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Abstract

In Europe, more than 250 major accidents involving industrial sites under the Seveso Directive
were reported since 2010. Despite the regulations in place to prevent such accidents and minimize
their impact, managing risk after such disasters remains a complex challenge. Once an industrial
disaster occurs, preliminary on-the-ground information is collected to determine the extent of the
accident, and operational decisions need to be made depending on the hazardous nature of the
products involved and the extension of the affected area. In this thesis, we explore the realm of
complex scheduling problems closely linked to risk factors stemming from the treatment (cleaning
or neutralizing) of hazardous substances accidentally released by industrial sources. The primary
objective is to develop effective optimization models and solutions that address the challenges faced
by industries and logistical operations. In Chapter 3, we propose a new optimization problem
as the Resource-Constrained Project Scheduling Problem with Risk and Priorities (RCPSP-RP),
which combines Operations Research, Chemical Kinetics, and optimization methodologies. The
RCPSP-RP integrates risk assessment and task prioritization, providing a framework for schedul-
ing on-site operations to physically clean potential hazards. However, since the RCPSP-RP is a
novel contribution, it employs a simplified approach that does not consider product transformation
over time. That is, it is assumed that the state of the pollutants does not change with time. In
Chapter 4, on the other hand, we introduce the Resource-Constrained Project Scheduling Prob-
lem with Risk and Product Transformation Dynamics (RCPSP-RTD) as a specialization of the
RCPSP-RP, where the dynamic nature of product transformations are taken into consideration in
the optimization process. Since the RCPSP-RTD accounts for time-dependent product evolution
due to product transformation and degradation, the RCPSP-RTD offers a more realistic approach
to optimizing risk mitigation. We provide mathematical formulations for both the RCPSP-RP
and the RCPSP-RTD. In addition, an Iterated Local Search (ILS) metaheuristic is developed, and
automatic calibrated by a tuning technique, for both problems. We propose several problem sce-
narios and investigate their numerical results obtained by the different optimization methods. The
methods, in conjunction with the already existing risk management plans, can obtain interesting
insights to be applied to realistic scenarios. The refinement of models to capture the complete
dynamics of chemical transformations, alongside exploring the interplay between scheduling deci-
sions and dynamic processes, holds promise. Expanding these models to embrace multi-objective
optimization, encompassing objectives beyond risk, could render the framework more versatile and
applicable. Leveraging advanced computational techniques, including machine learning and simu-
lation, presents opportunities for enhancing the accuracy of risk mitigation strategy prediction.





Résumé

En Europe, plus de 250 accidents majeurs impliquant des sites industriels soumis à la Directive
Seveso ont été signalés depuis 2010. Malgré les réglementations en place pour prévenir de tels
accidents et minimiser leur impact, la gestion des risques après de telles catastrophes reste un défi
complexe. Une fois qu’une catastrophe industrielle se produit, des informations préliminaires sur
le terrain sont collectées pour déterminer l’étendue de l’accident, et des décisions opérationnelles
doivent être prises en fonction de la nature dangereuse des produits impliqués et de l’extension
de la zone affectée. Dans cette thèse, nous explorons le domaine des problèmes de planification
complexes étroitement liés aux facteurs de risque découlant du traitement (nettoyage ou neutrali-
sation) de substances dangereuses libérées accidentellement par des sources industrielles. L’objectif
principal est de développer des modèles et des solutions d’optimisation efficaces qui répondent
aux défis auxquels sont confrontées les industries et les opérations logistiques. Dans le Chapitre
3, nous proposons un nouveau problème d’optimisation sous la forme du Resource-Constrained
Project Scheduling Problem with Risk and Priorities (RCPSP-RP), qui combine la recherche
opérationnelle, la cinétique chimique et les méthodologies d’optimisation. Le RCPSP-RP intègre
l’évaluation des risques et la priorisation des tâches, fournissant un cadre pour la planification
des opérations sur site pour nettoyer physiquement les dangers potentiels. Cependant, puisque le
RCPSP-RP est une contribution nouvelle, il emploie une approche simplifiée qui suppose que l’état
des polluants ne change pas avec le temps. Dans le Chapitre 4, en revanche, nous introduisons le
Resource-Constrained Project Scheduling Problem with Risk and Product Transformation Dynam-
ics (RCPSP-RTD) comme une spécialisation du RCPSP-RP, où la nature dynamique des transfor-
mations de produits est prise en compte dans le processus d’optimisation. Puisque le RCPSP-RTD
tient compte de l’évolution temporelle des produits due à la transformation et à la dégradation
des produits, le RCPSP-RTD offre une approche plus réaliste pour optimiser l’atténuation des
risques. Nous fournissons des formulations mathématiques pour le RCPSP-RP ainsi que pour le
RCPSP-RTD. De plus, une métaheuristique Iterated Local Search (ILS) est développée et automa-
tiquement calibrée par une technique de réglage de paramètres, pour les deux problèmes. Nous
proposons plusieurs scénarios de problèmes et investiguons leurs résultats numériques obtenus par
les différentes méthodes d’optimisation. Les méthodes, conjointement avec les plans de gestion
des risques déjà existants, peuvent obtenir des aperçus intéressants à appliquer à des scénarios
réalistes. Le raffinement des modèles pour capturer la dynamique complète des transformations
chimiques, ainsi que l’exploration de l’interaction entre les décisions de planification et les pro-
cessus dynamiques, est prometteur. L’expansion de ces modèles pour embrasser l’optimisation
multi-objectifs, englobant des objectifs au-delà du risque, pourrait rendre le cadre plus polyvalent
et applicable. L’exploitation de techniques de calcul avancées, y compris l’apprentissage automa-
tique et la simulation, présente des opportunités pour améliorer la précision de la prédiction de la
stratégie d’atténuation des risques.





