
DATA MODEL AND REAL TIME IN SPATIAL APPLICATIONS:
WHAT DATA AND WHEN?

Michel Mainguenaud

Institut National des Sciences Appliquées (Rouen) – LITIS Lab
Avenue de l’Université

F-76801 Saint Etienne du Rouvray, France
E-mail: michel.mainguenaud@insa-rouen.fr

KEYWORDS
Database model, Real time applications, Mobility, Data
Definition Language

ABSTRACT

A real time application provides some time constraints in the
delivering of database query results. We consider here the
database model level to handle such constraints. We rely on
the time sensitive object concept and we increase these
notions with database properties such as extended functional
dependencies, characterized aggregate functions and the
definition of an order on a lattice. Depending on the available
time to respond to a query, relevant data are provided in
accordance to the perception of the data model defined for a
given application. The extended functional dependencies
involve a 1 to 1 correspondence between several entities of the
data model. The order on the lattice defines the priorities.
Characterized aggregate functions introduce the N to 1
correspondence and therefore require a more precise definition
rather than a single trigger definition. The definition takes into
account the relationships of the attributes involved in the
aggregate function.

INTRODUCTION

The development of technologies, such as communication and
positioning, increases real-time data traffic (Kennedy, 2002,
Bossler, 2002). Intelligent Transportation Systems, Location
Based Services require more and more Points of Interest
within a navigation application. Therefore a database is
required to store alphanumeric and spatial data. We define a
geographic object as a set of couples (semantic property,
value). An important point is to define the data to be provided
as the response of a request. Real-time applications are based
on the fact that whatever value an object has at any point in
time, within a few milliseconds or seconds that value will
cease to be valid within a brief time. Models for real-time
systems traditionally focus on system processing and its
timing characteristics. Timing constraints for real-time
systems are typically expressed with respect to processing. In
this article, we prefer considering geographic objects in the
sense of time-sensitive objects as defined in (Callison, 1995).
This model focuses primarily on the time intervals over which
object values may ideally be used, rather than the timing of
process execution to describe the evolution of a system. The
validity intervals are associated with quality indices upon data.
To be able to choose the relevant data within a time constraint,
a conventional data model should be improved. We introduce

the strong dependency of the time sensitive objects
constraints, the extension of a conventional database (DB)
notion, functional dependency, as an extended functional
dependency and an order on a lattice to define a real time
application DB schema. Using these extra-meta-data with the
data model, a query resolution mechanism is able to define a
priority in the delivering of the schema to a mobile
application.
The first part presents the problems in the real time
environment. The second part presents the add-on in the data
model. The third part presents the propositions to take
advantage of the new add-on in the data model. The last part
presents the conclusion and future works.

PROBLEMS

At the opposite sides in the classification of time validity are
single-interval transient and immutable objects. Single-
interval transient objects are created, remain in the system for
a short time and disappear without changing. At the other
extreme, are immutable objects, which persist for the life of
the system execution without changing. Most objects in real-
time applications fall between these two opposite sides. They
persist for some finite time and may change during this
lifetime. New values with associated validity intervals are
defined (i.e., multi-interval object). We focus on the
associated semantic alphanumeric data model to handle a real
time application with a DB.
Managing a real time application with a DB is an old
requirement (Taina and Son, 1997). Several formats or data
models can be used for navigation services such as for
example ISO-GDF, SDAL (Shared Data Access Library –
NavTech). We are not concerned in this article by the spatial
representation of the route nor the data model associated with
the representation of such as route (Liu et al. 2005). Several
DB transaction models are provided to manage the
serialization in a multi-user application to support or not the
predictions (Bodlaender and Stok, 1998). Others are designed
to support routing in heterogeneous networks (Sun et al.
2007). We are not concerned in this article by the system
transaction model or the data propagation within the
communication network. Nevertheless we rely on the
performances of such systems.
To handle time in a spatial context, several propositions are
available in the literature (Guting et al. 2006, Parent et al.
1999, Gregersen, 2006). These propositions are based on an
extension of a conventional definition for a DB schema, i.e., a
pair (attribute name, domain of validity). The data model is
given as a collection of data types and operations, which can

