i.e., in this way graphical) data. The
simplest structure of operator is a predicate. The Boolean resuit of a predicate
applied to geographical data can be use in a 'Where' clause of an 'SQL' statement.
The expressive power is increased by operators. A querying language may or may
not accept a composition of operators. In the first part, we introduce a sample
database to illusirate the different examples used in this paper. In the second part,
we study the introduction of predicates. In the third part, we study the notion of
operators and in the last part, we study the notion of composition of operators.

2.1 Sample Database

Several formalisms [14] can be used to model a geographical database
(e.g., an extended relational model with Abstract Data Types, an Object Oriented
model). To simplify the presentation, let us use a complex object model defined
with the aggregation [], the set {} and conventional types (e.g., integer, siring,
real). The spatial representation (or SR for short) is managed by an Absiract Data
Type [13], SpatialRepresentationType (or SRT for short). The aim of this part is to
study the introduction of operators and its consequences. Therefore the retained

data model used to define the sample database is not important. Let us use the
following definitions to propose some queries :

TownType = Name : string, Population : integer, Mayor : string,

SpatialRepresentaiion : SpatialRepresentationType]

ForestType =[Name : siring, Species : {string}, SR : SRT]

PollutedAreaType = [Name : string, Reason : string, SR : SRT]

LakeType = Name : string, SpatialRepresentation : SRT]

RoadType=[Name : string, Origin : TownType,

Destination : TownType, SR : SRT]
Let us define the following queries : (Q1) : I would like to know if a forest

has a common part with a town named Paris' ; (Q2) : I would like to know if a
forest has a common part with a town named "Paris' such as this part has a surface
of 10 units or more ?; (Q3) : I would like to know if a road crosses a town named
'Paris' in its non-forest part; (Q4) : T would like to see the paths from the town
named 'Paris' to the town named 'Nice' that border a lake and cross a forest in its
non-urban part; (Q5) : I would like to see a road that crosses a forest for at least a
10 units Iength; (Q6) : T would like to see a road that crosses a polluted area for at
least a 10 units length. If we consider query Q1, the aim is to obtain information
about the town (may be about the forest) if an intersection occurs. The intersection
itself is not important. If we consider query Q2, the query is similar to query Q1,
but now the intersection is important since a property on this intersection is
required (i.e., a surface of 10 units or more). If we consider query Q3, the query is
similar to query Q2, but now a spatial operator (i.e., the spatial difference is applied
to the town to extract the non forest part) is involved. A new operator (i.e., an
intersection) is applied fo the result of the previous operator (i.e., the spatial
difference). If we consider query Q4, the query is similar to query Q3 (the non-
urban part of a forest). The composition of operator is introduced by the fact the
path(s) from Paris to Nice must border the lake and cross the non-urban part of the
forest. Query Q5 and Q6 have the same semantics (i.e., an intersection between two
database components under an aggregate constraint - 10 units long). The main
difference is due to the fact that conceptually two forests do not have any reason to
overlap but two potluted areas may overlap.

2.2 Notion of Predicates

From the historical point of view, the notion of predicate was the first
extension to conventional database systems to manage spatial data. This solution is
the simplest to introduce. The use of a predicate is reduced to the "Where' clause of
an Extended SQL statement. The result is built with the basic components of the
database (i.c., attributes of base relations in an extended relational database or
classes from an object oriented database). The first proposed models were based on
the physical representation of geographical data (e.g., point, line). This option leads
to a huge amount of predicaies depending on the spatial representation of the data
stored in the database. The introduction of Abstract Data Types to handle the
geographical model reduced the number of predicates to a single predicate by
semantics (e.g., intersection, bordering). The expressive power is very low since
query Q2 cannot be expressed. This query required to manage the result of a spatial
operator. The result as a Boolean answer is to weak to answer query Q2.

As an example, query Q1 in such a language would be expressed by :

Select T.*
From TownType T, ForestType F
Where intersection { T.SR, F.SR)
One can remark that in this kind of language, the definition is tuple oriented.