Contents

List of figures 11

List of tables 13

List of algorithms 15

List of acronyms 17

1 Introduction 21
1.1 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Literature review 25
2.1 Introduction to scheduling problems and notations . . . . . . . . . . . . . . . . . . . 25

2.1.1 Machine environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.1.2 Characteristics of tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1.3 Optimality criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 The resource-constrained project scheduling problem . . . . . . . . . . . . . . . . . . 28
2.2.1 Problem variants and extensions . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.2 Optimization methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Related problems and applications in disaster relief . . . . . . . . . . . . . . . . . . . 40
2.3.1 Humanitarian logistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.2 Improving accessibility in post-disaster urban networks . . . . . . . . . . . . 41
2.3.3 Scheduling problems in emergencies . . . . . . . . . . . . . . . . . . . . . . . 43
2.3.4 Scheduling problems under uncertainties . . . . . . . . . . . . . . . . . . . . . 44
2.3.5 Position of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 The resource-constrained project scheduling problem with risk and priorities 47
3.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1.1 Estimating an upper bound for the operation horizon . . . . . . . . . . . . . 49
3.1.2 Priority constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.1.3 Mathematical formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Iterated local search for the RCPSP-RP . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2.1 The solution representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2.2 The constructive heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

9



3.2.3 The evaluation procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2.4 The local search and the N solution neighborhood . . . . . . . . . . . . . . . 58
3.2.5 The perturbation phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.2.6 The acceptance criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2.7 The termination condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3 Computational experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3.2 Analysis of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4 The resource-constrained project scheduling problem with risk and product
transformation dynamics 75
4.1 Introduction to risk assessment and parameter estimation . . . . . . . . . . . . . . . 76
4.2 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.1 Task duration and operation speed . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2.2 Estimating an upper bound for the time horizon . . . . . . . . . . . . . . . . 82

4.3 Mathematical formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.4 Iterated local search for the RCPSP-RTD . . . . . . . . . . . . . . . . . . . . . . . . 86

4.4.1 The solution representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.4.2 The constructive heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.4.3 The product degradation and transformation schemes . . . . . . . . . . . . . 87
4.4.4 The cleaning and the neutralizing schemes . . . . . . . . . . . . . . . . . . . . 88
4.4.5 The evaluation procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.4.6 The local search and the N solution neighborhood . . . . . . . . . . . . . . . 89
4.4.7 The perturbation phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.5 Computational experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.5.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.5.2 Analysis of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5 Conclusions and future research directions 107

A Source data and plots 119
A.1 List of optimal solution plots for the scenario without sequence-dependent setup times122
A.2 List of optimal solution plots for the scenario with sequence-dependent setup times . 127



List of figures

3.1 Example solution with a total area (overall risk) of 16.3. . . . . . . . . . . . . . . . . 49
3.2 Priority relations for the (3.2a) strict and (3.2b) moderate priority policies. . . . . . 51
3.3 Special case: graph fragment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4 Special case: non-optimal solution without waiting time. . . . . . . . . . . . . . . . . 54
3.5 Special case: optimal solution with waiting times. . . . . . . . . . . . . . . . . . . . . 55
3.6 Example of a hexagonal grid instance. . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.7 Comparison of optimal solutions for the strict and no priority policies. Purple regions

are the overlapping of the solutions in orange and blue. The respective objective
functions are (3.7a) 40.1 and 33.8; and (3.7b) 183.3 and 172.5. . . . . . . . . . . . . 66

3.8 Color maps representing CPLEX and ILS running times for the scenario without
sequence-dependent setup times. The gray scale, from light to dark, stands for the
number of seconds (in log scale) employed to find the best solution. Each gray box
represents an instance (|Vd|,K). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.9 Color maps representing CPLEX and ILS running times for the scenario with sequence-
dependent setup times. The gray scale, from light to dark, stands for the number of
seconds (in log scale) employed to find the best solution. Each gray box represents
an instance (|Vd|,K). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.10 Comparison of optimal solutions for the strict and no priority policies. Purple regions
are the overlapping of the solutions in orange and blue. The respective objective
functions are (3.10a) 77.5 and 63.4; and (3.10b) 300.6 and 272.1. . . . . . . . . . . . 71

