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ABSTRACT 
 
A real time application provides some time constraints in the 
delivering of database query results. We consider here the 
database model level to handle such constraints. We rely on 
the time sensitive object concept and we increase these 
notions with database properties such as extended functional 
dependencies, characterized aggregate functions and the 
definition of an order on a lattice. Depending on the available 
time to respond to a query, relevant data are provided in 
accordance to the perception of the data model defined for a 
given application. The extended functional dependencies 
involve a 1 to 1 correspondence between several entities of the 
data model. The order on the lattice defines the priorities. 
Characterized aggregate functions introduce the N to 1 
correspondence and therefore require a more precise definition 
rather than a single trigger definition. The definition takes into 
account the relationships of the attributes involved in the 
aggregate function. 
 
INTRODUCTION 
 
The development of technologies, such as communication and 
positioning, increases real-time data traffic (Kennedy, 2002, 
Bossler, 2002). Intelligent Transportation Systems, Location 
Based Services require more and more Points of Interest 
within a navigation application. Therefore a database is 
required to store alphanumeric and spatial data.  We define a 
geographic object as a set of couples (semantic property, 
value). An important point is to define the data to be provided 
as the response of a request. Real-time applications are based 
on the fact that whatever value an object has at any point in 
time, within a few milliseconds or seconds that value will 
cease to be valid within a brief time. Models for real-time 
systems traditionally focus on system processing and its 
timing characteristics. Timing constraints for real-time 
systems are typically expressed with respect to processing. In 
this article, we prefer considering geographic objects in the 
sense of time-sensitive objects as defined in (Callison, 1995). 
This model focuses primarily on the time intervals over which 
object values may ideally be used, rather than the timing of 
process execution to describe the evolution of a system. The 
validity intervals are associated with quality indices upon data. 
To be able to choose the relevant data within a time constraint, 
a conventional data model should be improved. We introduce 

the strong dependency of the time sensitive objects 
constraints, the extension of a conventional database (DB) 
notion, functional dependency, as an extended functional 
dependency and an order on a lattice to define a real time 
application DB schema. Using these extra-meta-data with the 
data model, a query resolution mechanism is able to define a 
priority in the delivering of the schema to a mobile 
application. 
The first part presents the problems in the real time 
environment. The second part presents the add-on in the data 
model. The third part presents the propositions to take 
advantage of the new add-on in the data model. The last part 
presents the conclusion and future works. 
 
PROBLEMS 
 
At the opposite sides in the classification of time validity are 
single-interval transient and immutable objects. Single-
interval transient objects are created, remain in the system for 
a short time and disappear without changing. At the other 
extreme, are immutable objects, which persist for the life of 
the system execution without changing. Most objects in real-
time applications fall between these two opposite sides. They 
persist for some finite time and may change during this 
lifetime. New values with associated validity intervals are 
defined (i.e., multi-interval object). We focus on the 
associated semantic alphanumeric data model to handle a real 
time application with a DB. 
Managing a real time application with a DB is an old 
requirement (Taina and Son, 1997). Several formats or data 
models can be used for navigation services such as for 
example ISO-GDF, SDAL (Shared Data Access Library – 
NavTech). We are not concerned in this article by the spatial 
representation of the route nor the data model associated with 
the representation of such as route (Liu et al. 2005). Several 
DB transaction models are provided to manage the 
serialization in a multi-user application to support or not the 
predictions (Bodlaender and Stok, 1998). Others are designed 
to support routing in heterogeneous networks (Sun et al. 
2007). We are not concerned in this article by the system 
transaction model or the data propagation within the 
communication network. Nevertheless we rely on the 
performances of such systems.  
To handle time in a spatial context, several propositions are 
available in the literature (Guting et al. 2006, Parent et al. 
1999, Gregersen, 2006). These propositions are based on an 
extension of a conventional definition for a DB schema, i.e., a 
pair (attribute name, domain of validity). The data model is 
given as a collection of data types and operations, which can 



be plugged as attribute types into any DBMS (Data Base 
Management System) data model. The idea is to represent the 
temporal development of spatial entities in certain data types 
such as moving point, the balloon model, spatial abstract data 
types. 
These models consider that they do not have any time 
constraints during the query resolution mechanism (obviously 
every one would like to have a short response time of the 
system that implements the model, but every relevant data will 
be provided in the final results). 
Our goal is to promote data definition properties to introduce 
an order of evaluation in a DB query resolution mechanism. In 
real time application, the DBMS may not have time to 
compute the complete answer of a query. Nevertheless, at 
least part of the answer could be provided as a result. The 
problem is to define which part should be provided first. 
Starting with a conventional definition of a DB schema based 
on a pair (attribute name, domain of validity), we must 
increase this definition with several notions since choices 
should be performed by the DBMS. The architecture is close 
to Dynamic Data Driven Real Time Management. We start 
with an Abstract Model as defined in (Forlizzi et al. 2000). 
The idea is to represent the temporal development of spatial 
entities in certain data types such as moving point or moving 
region. Suitable operations are provided on these types to 
support querying. Such data types can be embedded as 
attribute types into object-relational or other data models. It 
allows one to focus on the essential concepts and not get 
bogged down by representation details. 
In the following, we consider a DB schema defined as a set of 
pairs (attribute name, domain of validity). The domain may be 
as complex as we like, e.g., a spatial representation with or 
without time management labels. The only requirement is that 
an attribute with a time management label must be 
documented, i.e., we do not accept a null value for the time 
management label when an attribute is defined as time-
constrained. 
 