2.3 Notion of Operators Without Composition

From the historical point of view, the introduction of operators is the
second generation of extended databases to handle spatial properties. The
expressive power is increased since a query may define some properties on the
result of a spatial operator. Query Q2 can now be expressed since the result of the
intersection is available. A function can be defined on this result and the property
of a surface more than 10 units can be evaluated. Let us consider that we have
already available an intersection operator (¢»), a path operator (->), a border
operator (<>} and a spatial difference operator (A). We do not consider here the
signatures to express constraints (e.g., on the path operator). The important is the
fact that a path operator provides several paths as an answer of an evaluation from
a given place to another one. As soon as a query requires the composition of
operator (i.e., an operator applied on the result of another operator), this query
cannot be expressed in a single order. As a consequence, query Q3 cannot be
expressed since the intersection is applied on the result of a spatial difference. Such
a query is therefore expressed with two database orders. The first one allows the
evaluation of the spatial difference. The second one applies an intersection on the
resulis of the spatial difference. Stating this fact, the final result is a sub-set of the
result obtained during the evaluation of the first spatial operator. A forest that has
an intersection with a town is retained in the first step but this forest may not have
an intersection with a road. Therefore the result is the sub-set of the forests defined
in the first step. Two main practices can be defined to keep only relevant data. The
first one is the management of the history as soon as an operator is evaluated. The
result of an operator has the history (that may be very long depending on the
number of evaluated operators). One of the drawbacks is the lack of generality since
the result of an operator is not a geographical object (an alphanumeric part and a
spatial part) but a geographical object and its history. The second practice is to keep
this history outside the definition of a geographical object and to define the result of
a query as a set of database objects (from the database and the results of the
operators) and a structure to manage the history. Whatever the retained practice, a
software component must be developed (i.e., a Query Resolution Engine) to
guarantee the correctness of the final result of a query. This solution can be
considered as similar to the solution with the treatment of the spatial representation
outside the DBMS since a sofiware component is required. As an example, query

Q2 would be expressed by :
Select T.*
From TownType T, ForestType F
Where Surface («» (T.SR, F.SR)) > 10

One can remark that in this kind of language the definition is tuple-oriented.
Furthermore the operator is spatial representation oriented. The alphanumeric part
of a geographical object is not considered. As soon as a query involves an operator
in the select clause the alphanumeric part may be not relevant (e.g., Population) as
it may be for the beginning of the expression of query Q3:

Select T.Name, T.Population, T.Mayor, A (T. SR, F.SR)

From TownType T, ForestType F

Where intersection (T.SR, F.SR)
Query Q3 must be cut into at least two orders to provide the part of the road that
crosses the non-forest part of the town. In fact to provide a relevant answer to query
Q3, the result must be defined as a geographical data (i.e., an alphanumeric part
and a spatial representation). The alphanumeric part must be a subset of the data
model of a town, of the forest and of the road [4,9]1. The spatial representation is
the result of the composition of an intersection applied on a spatial difference.

2.4 Notion of Operators With Composition

From the historical point of view, this approach received very few
proposals [partially in 5, 6, 8]. A query language with the composition of operators
allows defining a query with several spatial operators. The argument of an operator
may be an operator. The expressive power is similar to the previous set of
proposition if we consider the database management system as the query language
and the software component required to guarantee the correctness of a result. Query
Q3 can now be expressed since the spatial difference of the forest and the town is
available within the same database order. The algebraic modeling of this query is a
tree (see figure 2.1)

Roaxﬂé \A

o Ta

TawnType ForestType
Fig. 2.1 - Algebraic representation of query Q3
We define this composition as a vertical composition. Query Q4 illustrates an
horizontal composition. Figure 2.2 presents an algebraic representation of query
Q4. The path operator is used as an argument of the border operator and of the
intersection operator. The path must verify the two properties (bordering a lake and
having an intersection with a non-urban part of a forest). The algebraic modeling of
this query is an acyclic graph (DAG).
As an example, query Q3 in such a language would be expressed by :
Select R.*, F.*, <> (R.SR, A (T.SR, F.SR))
From RoadType R, ForestType F, TownType T
Where intersection (F.SR, T.SR) and
intersection (R.SR, A (T.SR, ¥.8R)) and T.Name = Paris’
A similar approach to the definition of query Q4 cannot be performed :
Select -> (T1.Name, T2.Name), L.*, F.*
From LakeType L, ForestType F, TownType T1, T2, T3
Where bordering 2 (-» (T1.Name, T2.Name), L.SR) and
intersection { => (T1.Name, T2.Name}, A { F.SR, T3.5R))
and T1.Name = Paris' and T2.Name = Nice'

1 In the following, we assume this rule is respected. * denotes the relevant attributes.

2To simplify the expression, we do not consider here the transformation from the logical
point of view of a network (i.e., a graph and the transitive closure on this graph to evaluate
a path) and its spatial representation.