3.11 Comparison of optimal solutions between the first (dark orange) and the second (light
orange) problem scenarios. The respective objective functions are (3.11a) 40.1 and
77.5; and (3.11b) 183.3 and 300.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1 Schematic representation of a chemical transformation model. Adapted from Görlitz
et al. (2011). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 Cleaning operation scheme. The rectangle represents a site with products A, B and
C before and after a cleaning operation. . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 Neutralizing operation scheme. The rectangle represents a site with products A, B
and C before and after a neutralizing operation. The target product A is transformed
into C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4 Product degradation schemes for the problem scenario 1. . . . . . . . . . . . . . . . . 94
4.5 Evolution of the overall risk for each product degradation scheme (problem scenario

1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

11



12 LIST OF FIGURES

4.6 Product degradation schemes for the problem scenario 2. . . . . . . . . . . . . . . . . 96
4.7 Evolution of the overall risk for each product degradation scheme (problem scenario

2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.8 Color maps representing CPLEX and ILS running times for the problem scenario 1.

The gray scale, from light to dark, stands for the number of seconds (in log scale)
employed to find the best solution. Each gray box represents an instance. . . . . . . 101

4.9 Color maps representing CPLEX and ILS running times for the problem scenario 2.
The gray scale, from light to dark, stands for the number of seconds (in log scale)
employed to find the best solution. Each gray box represents an instance. . . . . . . 104



List of tables

2.1 General problem input data and description. . . . . . . . . . . . . . . . . . . . . . . 33
2.2 Summary of the application works related to the RCPSP-RP and the RCPSP-RTD. 46

3.1 Example problem input and optimal solution. . . . . . . . . . . . . . . . . . . . . . . 49
3.2 General problem input data and description. . . . . . . . . . . . . . . . . . . . . . . 51
3.3 Comparison of non-optimal (Ci) and optimal (C∗

i ) solutions. . . . . . . . . . . . . . 55
3.4 Summary of the benchmark instance parameters. . . . . . . . . . . . . . . . . . . . . 61
3.5 Best configuration returned by IRACE for ILS perturbation strength parameter ac-

cording to problem scenario × priority policy. . . . . . . . . . . . . . . . . . . . . . . 62
3.6 Results for the problem scenario without sequence-dependent setup times. . . . . . . 65
3.7 Results for the problem scenario with sequence-dependent setup times. . . . . . . . . 69
3.8 Comparison between first and second problem scenario: relative increase in objective

function values resulted by sequence-dependent setup times. Only optimal solutions
were considered. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1 Summary of RCPSP-RP and RCPSP-RTD problem features. . . . . . . . . . . . . . 76
4.2 Table of problem input data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.3 Summary of the parameter values for the problem scenario 1. . . . . . . . . . . . . . 94
4.4 Summary of the parameter values for the problem scenario 2. . . . . . . . . . . . . . 96
4.5 Best configuration returned by IRACE for ILS’ perturbation strength parameters for

the two problem scenarios. Tuples correspond to the values of (ρ1, ρ2). . . . . . . . . 98
4.6 Results for the problem scenario 1 (no degradation, p2 degradation, p1 degradation,

p2 and p1 degradation benchmarks). . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.7 Results for the problem scenario 2 (no degradation, p1 degradation, p2 degradation,

p1 and p2 degradation benchmarks). . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

A.1 Running times (in seconds) for CPLEX and ILS for the RCPSP-RP without sequence-
dependent setup times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

A.2 Running times (in seconds) for CPLEX and ILS for the RCPSP-RP with sequence-
dependent setup times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

13



14 LIST OF TABLES



List of algorithms

1 Pseudo-code for the Iterated local search . . . . . . . . . . . . . . . . . . . . . . . . . 56
2 Pseudo-code for the constructive heuristic . . . . . . . . . . . . . . . . . . . . . . . . . 57
3 Pseudo-code for the evaluation procedure (E) . . . . . . . . . . . . . . . . . . . . . . . 57
4 Pseudo-code for the swap procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5 Pseudo-code for the local search heuristic . . . . . . . . . . . . . . . . . . . . . . . . . 58
6 Pseudo-code for the perturbation procedure . . . . . . . . . . . . . . . . . . . . . . . . 59