MODELING TOOLS 
 
To achieve our goals, we introduce in the DB schema several 
concepts to help the query resolution engine to define the 
relevant data to evaluate first: extended functional 
dependency, strong dependency, the characterized aggregate 
functions and the lattice. 

Extended Functional Dependency 
A functional dependency, as defined in conventional relational 
DBs (Ullman, 1995), indicates an assertion on the real world 
based on a 1 to 1 relationship.  
Definition: Given a relation R of a DB schema, an attribute 
(or a minimal set of attributes) X in R is said to functionally 
determine another attribute (or set of attributes) Y, also in R, 
(written X → Y) iff each X value is associated with precisely 
one Y value. 
In this case, cycles are allowed. This definition is 
straightforward in the sense that X and Y must belong to the 
same relation (e.g., in the same class in UML for example if 
we want to translate this notion to the conceptual level to 
simplify). 

We extend this definition by an Extended Functional 
Dependency in the sense that X is in the set of attributes of an 
entity E and Y may be an attribute (or a set of attribute) in 
another entity E’ of the DB schema. This represents the 
extension of the 1 to 1 relationship in a conventional Entity-
Relationship diagram or the 1-1 Association in a class diagram 
in UML. 
The granule “sub-set” as defined in (Mainguenaud, 1994), 
applied with the inclusion operator provide the relevant 
candidates to an extended functional dependency. 
Definition: An attribute is defined with a granule “sub-set” iff 
its semantic is valid for a sub set of its spatial representation. 
As an example, the value of the mayor attribute (i.e., the name 
of the mayor of a town) is a valid data for a sub-set of the 
spatial representation of a town (i.e., a mayor is also 
responsible for a sub part of the town). The value of the 
population is not valid for a sub-set of the spatial 
representation (i.e., no guaranty is provided that all the 
inhabitants of the town live in this specific sub-set of the 
spatial representation of the town). 
The application of the inclusion operator means that a park is 
spatially included into a town. Therefore, an attribute 
classified as “sub-set” of a town is still valid for the park since 
the park represents a sub-set of the spatial representation of a 
town (since it is included into the town). 
The graphical representation of such a pair of attributes is 
defined by a single circle on the attributes and an oriented 
edge as the edge in the definition. Figure 1 represents such an 
example (i.e., <idNumber> → <Mayor>). 

Strong dependency 
The strong dependency, as defined in (Callison, 1995), 
indicates that the value of the dependent object depends 
critically on the value of the influencing object. 
Definition: The value of the strong dependent object is to be 
updated as quickly as possible in response to any 
asynchronous change to the value of the influencing object. 
To assure termination of the propagation process, cycles are 
prohibited in the strong-dependency relationship. We do not 
consider here, the update mechanism. The important point is 
that an update may occur (e.g., this update may be sporadic, 
periodic or any other way). 
As an example, the speed of a car should be changed as soon 
as the car arrives in a new speed-limited area. In the DB 
model the attribute “carSpeed” should be updated as soon as 
“speedLimit” is changed (carCurrentSpeed --> 
currentSpeedLimit). carCurrentSpeed is the strong dependent 
object and currentSpeedLimit is the influencing object. 
The graphical representation of the strong dependency 
between such a pair of attributes (i.e., the strong one with a 
double circle and the influencing one with a single circle) is 
defined by an edge between these attributes (i.e., an oriented 
edge from the dependent one to the influencing one). Figure 1 
represents such an example - i.e., <<carCurrentSpeed>> --> < 
currentSpeedLimit> . 
Extended Functional Dependencies may accept cycles since 
they represent a semantic link (i.e., even without changes). 
Nevertheless, two attributes may be linked by an Extended 
Functional Dependency and by a strong dependency. 