be plugged as attribute types into any DBMS (Data Base
Management System) data model. The idea is to represent the
temporal development of spatial entities in certain data types
such as moving point, the balloon model, spatial abstract data
types.
These models consider that they do not have any time
constraints during the query resolution mechanism (obviously
every one would like to have a short response time of the
system that implements the model, but every relevant data will
be provided in the final results).
Our goal is to promote data definition properties to introduce
an order of evaluation in a DB query resolution mechanism. In
real time application, the DBMS may not have time to
compute the complete answer of a query. Nevertheless, at
least part of the answer could be provided as a result. The
problem is to define which part should be provided first.
Starting with a conventional definition of a DB schema based
on a pair (attribute name, domain of validity), we must
increase this definition with several notions since choices
should be performed by the DBMS. The architecture is close
to Dynamic Data Driven Real Time Management. We start
with an Abstract Model as defined in (Forlizzi et al. 2000).
The idea is to represent the temporal development of spatial
entities in certain data types such as moving point or moving
region. Suitable operations are provided on these types to
support querying. Such data types can be embedded as
attribute types into object-relational or other data models. It
allows one to focus on the essential concepts and not get
bogged down by representation details.
In the following, we consider a DB schema defined as a set of
pairs (attribute name, domain of validity). The domain may be
as complex as we like, e.g., a spatial representation with or
without time management labels. The only requirement is that
an attribute with a time management label must be
documented, i.e., we do not accept a null value for the time
management label when an attribute is defined as time-
constrained.

MODELING TOOLS

To achieve our goals, we introduce in the DB schema several
concepts to help the query resolution engine to define the
relevant data to evaluate first: extended functional
dependency, strong dependency, the characterized aggregate
functions and the lattice.

Extended Functional Dependency
A functional dependency, as defined in conventional relational
DBs (Ullman, 1995), indicates an assertion on the real world
based on a 1 to 1 relationship.
Definition: Given a relation R of a DB schema, an attribute
(or a minimal set of attributes) X in R is said to functionally
determine another attribute (or set of attributes) Y, also in R,
(written X → Y) iff each X value is associated with precisely
one Y value.
In this case, cycles are allowed. This definition is
straightforward in the sense that X and Y must belong to the
same relation (e.g., in the same class in UML for example if
we want to translate this notion to the conceptual level to
simplify).

We extend this definition by an Extended Functional
Dependency in the sense that X is in the set of attributes of an
entity E and Y may be an attribute (or a set of attribute) in
another entity E’ of the DB schema. This represents the
extension of the 1 to 1 relationship in a conventional Entity-
Relationship diagram or the 1-1 Association in a class diagram
in UML.
The granule “sub-set” as defined in (Mainguenaud, 1994),
applied with the inclusion operator provide the relevant
candidates to an extended functional dependency.
Definition: An attribute is defined with a granule “sub-set” iff
its semantic is valid for a sub set of its spatial representation.
As an example, the value of the mayor attribute (i.e., the name
of the mayor of a town) is a valid data for a sub-set of the
spatial representation of a town (i.e., a mayor is also
responsible for a sub part of the town). The value of the
population is not valid for a sub-set of the spatial
representation (i.e., no guaranty is provided that all the
inhabitants of the town live in this specific sub-set of the
spatial representation of the town).
The application of the inclusion operator means that a park is
spatially included into a town. Therefore, an attribute
classified as “sub-set” of a town is still valid for the park since
the park represents a sub-set of the spatial representation of a
town (since it is included into the town).
The graphical representation of such a pair of attributes is
defined by a single circle on the attributes and an oriented
edge as the edge in the definition. Figure 1 represents such an
example (i.e., <idNumber> → <Mayor>).

Strong dependency
The strong dependency, as defined in (Callison, 1995),
indicates that the value of the dependent object depends
critically on the value of the influencing object.
Definition: The value of the strong dependent object is to be
updated as quickly as possible in response to any
asynchronous change to the value of the influencing object.
To assure termination of the propagation process, cycles are
prohibited in the strong-dependency relationship. We do not
consider here, the update mechanism. The important point is
that an update may occur (e.g., this update may be sporadic,
periodic or any other way).
As an example, the speed of a car should be changed as soon
as the car arrives in a new speed-limited area. In the DB
model the attribute “carSpeed” should be updated as soon as
“speedLimit” is changed (carCurrentSpeed -->
currentSpeedLimit). carCurrentSpeed is the strong dependent
object and currentSpeedLimit is the influencing object.
The graphical representation of the strong dependency
between such a pair of attributes (i.e., the strong one with a
double circle and the influencing one with a single circle) is
defined by an edge between these attributes (i.e., an oriented
edge from the dependent one to the influencing one). Figure 1
represents such an example - i.e., <<carCurrentSpeed>> --> <
currentSpeedLimit> .
Extended Functional Dependencies may accept cycles since
they represent a semantic link (i.e., even without changes).
Nevertheless, two attributes may be linked by an Extended
Functional Dependency and by a strong dependency.