7 Pseudo-code for D(i, t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
8 Pseudo-code for D̄(i, p, t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
9 Pseudo-code for the constructive heuristic . . . . . . . . . . . . . . . . . . . . . . . . . 87
10 Pseudo-code for the degradation scheme (D) . . . . . . . . . . . . . . . . . . . . . . . 88
11 Pseudo-code for the transformation scheme (M) . . . . . . . . . . . . . . . . . . . . . 88
12 Pseudo-code for the cleaning scheme (Q) . . . . . . . . . . . . . . . . . . . . . . . . . 89
13 Pseudo-code for the neutralizing scheme (Q̄) . . . . . . . . . . . . . . . . . . . . . . . 89
14 Pseudo-code for the evaluation procedure (E) . . . . . . . . . . . . . . . . . . . . . . . 90
15 Pseudo-code for the swap procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
16 Pseudo-code for the local search heuristic (L) . . . . . . . . . . . . . . . . . . . . . . . 91
17 Pseudo-code for the perturbation procedure (P1) . . . . . . . . . . . . . . . . . . . . . 91
18 Pseudo-code for the perturbation procedure (P2) . . . . . . . . . . . . . . . . . . . . . 92

15



16 LIST OF ALGORITHMS



List of acronyms

ACS Ant Colony System. 38, 39

ALNS Adaptive Large Neighborhood Search. 41

CTSP-d Capacitated Traveling Salesman Problem with d–relaxed priority rule. 41

DAG Direct Acyclic Graph. 50

DCSP Debris Clearance Scheduling Problem. 42

DSUN Disruption Scheduling problem on Urban Networks. 42

EDD Earliest Due Date. 31

ESRP Early Stage Response Problem. 43

FIFO First In, First Out. 31

GA Genetic Algorithm. 36, 37

GRASP Greedy Randomized Adaptive Search Procedure. 41–43

HTSP Hierarchical Traveling Salesman Problem. 41

ILS Iterated Local Search. 5, 7, 13, 23, 24, 39–41, 43, 48, 55, 56, 59–64, 66–68, 70, 73, 86, 95, 104,
107, 108

IRACE Iterated Racing for Automatic Algorithm Configuration. 13, 48, 62

K-ARCP Multivehicle Synchronized Arc Routing Problem to Restore Network Connectivity. 42

LB Lower Bound. 62, 95, 96

LIFO Last In, First Out. 31

17



18 List of acronyms

LITIS Laboratoire d’Informatique, de Traitement de l’Information et des Systèmes. 60, 92

LNS Large Neighborhood Search. 43

LPT Longest Processing Time. 31

LST Latest Start Time. 39

MCMC Markov-Chain Monte Carlo. 76, 77

MILP Mixed Integer Linear Programming. 32, 35, 41, 43, 44, 75, 108

MRSU Multi-Resource Scheduling Model under Uncertainty. 44, 45

NRCSRP Network Repair Crew Scheduling and Routing Problem. 42

OR Operations Research. 22

PDDT Pulse Disaggregated Discrete Time. 33, 34

PSPLIB Project Scheduling Problem Library. 32, 36, 37, 39

RCESP Resource-Constrained Emergency Scheduling Problem for Forest Fires with Priority Ar-
eas. 44

RCPSP Resource-Constrained Project Scheduling Problem. 22, 23, 25, 28–30, 32, 35–40, 47, 50,
72

RCPSP-RP Resource-Constrained Project Scheduling Problem with Risk and Priorities. 5, 7,
13, 22, 23, 25, 41, 45–50, 60, 63, 71–73, 75, 107–109

RCPSP-RTD Resource-Constrained Project Scheduling Problem with Risk and Product Trans-
formation Dynamics. 5, 7, 13, 22, 23, 25, 45, 46, 75, 83, 85, 91, 98, 103, 108, 109

RCPSP-TT Resource-Constrained Project Scheduling Problem with Transfer Time. 29

RUASP Rescue Unit Assignment and Scheduling Problem. 43

SA Simulated Annealing. 37, 38

SDCP Stochastic Debris Clearance Problem. 44

SDDT Step Disaggregated Discrete Time. 34

SDST Sequence-Dependent Setup Times. 23, 47

SPT Shortest Processing Time. 31

SRP-CD Scheduling vehicle Routing Problem to Clean Debris. 43

STT Shortest Setup Time. 31

TS Tabu Search. 37, 38



List of acronyms 19

UB Upper Bound. 62, 95

VNS Variable Neighborhood Search. 39, 41, 42

VRP Vehicle Routing Problem. 31, 41, 42

VRP-RPR Vehicle Routing Problem with Relaxed Priority Rules. 41



20 List of acronyms



Chapter 1

Introduction

The unintentional release of dangerous substances from industrial sources into the environment
may occur as a result of fire, explosion or spills in the occurrence of a technological or a natural
disaster (Keim, 2011). In despite of regulations in place to prevent such accidents and to minimize
their impact (see, e.g., the Seveso-III Directive (2018)), operations after industrial disasters remain
a challenging task. This thesis aims to address these challenges by investigating and modeling
potential problem scenarios and developing optimization models and techniques. The goal is to
provide valuable insights and efficient solutions capable of handling the intricate interplay between
scheduling, resource allocation, and risk mitigation. Specifically, the focus lies on scenarios where
industrial accidents involving hazardous substances require timely and strategic resource allocation
to minimize potential risks to the environment, human well-being, and the economy.