Characterized Aggregate Function 
Aggregate functions may be useful to sum up a set of data and 
introduce several levels of abstraction. An aggregate function 
can be provided with several critical precisions. The 
computational complexity of such a function is very important 
in a time-constraint environment. We define three levels of 
complexity: Linear (e.g., find the average value within a set of 
values), Quadratic (e.g., the number of tuples that satisfy a 
join operation in SQL), Super (i.e., higher than quadratic). 
Managing navigation applications very often requires the 
definition of predictions (e.g., on the traffic, schedules). The 
aggregate functions may use a regression technique, an 
interpolation or any other types of models. The operations do 
not belong to the kernel of a DBMS. The application 
developer must provide an extra operator such as for example 
a trigger or an add-on operator in object-relational DBMS. 
In a time constraint environment, the characteristic of an 
external evaluation of a function is important. The 
characterization of the function may be introduced with the 
Data Definition Language. As an example (Deshpande and 
Madden, 2006) provides a specific data definition order to 
create a view based on an interpolation technique (in this case 
for a set of sensors).  

Lattice 
Lattices offer a natural way to formalize and study the 
ordering of objects using a general concept known as the 
poset, partially ordered set (Buckley and Harary, 1990). A 
lattice as an algebra is equivalent to a lattice as a poset. Two 
elements of a lattice are incomparable if neither dominates the 
other. 
We rely in this context on the ANSI/SPARC definition of a 
DB schema. The three levels are: the external level (i.e., 
views), the conceptual level (i.e., the global information 
system schema) and the physical representation (e.g., files, 
data organization or access with the file management 
primitives of the operating system). Only the external level is 
concerned by the proposed extensions. The conceptual level is 
global for an information system. It does not take into account 
the specificities of applications. Within the external level, we 
can take the whole semantics of an application. The data set is 
reduced (i.e., a sub set of the whole available schema in the 
conceptual level). 
Depending on an application, the same entity may be 
considered as very important or as quite marginal. We take 
advantage of this difference of semantics to specify an order 
on the data model. We consider three levels: Essential 
attributes, Important attributes, Useful attributes. 
Within a level the DB designer does not define an order. In 
this case, we have a partial order involved by the three levels. 
Let us consider the DB schema defined as a view on a global 
schema. Let us consider a mobile application using this 
schema (e.g., the maintenance of parks in a tourist region). 
Figure 2 presents the associated lattice. 
 

Essential = {Park.name, Car.carCurrentSpeed, 
PartRoute.speedLimit} 

Useful = {Town.mayor, 
Route.averageSpeed} 

Important = {Town.workInProgress} 
Figure 2 – Associated lattice 

 
As an example, a query is defined on such a schema and 
involves several classes. The aim is to help the DBMS to 
present relevant data depending on the time constraints. To 
simplify the presentation let us consider the following 
relational algebraic operators (Ullman, 1995): Π, the 
projection operator (i.e., the relevant attribute); σ, the 
selection operator (i.e., the conditions to be verified) 
An example of a simplified query, Q, is defined on the toy DB 
schema using these operators.  

Q = Π ( σ Route,origin = ‘ParkStartPoint’ and destination 
= “ParkArrivalPoint”),  

Park.name, carCurrentSpeed, Route.averageSpeed, 
Park.leisures). 

This query requires providing carCurrentSpeed that is 
involved in a strong dependency. It also can provide the 
responsible of the initial and arrival Park since mayor is 
involved in an Extended Functional Dependency with a park 
(via the idNumber of Park). It also requires the evaluation of a 
function with a small complexity (i.e., linear), the computation 
of the average speed (between the departure and the current 
time). The DBMS is then able to elaborate an execution plan 
with some specific priorities with respect to the order defined 
in the lattice. From the user-interface point of view, the 
presented data is not a unique query but in fact a set of 
queries. As we can see in Figure 1, the priority is given to the 
speed of the car versus other data. Complex data such as 
providing the current works in progress in the area (an 
aggregate function with a high complexity) would be provided 
if the computational time is available. One can remark that the 
lattice is query-independent. It is based on the application (i.e., 
the view). 

Conclusion 
Using these modeling tools, three levels are covered: static 
model with the extended functional dependency, dynamic on 
update with the strong dependency, and dynamic on resolution 
with the lattice and the characterized aggregate function. 
To be able to evaluate the complexity of a function the 
overhead must be limited. In a time constraint environment, 
we must give the priority to a “compiled” approach. By 
“compiled” approach we mean that the maximum knowledge 
must be introduced into the data model or into the query. 
Managing a meta-base is simpler than evaluating information 
for each query. 
Two main approaches may be defined: the first one is based 
on the query definition process; the second one is based on the 
DB schema. Both of them are compatible with the 
conventional view mechanism defined in DBMS. In both case, 
the query resolution mechanism must be changed since a 
transaction may be shortened to respect the time constraints. 
Therefore, the provided attributes (and the provided values) 
may be different depending on the context. The same query in 
different contexts does not provide the same results. This is 
the price to pay to provide an answer whatever the 
circumstances are. 
With the first approach, the query definition process specifies 
the relevant relative importance of the required data. The 
query language must be extended to take into account this new 
requirement. The DB schema definition is still conventional. 