Characterized Aggregate Function
Aggregate functions may be useful to sum up a set of data and
introduce several levels of abstraction. An aggregate function
can be provided with several critical precisions. The
computational complexity of such a function is very important
in a time-constraint environment. We define three levels of
complexity: Linear (e.g., find the average value within a set of
values), Quadratic (e.g., the number of tuples that satisfy a
join operation in SQL), Super (i.e., higher than quadratic).
Managing navigation applications very often requires the
definition of predictions (e.g., on the traffic, schedules). The
aggregate functions may use a regression technique, an
interpolation or any other types of models. The operations do
not belong to the kernel of a DBMS. The application
developer must provide an extra operator such as for example
a trigger or an add-on operator in object-relational DBMS.
In a time constraint environment, the characteristic of an
external evaluation of a function is important. The
characterization of the function may be introduced with the
Data Definition Language. As an example (Deshpande and
Madden, 2006) provides a specific data definition order to
create a view based on an interpolation technique (in this case
for a set of sensors).

Lattice
Lattices offer a natural way to formalize and study the
ordering of objects using a general concept known as the
poset, partially ordered set (Buckley and Harary, 1990). A
lattice as an algebra is equivalent to a lattice as a poset. Two
elements of a lattice are incomparable if neither dominates the
other.
We rely in this context on the ANSI/SPARC definition of a
DB schema. The three levels are: the external level (i.e.,
views), the conceptual level (i.e., the global information
system schema) and the physical representation (e.g., files,
data organization or access with the file management
primitives of the operating system). Only the external level is
concerned by the proposed extensions. The conceptual level is
global for an information system. It does not take into account
the specificities of applications. Within the external level, we
can take the whole semantics of an application. The data set is
reduced (i.e., a sub set of the whole available schema in the
conceptual level).
Depending on an application, the same entity may be
considered as very important or as quite marginal. We take
advantage of this difference of semantics to specify an order
on the data model. We consider three levels: Essential
attributes, Important attributes, Useful attributes.
Within a level the DB designer does not define an order. In
this case, we have a partial order involved by the three levels.
Let us consider the DB schema defined as a view on a global
schema. Let us consider a mobile application using this
schema (e.g., the maintenance of parks in a tourist region).
Figure 2 presents the associated lattice.

Essential = {Park.name, Car.carCurrentSpeed,
PartRoute.speedLimit}

Useful = {Town.mayor,
Route.averageSpeed}

Important = {Town.workInProgress}
Figure 2 – Associated lattice

As an example, a query is defined on such a schema and
involves several classes. The aim is to help the DBMS to
present relevant data depending on the time constraints. To
simplify the presentation let us consider the following
relational algebraic operators (Ullman, 1995): Π, the
projection operator (i.e., the relevant attribute); σ, the
selection operator (i.e., the conditions to be verified)
An example of a simplified query, Q, is defined on the toy DB
schema using these operators.

Q = Π (σ Route,origin = ‘ParkStartPoint’ and destination
= “ParkArrivalPoint”),

Park.name, carCurrentSpeed, Route.averageSpeed,
Park.leisures).

This query requires providing carCurrentSpeed that is
involved in a strong dependency. It also can provide the
responsible of the initial and arrival Park since mayor is
involved in an Extended Functional Dependency with a park
(via the idNumber of Park). It also requires the evaluation of a
function with a small complexity (i.e., linear), the computation
of the average speed (between the departure and the current
time). The DBMS is then able to elaborate an execution plan
with some specific priorities with respect to the order defined
in the lattice. From the user-interface point of view, the
presented data is not a unique query but in fact a set of
queries. As we can see in Figure 1, the priority is given to the
speed of the car versus other data. Complex data such as
providing the current works in progress in the area (an
aggregate function with a high complexity) would be provided
if the computational time is available. One can remark that the
lattice is query-independent. It is based on the application (i.e.,
the view).