This study was initially motivated by the 2019 Lubrizol factory fire in Rouen (France), in which
a chemical plant caught fire, generating a toxic cloud with toxic particles that reached the city
center and the north of France (eMARS, 2019). According to Reuters (2019), “people [were] told
not to eat produce from their gardens,” and farmers were “not allowed to sell milk, vegetables and
other products harvested in the area” in the days following the accident. It was later confirmed
that approximately 5,253 tons of multi-purpose additives, oil, detergent and other chemicals were
burned in the fire, raising a generalized concern about the impact of the released substances on
human health, the environment and the local economy (Seine-Maritime, 2019).

Unfortunately, the 2019 Lubrizol factory fire accident is not an isolated case. In Europe, on av-
erage, about 24 major industrial accidents involving dangerous substances are reported annually
(European Commission, 2021). Once an industrial disaster occurs, preliminary on-the-ground in-
formation is collected to determine the extent of the accident, and operational decisions need to
be made depending on the hazardous nature of the products involved and the extension of the af-
fected area. In some cases, dangerous pollutants can be absorbed by plants and soil or infiltrate the
ground, contaminating ground waters. Moreover, it is also possible that volatile products transform
into other types of – potentially more harmful – byproducts (Görlitz et al., 2011).

The risk of environmental impacts over the population and the affected areas require the deployment
of specialized teams and equipment to remove or neutralize the hazardous pollutants. In addition

21



22 Chapter 1. Introduction

to the environmental impact, the risk to human health increases in cases of proximity between
industrial and urban areas. Thus, in order to take rational actions, good decision-making models
are critical at this point.

Some studies in the literature have tackled related problems from the Operations Research (OR)
perspective. For instance, scheduling or integrated scheduling-routing applications have been de-
veloped to provide decision-making support for emergency response to natural catastrophes (Wex
et al., 2014; Tirkolaee et al., 2020), forest fires (Ren and Tian, 2016; Wu et al., 2019; Wang et al.,
2020; Bodaghi et al., 2020), and provide strategical (Duque and Sörensen, 2011; Duque et al., 2016;
Sakuraba et al., 2016; Barbalho et al., 2023) and operational (Pena et al., 2023) support after
natural disasters. However, to the extent of our knowledge, there are a few works focusing on in-
dustrial disasters involving dangerous substances that can cause harmful effects to the environment
or community at large from the OR point of view.

In this thesis, we investigate the post-catastrophe operations in the event of industrial disasters,
where a group of specialized teams and equipment are deployed to clean up areas contaminated
by dangerous substances, where the objective is to mitigate the impact of accidents as quickly
and effectively as possible. We explore various optimization techniques commonly employed in
the literature to solve complex scheduling problems. The investigation encompasses mathematical
formulations, metaheuristics and extensive computational experiments, aiming to provide insights
into the interplay between scheduling, resource allocation, and risk management. In this scenario,
the whole contaminated area is mapped as a connected graph, where each contaminated site is
represented as a node with an associated risk, which depends on the hazardous nature of the
pollutants present on it. Teams can be deployed in the area covered by the graph by traversing
secured paths to clean or to neutralize the dangerous products present on each node.

In this context, we provide an introduction to the core concepts and notations pertaining to
scheduling problems, laying the foundation for subsequent discussions. In addition, we analyze
the Resource-Constrained Project Scheduling Problem (RCPSP) as a baseline for scheduling tasks
under resource constraints. Despite RCPSP’s efficacy, it becomes evident that its generality might
not encapsulate all the nuances of real-world scheduling challenges. Hence, common extensions and
variations of the RCPSP in the literature are also explored.

In Chapter 3, we investigate the Resource-Constrained Project Scheduling Problem with Risk and
Priorities (RCPSP-RP), a specialized model that adds a layer of complexity by considering risk
factors associated with tasks. The objective is to develop an understanding of how risk influences
scheduling decisions and to propose optimization approaches that efficiently balance scheduling
objectives while mitigating potential risks. In this approach, it is assumed that product amounts
remain constant over time, overlooking the dynamic nature of chemical transformations. This
allows for solutions that can be computed efficiently while still accounting for essential risk factors.
However, the complexities arising from the chemical kinetics involved in the natural transformations
of products released into the environment introduce challenges that impact the feasibility of the
RCPSP-RP model.

To extend the RCPSP-RP, in Chapter 4, we introduce the Resource-Constrained Project Scheduling
Problem with Risk and Product Transformation Dynamics (RCPSP-RTD). The RCPSP-RTD is a
specification of the RCPSP-RP that focuses on the intricate interplay between OR and Chemical
Kinetics as a model for optimizing strategies and mitigating risks, considering both resource allo-
cation and the dynamic transformations of products. By expanding the RCPSP-RP to encompass
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the dynamics of product transformations, the RCPSP-RTD strives to enhance the applicability of
risk management solutions in situations involving the release of hazardous substances.