<>

LakeType

e m}/m\A

TownType TownType ForestTypeTownType

Fig. 2.2 - Algebraic representation of query Q4

As soon as a path operator provides several answers as a result instead of a single
one (e.g., a shortest path), there is no guarantee that the two path operators would
represent the same path. Unfortunately a path operator with a single answer is not
realistic. The evaluation of the path operator must provide several paths as an
answer since the shortest one (in distance) may be far from being the most
convenient, the less expensive may be very long, ... The problem is due to the fact
that from two given instances (i.e., Paris and Nice) several paths (i.e., several
results) are provided. The signature of the path becomes a set of paths as a result
instead of being a path.

3 Composition of Operators

The composition of operator provides a very high expressive power.
Conventional databases relies on the opportunity o combine a reduced set of
operators. Relational databases provide the selection, the projection, the union, the
difference and the Cartesian product as the basic operators. To provide an
opportunity to define realistic queries some functions are provided such as the
minimum, the maximum, the count, the average and the sum. Object oriented
database query languages provide the opportunity to define some basic
manipulations attached to a specific class. These manipulations can be used in the
query language. Within the geographical context, several spatial operators are
provided in the literature (e.g., intersection, bordering, spatial difference). These
operators can be used in the extension of the query language to manipulate spatial
data. The use of a composition of operators has two main consequences. The first
one is the ability to use the same operator with the same arguments in a query. The
second consequence is the ability to access to the result of the composition in the
end-user query language.

3.1 The Use of the Same Operator

Several formalisms can be provided to formalize a query language. To
illustrate the notion of composition, we adopt in this paper a simplified grammar of
a functiona! query language (the choice of an other formalism - e.g., logic - does
not change the raised problem). Let us define a simplified grammar (e.g., we do not
consider the signature of the operators, we reduce it to binary operators) based on
the following rules to illustrate the use of the same operator. The start symbol is
“query”. The terminals are DatabaseComponent (e.g., TownType), OID (ie., an
integer), spatialrelationship {e.g., €>, A, ->)

query:= composition (op , follow_op)
op:= OID spatialrelationship(op,op) / DatabaseComponent OID
follow_op:= op follow_op/e

Query Q1 involves a predicate but can be generalized with an operator. Query Q2 is
similar to query QI since we do not consider here the signature of the operator for
the various constraints that can be expressed. Query Q3 is a vertical composition
(similar to conventional functional languages).
QI = composition (3 «> (TownType 1, ForestType 2))
Q3 = composition (5 <> (RoadType 4, 3 A (TownType 1, ForestType 2)))
4 = composition (3 -> (Towntype 1, TownType 2),
5<> (3 ->(TownType 1, TownType 2), LakeType 4),
8§ © (ForestType 6, TownType 7)
10> (3 -> (TownType L, TownType 2),
9 A (ForestType 6, TownType 7))}
A path operator may be applied several times in the same query (e.g., two times).
The semantics of the query may be : 'T would like two paths from a given place to
another one' or 'l would like this path to verify two different properties’ (this is
different from the disjunction of the two properties). In the first case, the DBMS
must consider these two paths as independent. This is possible since the path
operator provides several paths as an answer. A path operator reduced to a single
path as answer (e.g., a shortest path) cannot provide this expressive power. In the
second case, the DBMS must consider these two path operators as the same one. To
be able to distinguish between these two cases, the gramimar must provide an OID
to indicate that these paths are similar or independent. This technique is similar to
the definition of an alias in a SQL statement.

3.2 Consequences on the User Interfaces

The composition of operators introduces the fact that several parts of a
graphic representation are defined depending on the semantics of an operator. Let
us use for example the spatial intersection. Figure 3.1 presents a symbolic
representation of an intersection.