Conclusion
Using these modeling tools, three levels are covered: static
model with the extended functional dependency, dynamic on
update with the strong dependency, and dynamic on resolution
with the lattice and the characterized aggregate function.
To be able to evaluate the complexity of a function the
overhead must be limited. In a time constraint environment,
we must give the priority to a “compiled” approach. By
“compiled” approach we mean that the maximum knowledge
must be introduced into the data model or into the query.
Managing a meta-base is simpler than evaluating information
for each query.
Two main approaches may be defined: the first one is based
on the query definition process; the second one is based on the
DB schema. Both of them are compatible with the
conventional view mechanism defined in DBMS. In both case,
the query resolution mechanism must be changed since a
transaction may be shortened to respect the time constraints.
Therefore, the provided attributes (and the provided values)
may be different depending on the context. The same query in
different contexts does not provide the same results. This is
the price to pay to provide an answer whatever the
circumstances are.
With the first approach, the query definition process specifies
the relevant relative importance of the required data. The
query language must be extended to take into account this new
requirement. The DB schema definition is still conventional.

With the second approach, the query definition process is
unchanged whatever the used device is (e.g., a mobile phone,
a PDA or a micro-computer). The query language is
unchanged. The DB schema definition is changed. The data
model is increased with new concepts. The main advantage is
that an application can be designed as a set of queries and the
queries are device-independent (that does not mean that the
presentation of the results are device independent). Therefore
the current proposition is based on an extension of the DB
schema.

PRINCIPLES

A conventional DBMS tries to provide a query result as soon
as possible. No time constraint are involved. Whatever the
conditions are, the same amount of data will be provided. In a
real time constraint environment, the amount of data will be
different since the length of a transaction may be different
depending on the conditions). We propose to use some
heuristics to enhance the accuracy of provided data. Tools
defined in the previous section will be used to improve the
accuracy of the result.

Extended Functional Dependency

A functional dependency is based on the fact that a value in
the left part of the dependency provides a single value in the
right part. One can notice that it does not mean that the right
value is a single atomic value (e.g., it could be a set). This is
not related with the notion of first normal form in relational
DB. The sub-set granule property guaranties that the data is
relevant in such a context.
Definition H1: In a time-constraint environment, we propose
to give priority to attributes that are involved in an extended
functional dependency.
It widely depends on the domain associated with the right
value. A conventional data type (e.g., integer, real, string)
allows taking full advantage of the situation. In a navigation
application, providing part of a film, a song or a full text
document that popularized the place will change the situation.

Strong dependency

A strong dependency will require that the left value of the
dependence is updated as soon as possible. The quality of data
is therefore enhanced.
Definition H2: In a time-constraint environment, we propose
to give priority to attributes that are involved in a strong
dependency.
We do not have the guaranty that the update has been
performed. The update has been requested but may not have
already been performed. Nevertheless, if the update has been
performed, the quality of the answer is enhanced since the
value is up to date.

Characterized aggregate function

Conventional relational DBMSs use some heuristics in the
execution plan. As an example, selections are performed
before joins since the natural complexity of the selection is

linear (i.e., no index is used) and since the natural complexity
of the join is quadratic. We propose to use a similar heuristic.
Definition H3: In a time-constraint environment, we propose
to give priority to characterized aggregate function that are
classified as linear, then as quadratic and then as super.
Obviously, this is only a heuristic since we may be in the same
situation as the conventional relational DBMS. As an
example, in some circumstances a join (formally defined as a
selection on a Cartesian product) may be transformed into a
(small) set of selections and therefore the complexity is now
linear. So an aggregate function classified as quadratic may be
transformed into a linear complexity depending on the amount
of data during the evaluation of an execution plan.

Lattice

The lattice is defined to provide a better relevance between
clients’ needs and the answer that could be provided. The
lattice is a heuristic by itself since it provides a partial order
within the different attributes involved in a query.
This level is the highest level of heuristic. It provides an order
between the different attributes that can be involved in the
result. The lattice defines a partial order. The lattice defines a
partial order. A relative order within a level of the lattice is
defined using H1, H2 and H3 otherwise, the order is not
important. The order of application between H1, H2, and H3
is external schema dependent (i.e., view dependent).