1.1 Thesis structure

This thesis is composed of five chapters. In the first chapter, we provide the general context. The
second chapter is dedicated to a bibliographical review of the scientific literature related to this
thesis. In the third chapter, we introduce the RCPSP-RP, and in the fourth chapter, we investigate
the RCPSP-RTD, an extension of the RCPSP-RP that models the dynamic transformation of
products. In the final chapter, we present the general conclusions of this thesis by summarizing the
contributions and suggesting directions for future research. The main contributions, classified by
chapters, are presented as follows.

In Chapter 2, a general introduction to scheduling problems is provided with a review of the clas-
sic scheduling notation α|β|γ for the machine environment, characteristics of tasks and optimality
criteria. A dedicated review to the RCPSP is also presented, with some extensions and variants com-
monly found in the literature, strong time-indexed formulations, exact and metaheuristics methods.
Finally, some relevant scheduling and/or integrated scheduling routing studies in the post-disaster
relief literature are reviewed.

In Chapter 3, the RCPSP-RP is introduced and analyzed. In this context, the polluted nodes in the
graph are mapped as tasks with associated static risk and processing time attributes. Resources
represent the specialized teams that are deployed from a specific node in the graph (called the depot)
to perform the cleaning operation and mitigate risk by processing all mapped tasks. We consider
that travel times when traversing the edges are implied based on their traveling distance. More
specifically, these travel times are treated as Sequence-Dependent Setup Times (SDST). In addition,
the RCPSP-RP performs task prioritization by employing priority constraints between tasks based
on their risk attribute. As a consequence, tasks with higher risk take precedence over lower risk ones.
In order to gain insights on the impact that task prioritization may have on the quality of solutions,
we follow a relaxation schema inspired by Panchamgam et al. (2013) by introducing a relaxation
threshold that partially or completely relaxes priority constraints according to the stated level of
strictness. Thus, providing strict, moderate and no priority policies. We propose mathematical
formulations inspired by an exact formulation for the classical RCPSP from Christofides et al.
(1987). Finally, an Iterated Local Search (ILS) metaheuristic is also developed to cope with large
problem instances, when optimal – or even integer – solutions cannot be computed by the exact
methods in reasonable time. We perform experiments on a set of theoretical instances to investigate
different problem scenarios and the three types of priority policies.

In Chapter 4, the RCPSP-RTD, an extension to the RCPSP-RP is investigated, where we consider
that products may naturally transform into other products over time, at a specific rate; and the
resulting product can be more or less risky than their parent product. The resulting products may
also naturally degrade over time, which means their presence can vanish or disperse over time. The
objective remains to schedule a sequence of on-site operations involving a set of heterogeneous teams
to mitigate (by cleaning or neutralizing) the hazardous products present on contaminated sites. We
consider that each contaminated site contains an initial presence of one or more dangerous products
and, for every product, a numerical risk is associated corresponding to its hazardous nature. The
more dangerous the product is, the higher the risk to to the environment and human health the
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product will be. We propose a mathematical formulation and an ILS metaheuristic to cope with
large problem instances. Several computational experiments are performed in order to analyses
different problem scenarios and transformation rates parameters.

In Chapter 5, we provide some perspectives and future works. For instance, further exploration into
realistic models that encompass the complete dynamics of chemical transformations is envisaged.
This involves developing more accurate ways to account for the transformation dynamic processes
of substances and their subsequent impact on risk levels. In addition, the interaction between
scheduling decisions and these dynamic processes presents a rich area for investigation. Optimizing
scheduling strategies while considering the time-dependent transformations of substances can lead
to even more effective risk mitigation plans.



Chapter 2

Literature review

In this chapter, we provide an introduction to fundamental concepts and notations used in schedul-
ing problems, including a dedicated section for the RCPSP, outlining extensions and commonly
encountered applications in existing literature. In addition, we provide an overview that highlights
the similarities and differences between the RCPSP-RP (introduced in Chapter 3), the RCPSP-RTD
(presented in Chapter 4) and other relevant scheduling and integrated scheduling-routing problems
and their applications documented in the literature.

2.1 Introduction to scheduling problems and notations

Scheduling problems are a family of optimization problems in which a set of tasks or activities
need to be sorted for execution in a way that minimizes or maximizes a certain objective or cost
function. It is assumed that each task can have its own requirements and constraints necessary to
its execution. The objective function can be different depending on the context, such as minimizing
the total time required to complete all tasks (makespan), minimizing the number of workforce
required, maximizing the utilization of resources or minimizing the total cost. Some examples of
scheduling problems may include:

• Workforce scheduling: determining the optimal schedule for a group of employees to complete
a set of tasks while minimizing costs and meeting constraints such as availability, shift duration
and skill levels.