A

Fig. 3.1 - symbolic representation of an intersection

The application of the intersection provides (1) the intersection itself, (2) the part of
A that does not intersect with B, (3) the part of B that does not intersect with A.
The user interface based on a visual representation must provide the ability to
precise the relevant part in a new subquery. Two queries with the same semantics
must have the same visual expression. As an example a symbolic representation for
query QS (or Q6 since they have the same semantics) is represented Figure 3.2 (we
do not consider the way the drawing is performed - ie. the type of user interface
used to define such a query).

ForestType (resp. PollutedAreaType)

RoadType

Fig. 3.2 - symbolic visual representation of query Q5 {or Q6)

Since a user do not have to know the way data are stored in the database, the
management of the overlap or not of the database components must not be handied
at this level. The formal modeling of a query must be similar. The query must be
formally represented by an expression like
composition (3 <> (ForestType 1, RoadType 2))
or composition (3 <> (PollutedAreaType 1, RoadType 2))

The DBMS must be able to evaluate whether or not an overlap may occur or not
since a wrong result may be obtained as soon as a tuple oriented philosphy is used
for the query language. A SQL statement of query Q5 (or Q6) must be like :

Select R.*,<> (R.SR, F.SR}

From RoadType R, ForestType F
Where intersection { R.SR, F.SR)
Group by R.name

Having (length (<> (R.SR, F.5R)} > 10)

Figure 3.3 presents a symbolic representation of a data sct. The strict application of
such a query involves an inconstancy since the intersection of the road and the
common part of the two polluted area is summed twice (in case of an overlap).

o=

Fig. 3.3 - Symbolic representation of a daia set

To provide a unique query formulation, the Data Definition Language must provide
a supplementary clause managing the conceptual overlap or not between two
instances of a type (relation or class depending on the data model). This precision
can also be considered as an integrity constraint.

4 User Interfaces

An end user query language for GIS must emphasize the visual naiure of
geographical data. Numerous propositions [3, 7, 10] or studies on visual interfaces
have already been performed [1, 2]. In this part, we consider the second level of
manipulations (i.e., the end-user interface). Within the two kinds of querying, we
consider the dynamic querying. A dynamic querying is based on the representation
of the required spatial relationships as querying primitives. The drawing, modeling
a query, may be provided by the end-user (with the problem of the interpretation of
this query to express it with a formal language) or provided by the system using the
user’s directives (i.e., the required relationships). In both of them, ambiguities may
appear depending on the allowed expressive power of the interface.

A database query language based on spatial predicates is not relevant for this kind
of end-user interface. The operators are mandatory. Once operators are available,
the problem is to determine whether they accept or not the composition. An
underlying database query language, without composition and without the software
able to simulate this composition reduces the expressive power since manipulations
can only be performed on basic components of the database. The visual
representation of a query is simplified since few ambiguities may appear. An

underlying database query language without composition but with a software able
to simulate it provides a better expressive power. This expressive power is similar
to the one obtained with a query language allowing the composition. The level of
ambiguity is closely linked to the existence or not of the spatial difference operator
(since the number of relevant sub-parts of a query may be important - Figure 3.0.
A query language with a path operator between two given places providing a
unique path as an answer (e.g., shortest path} or without a path operator can be
designed upon a database extended with spatial (network) operators. As soon as the
path operator provides several paths as an answer, the query language must be
extended to allow the horizontal composition with identification of the path
operator (since it may appear several times in the same query with the same
arguments). Furthermore, the definition of a query with a path operator requires the
introduction of aggregates {e.g., a cost less than 100 units). These aggregates are
nearly mandatory to provide a realistic computational time and ... a realistic use of
the results in the case of large databases. The aggregates may introduce also some
ambiguities since the result of the path operator (i.e., a set of path) cannot be
considered as a unique path.