With the second approach, the query definition process is 
unchanged whatever the used device is (e.g., a mobile phone, 
a PDA or a micro-computer). The query language is 
unchanged. The DB schema definition is changed. The data 
model is increased with new concepts. The main advantage is 
that an application can be designed as a set of queries and the 
queries are device-independent (that does not mean that the 
presentation of the results are device independent). Therefore 
the current proposition is based on an extension of the DB 
schema. 
 
PRINCIPLES 
 
A conventional DBMS tries to provide a query result as soon 
as possible. No time constraint are involved. Whatever the 
conditions are, the same amount of data will be provided. In a 
real time constraint environment, the amount of data will be 
different since the length of a transaction may be different 
depending on the conditions). We propose to use some 
heuristics to enhance the accuracy of provided data. Tools 
defined in the previous section will be used to improve the 
accuracy of the result. 

Extended Functional Dependency 
 
A functional dependency is based on the fact that a value in 
the left part of the dependency provides a single value in the 
right part. One can notice that it does not mean that the right 
value is a single atomic value (e.g., it could be a set). This is 
not related with the notion of first normal form in relational 
DB. The sub-set granule property guaranties that the data is 
relevant in such a context. 
Definition H1: In a time-constraint environment, we propose 
to give priority to attributes that are involved in an extended 
functional dependency. 
It widely depends on the domain associated with the right 
value. A conventional data type (e.g., integer, real, string) 
allows taking full advantage of the situation. In a navigation 
application, providing part of a film, a song or a full text 
document that popularized the place will change the situation. 
 
Strong dependency 
 
A strong dependency will require that the left value of the 
dependence is updated as soon as possible. The quality of data 
is therefore enhanced. 
Definition H2: In a time-constraint environment, we propose 
to give priority to attributes that are involved in a strong 
dependency. 
We do not have the guaranty that the update has been 
performed. The update has been requested but may not have 
already been performed. Nevertheless, if the update has been 
performed, the quality of the answer is enhanced since the 
value is up to date. 
 
Characterized aggregate function 
 
Conventional relational DBMSs use some heuristics in the 
execution plan. As an example, selections are performed 
before joins since the natural complexity of the selection is 

linear (i.e., no index is used) and since the natural complexity 
of the join is quadratic. We propose to use a similar heuristic. 
Definition H3: In a time-constraint environment, we propose 
to give priority to characterized aggregate function that are 
classified as linear, then as quadratic and then as super. 
Obviously, this is only a heuristic since we may be in the same 
situation as the conventional relational DBMS. As an 
example, in some circumstances a join (formally defined as a 
selection on a Cartesian product) may be transformed into a 
(small) set of selections and therefore the complexity is now 
linear. So an aggregate function classified as quadratic may be 
transformed into a linear complexity depending on the amount 
of data during the evaluation of an execution plan. 
 
Lattice 
 
The lattice is defined to provide a better relevance between 
clients’ needs and the answer that could be provided. The 
lattice is a heuristic by itself since it provides a partial order 
within the different attributes involved in a query. 
This level is the highest level of heuristic. It provides an order 
between the different attributes that can be involved in the 
result. The lattice defines a partial order. The lattice defines a 
partial order. A relative order within a level of the lattice is 
defined using H1, H2 and H3 otherwise, the order is not 
important. The order of application between H1, H2, and H3 
is external schema dependent (i.e., view dependent). 
 
CONCLUSION 
 
Taking advantage of new applications provided by Location 
Based Services or GPS data requires introducing the notion of 
real time constraints in the DB models. Conventional DB 
models, extended to manage time and/or spatial data, provide 
an opportunity to manage real applications. A new step has to 
be defined to handle time constraint in the query resolution 
mechanism since Location Based Services often involve real-
time constraint. 
In this article, we proposed to enhance a DB model whatever 
the underlying formal model is (e.g., UML, object-oriented, 
object-relational). It takes into account the fact that the 
response time may vary depending on the context. The 
introduction of a partial order defines a relative importance 
between the set of data that may be provided as a result. The 
aggregate functions involved in a query may be or not 
computed depending on the available time. The evaluation is 
based on the computational complexity of the aggregate 
function. The coherency of a DB, mainly for navigation 
application is very important. Therefore, the specification of 
hard coherency maintenance is provided with the strong 
dependency. The Extended Functional Dependency enhances 
the relevance of the attributes provided in an answer. 
Following the methodology proposed in (Forlizzi et al. 2000), 
our new step will be the definition of the associated discrete 
model (i.e., to fix representations). Using these data definition 
language extensions, a query resolution model can be defined 
for a real time application context in order to present a sub-set 
of the data that should be given when no resolution time 
constraints are applied. 
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Figure 1 – Toy database schema 
 