• Production scheduling: determining the sequence of orders and production times to optimize
production capacity and minimize costs while meeting delivery deadlines.

• Transportation scheduling: planning the optimal routes and schedules for a fleet of vehicles to
deliver goods or services, while minimizing costs, reducing travel time, and meeting customer
demand.

• Project scheduling: determining the optimal sequence and duration of tasks necessary to
complete a project while minimizing costs, reducing time, and meeting resource constraints.

25
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Many scheduling problems are known to be NP-complete, which usually limits the problem size
that exact algorithms can handle in a practical time span. Often, heuristic and approximation
algorithms are used to find good solutions to medium and large scale instances. In the scheduling
literature, some largely used methods to solve scheduling problems include (see Section 2.2.2):

• Greedy algorithms are algorithms that perform locally optimal decisions at each step, but
may not necessarily result in a globally optimal solution.

• Genetic algorithms uses principles of natural selection (genetic material, crossover, mutation,
etc) to iteratively evolve (optimize) a population of solutions.

• Dynamic programming breaks down a complex problem into smaller sub-problems, solving
each one and combining the solutions to either find optimal solutions or calculate lower
bounds.

• Mathematical programming involves formulating and solving a mathematical optimization
problem such as a linear programming or a integer programming model to either find optimal
solutions or calculate lower bounds.

Scheduling problems are often described following the notation α|β|γ proposed in Graham et al.
(1979). This notation refers to the set of symbols or representations used to express the machine
environment (α), the characteristics of tasks (β) and the optimality criteria (γ) of scheduling prob-
lems.

2.1.1 Machine environment

The notation for the machine environment (α) describes the set of characteristics and constraints
associated with the machines used for processing/performing tasks. This notation provides critical
information for determining the feasibility of scheduling tasks to specific machines. According
to Graham et al. (1979), the machine environment can be separated in two subfields α = α1α2.
Depending on the value of α1, we may express the following machine characteristics.

If α1 ∈ {◦, I, Q,R}, then each task Jj consists of a single operation that can be processed on any
machine Mi and the processing time of task Jj on machine Mi is denoted by pij . The values of α1

correspond to the following machine environments:

• Single machine (α1 = ◦): p1j = pj .

• Identical parallel machines (α1 = I): pij = pj for any machine Mi, i.e. the processing time
of task j is the same for every machine.

• Uniform parallel machines (α1 = Q): pij = pj/ei where ei is the processing speed of machine
Mi.

• Unrelated parallel machines (α1 = R): pij = pj/eij , where eij is the processing speed of task
Jj on machine Mi.

On the other hand, if α1 ∈ {F, J,O}, the machine environment corresponds to the class of multi-
stage tasks. In this class of problem, each task Jj consists of a sequence of operations (O1j , ..., Omj)
that should be executed on different machines Mi. Operations belonging to the same task cannot
be executed simultaneously. There are three main types of shop scheduling:
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• Flow-shop (α1 = F ): each task Jj consists of m operations performed on different machines
Mi during pij time units.

• Job-shop (α1 = J): similar to flow-shop, but the number of operations is not necessarily the
same for every task, and each task may have its own order of execution on the machines.

• Open-shop (α1 = O): Similar to job-shop, however, the order of execution can vary freely.

The field α2 expresses the number of machines or resources available. If α2 is a positive integer,
then m = α2; if α2 = ◦, then m is assumed to be any arbitrary number.

2.1.2 Characteristics of tasks

The field β expresses the characteristics of tasks, providing details about the features of individual
tasks to be scheduled. According to Graham et al. (1979), the task characteristics can be separated
into four subfields β = β1β2β3β4, which denote:

• Preemption (β1 ∈ {pmnt, ◦}) states that the processing of any on-going operation may be
interrupted and resumed at a later time unit, such that: β1 = pmnt if preemption is allowed;
β1 = ◦ otherwise.

• Resource constraints (β2 ∈ {res1, res, ◦}) represents the number of resources present, such
that:

β2 = res1: there is only a single resource.

β2 = res: there are y limited resources Rh, (h = 1, ..., y), with the property that each
task Jj requires the use of rhj units of Rh to execute.

β2 = ◦: no resource constraints are specified.

• Precedence relations (β3 ∈ {prec, tree, ◦}).

β3 = prec: a precedence relation ≺ between the tasks is specified. It is derived from a
directed acyclic graph G with vertex set {1, ..., n} for some integer n. If G contains a
directed path from j to k, we write Jj ≺ Jk and require that Ji is completed before Jk
start.

β3 = tree: G is a rooted tree with either outdegree at most one for each vertex or
indegree at most one for each vertex.

β2 = ◦: no precedence relation is specified.

• Release dates (β4 ∈ {uj , ◦}).

β4 = uj : release dates are specified per task, i.e. the earliest possible start time of task
j (ESj).

β4 = ◦: we assume that all tasks are available at time 0, i.e. uj = 0.