3 Conclusion

The user-friendliness of a visual interface is one of the major argument for

the acceptation of a new tool. The expressive power is a second one. Geographical
data are by essence visual. A visual approach to query a geographical database
seems a very promising solution. The expressive power of the geographical query
languages varies depending on the query primitives. From the historical point of
view, the introduction of spatial predicates was the first attempt. Its weakness is the
very low expressive power. The second attempt was the introduction of spatial
operators. The problem is then to allow or not the composition of operators. The
composition of spatial operators is the best solution to provide a powerful database
query language.
The user interface may rely on a 'click in a box' approach to a full freedom visual
query language. The higher is the level of abstraction, the more difficult is the
interpretation of a visual query. Ambiguities may be raised whenever a component
of a query is selected or whenever a spatial relationship is visualized. From a visnal
query language to an alphanumeric database query language, the gap may be
important. The composition of operators is a major requirement to define a realistic
query language for geographical applications. A difference is introduced between a
visual query language and a visual interface to a geographical DBMS. A visual
query language must provide a higher level of abstraction than the query language
of the DBMS is able to offer. A DBMS query language based on predicates leads to
a very weak expressive power. A DBMS query language with a set of spatial
operators but without composition requires a visual language allowing a
composition and a software (applied in the middleware) to simulate the
composition and to guarantee the consistency of final results. A DBMS allowing
the composition (with the possibility to use several times the same operator with the
same arguments in a query) would require now a sophisticated visual interface able
to take into account the various components of the composition of operators. The
definition of such an interface is therefore a challenge.

References

10,
11.

12,

13.

14

Anfaure MLA, Trepied C. : A Survey of Query Languages for Geographic Information Systems.
Interfaces to databases (IDS-3), Napier University Edinburgh, 8-10 July (1996)

Batini C., Catarci T., Costabile M.F., Leviaidi S.: Visual Query Systems: A Taxonomy, Visual
Database Systems II, IFIP-TC2/W(G2.6, Budapest, Hungary, IFIP Transaction A7, 30/9-3/10
(1991)

Calcinelli D., Mainguenaud M.: Cigales, A visual Query Language for geographical Information
System : the User Interface, Journal of Visual Languages and Computing, Vol 35, Academic press,
(1994), 113-132

Claramunt C, Mainguenaud M., : A Revisited Database Projection Operator for network Facilities in a
GIS, Informatica, 23, (1999), 187-201

Guiing, R. H.,, GRAL: An extensible relational database system for geometric applications. In
Proceedings of the 15th International Conference on Very Large Data Bases, VLDB, 22-26 August
Amsterdam, The Netherlands, (1989)

Haas, L., Cedy, W. F., Exploiting extensible DBMS in integrated GIS. In Proceedings of the 2nd
International Symposium on Large Spatial Database, Gunther, O. and Schek, H.-J. Eds, Springer-
Verlag, Zurich, Lecture Notes in Computer Science, n® 525, (1991)

Egenhofer M., Spatial-Query-by-Sketch, IEEE Symposium on Visula Languages (VL), Boulder,
Colorado, USA, 3-6 September, (1996) '

Larue, T., Pasire, D. and Viémont, Y., Strong integration of spatial domains and eperators in a
relational database system. In Advances in Spatial Databases, Abel, I. J. and Ooi, B. C. Eds,,
Springer-Verlag, Singapore, Lecture Notes in Computer Science n® 692, (1993)

Mainguenaud, M., Consistency of geographical information system results. Computers, Environment
and Urban Systems, Vol. 18, Pergamon Press, (1994), 333-342

Meyer B., Beyond Icons : Towards New Metaphors for Visual Query Languages for Spatial
Information Systems. Ineterfaces to database Systems (IDS92), Glasgow, UK, 1-3 July (1992)

Peuquet DJ: A Concepetual Framework and Comparison of Spatial Data Models, Cartographica, Vol
21 (4), (1984) 66-113

Smith TR, Menon §, Star JL, Ester JE: Requirements and Principles for the Implementation and
Construction of Large Scale GIS, Int. Journal of Geographical Information System, Vol 1, 0°1,
(1987), 13-31

Stemple, D., Sheard, T. and Bunker, R., Abstract data types in databases: Specification, Manipulation
and Access. In Proceedings of the 2nd Int. Conference on Data Engineering, Los Angeles, USA, 6-8
Feb (1986)

Ullman D: Principles of Database and Knowledge-base Systems, Computer Science Press, Maryland,
(1988)