CONCLUSION

Taking advantage of new applications provided by Location
Based Services or GPS data requires introducing the notion of
real time constraints in the DB models. Conventional DB
models, extended to manage time and/or spatial data, provide
an opportunity to manage real applications. A new step has to
be defined to handle time constraint in the query resolution
mechanism since Location Based Services often involve real-
time constraint.
In this article, we proposed to enhance a DB model whatever
the underlying formal model is (e.g., UML, object-oriented,
object-relational). It takes into account the fact that the
response time may vary depending on the context. The
introduction of a partial order defines a relative importance
between the set of data that may be provided as a result. The
aggregate functions involved in a query may be or not
computed depending on the available time. The evaluation is
based on the computational complexity of the aggregate
function. The coherency of a DB, mainly for navigation
application is very important. Therefore, the specification of
hard coherency maintenance is provided with the strong
dependency. The Extended Functional Dependency enhances
the relevance of the attributes provided in an answer.
Following the methodology proposed in (Forlizzi et al. 2000),
our new step will be the definition of the associated discrete
model (i.e., to fix representations). Using these data definition
language extensions, a query resolution model can be defined
for a real time application context in order to present a sub-set
of the data that should be given when no resolution time
constraints are applied.

REFERENCES

Bodlaender, M.P. and P.D.V. Stok. 1998. “A transaction-
based temporal data model that supports prediction in real-
time databases”, 10th IEEE Euromicro Workshop on Real
Time System, Berlin, Germany, June.
Bossler, J.D. 2002. “Manual of geospatial science and
technology”, J.D. Bossler, J. R. Jensen, R. B. McMaster, C.
Rizos (Eds), Taylor & Francis, London, UK.
Buckley F. and F. Harary. 1990. “Distance in graphs”,
Addison-Wesley, Redwwod, California.
Callison, H.R. 1995. « A time-sensitive object model for real-
time systems », ACM Transactions on Software Engineering
and Methodology, 4(3), 287-317.
Deshpande, A. and S. Madden. (2006). “MauveDB:
Supporting model-based user views in database systems”, 25th
SIG Management Of Data (SIGMOD) Conference, Chicago,
Illinois, June.
Forlizzi, L.; R.H.Guting; E. Nardelli; and M. Schneider M.
2000. “A data model and data structures for moving objects
databases”, 19th SIG Management Of Data (SIGMOD)
Conference, Dallas, Texas, May.
Gregersen, H. 2006. “The formal semantics of the TimeER
model”, 3rd Asia-Pacific Conference on the Conceptual
Modelling, Hobart, Australia, January.
Guting, R.H.; V.T. de Almeida; and Z. Ding. 2006. “Modeling
and querying moving objects in networks”, Journal of Very
Large Data Base (JVLDB), 15(2), 165-190.
Kennedy, M. 2002. “The Global Positionning System and GIS
: an introduction”, Taylor & Francis, London, UK.
Liu, Y.; J. Zheng; L. Yan; and Y. Xu. 2005. “Study on the real
time navigation data model for dynamic navigation”, IEEE
GeoScience and Remote Sensing Symposium, Seoul, South
Corea, July.
Mainguenaud, M. 1994. “Consistency of Geographical
Information System Query Results”, Computers, Environment
and Urban Systems, No18, 333-342, Pergamon-Elservier.
Parent C.; S. Spaccapietra; and E. Zimanyi. 1999. “Spatio-
temporal conceptual models: data structures + space + time”,
ACM GIS Conference, Kansas City, Missouri, November.
Sun, Y.; E.M. Belding-Royer; X. Gao; and J. Kempf. 2007.
“Real-time traffic support in heterogeneous mobile networks”,
Wireless Network, 13, 431-445, Springer.
Taina, J. and S.H. Son. 1997. “Requirements for real-time
object-oriented database models – How much is too much ?”,
9th Euromirco Workshop on Real Time System, Toledo,
Spain, June.
Ullman, J.D. 1995. ”Database and Knowledge-Base Systems –
Volume I : Classical Database Systems”, Computer Science
Press, Rockville, Maryland.

BIOGRAPHY

MICHEL MAINGUENAUD was the head of the
Engineering Information System department of the Institut
National des Sciences Appliquees de Rouen (INSA-Rouen)
and then the Dean for Education of INSA-Rouen. He is
currently the director of the CNRS/GDR2340 SIGMA-Cassini
research group (www.sigma-cassini.org).

Figure 1 – Toy database schema