2.1.3 Optimality criteria

Optimality criteria notation (γ) is used to define the objective function of a scheduling problem.
This notation allows a clear definition of the goals of scheduling problems, making it easier to
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evaluate the effectiveness of different scheduling algorithms and methods. For instance, given a
schedule, we can compute for each task Ji:

• The completion time Cj .

• The lateness Lj = Cj − pj or tardiness Tj = max{0, Cj − pj}, where pj is the processing time
of task j.

• The unit penalty Ui = 0 if Cj ≤ pj , 1 otherwise.

The field γ ∈ {fmax,
∑

fj} defines the optimality criterion chosen by integrating the above variables
in the form of a maximum function or a sum of functions, possibly weighted by some constant. For
example:

• The completion time of the last task or makespan is the function Cmax = max1≤j≤n{Cj}.
The makespan can be also be interpreted as the duration of the scheduling.

• The weighted sum of completion times
∑n

j=1 wjCj or the weighted sum of task lateness∑n
j=1 wjLj , for some integer n representing the number of tasks.

2.2 The resource-constrained project scheduling problem

The RCPSP, described in Pritsker et al. (1969), considers a project with J tasks labeled j = 1, ..., J
that should be scheduled on limited renewable resources such that the makespan is minimized. Each
task requires rjk units of resource k ∈ R in every time instance of its duration pj to complete. In
the classical RCPSP, task preemption is not allowed and each resource k ∈ R has a limited capacity
of Rk at any point in time. The parameters pj , rjk, and Rk are assumed to be deterministic non-
negative integers. Due to technological requirements, there are acyclic precedence relations between
some of the tasks given by sets of immediate predecessors Pj stating that a task j may only start
after all its predecessors i ∈ Pj are completed. Usually, two dummy tasks j = 0 and j = J +1 with
instant duration and no demand of resources represent the start and the completion of the project,
respectively.

The RCPSP is a generalization of the Job Shop Scheduling Problem (Graham et al., 1979), which
is a known NP-hard problem (Blazewicz et al., 1983). We review below some of the most commons
RCPSP variants in the literature, as surveyed in Kolisch (1995), Demeulemeester and Herroelen
(2002), Hartmann and Briskorn (2010) and more recently, Hartmann and Briskorn (2022).

2.2.1 Problem variants and extensions

While the RCPSP described earlier is a flexible model, it might not encompass all scheduling
scenarios and constraints encountered in real-world applications. Therefore, many researchers have
developed more general project scheduling problems or extensions that are suitable for specific
applications. These works are often developed using the standard RCPSP as a starting point, with
additional restrictions on the machine environment, task characteristics or optimality criteria.

The book Schwindt and Zimmermann (2015) covers many important models and methods for
deterministic, stochastic and robust project scheduling. Since the 1990s, several survey papers on
project scheduling have been published. The survey papers Brucker et al. (1999), Brucker (2002),
Tavares (2002), Herroelen et al. (1998), Herroelen and Leus (2005), Kolisch and Padman (2001),
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Hartmann and Briskorn (2010), Hartmann and Briskorn (2022) provide a broad overview over
variants and extensions of the RCPSP that have been proposed in the literature.

Preemptive scheduling

The classical RCPSP requires tasks to be processed in a non-preemptively fashion. That is, once a
task starts, it cannot be interrupted and must be processed continuously until it is completed (pi is
usually utilized to denote the processing time of task i). In this model, task completion times can
be directly computed in function of their start times:

Ci = Si + pi (2.1)

Some studies have extended the RCPSP to allow task preemption under certain circumstances. For
example, Shou et al. (2015) presents an optimization method that considers at most one interruption
of each task. Afshar-Nadjafi and Majlesi (2014), Vanhoucke and Coelho (2019) investigate multiple
interruptions at integer points, but setup times (see below) are employed when resuming interrupted
tasks. In Kreter et al. (2015, 2016) task interruptions are allowed due to calendar restriction on
weekends and holidays.

Setup times

Setup times are defined as the time intervals required prior to the processing of tasks. In practice,
a setup time can be seen as the time delay needed to adjust the settings and/or transportation of a
unit of resource, so that it is ready to process a task (see, e.g Allahverdi et al. (2008) for a survey
on scheduling problems with setup times).

Setup times can be resource dependent or sequence dependent. It is sequence-dependent if its
duration depends on the last processed and the next to be processed task by the same unit of
resource, and is sequence-independent if its duration depends solely on the specific type of resource
and the current task to be processed.

An interesting use case of sequence-dependent setup times can be found in Hanzálek and Š̊ucha
(2017), where authors assume that, if two tasks i and j are consecutively processed by the same
unit of resource, then between the completion time of i (Ci) and the start time of j (Sj), this unit
requires a setup of sij time units:

Ci + sij ≤ Sj (2.2)

A variant of this concept is the sequence-dependent transfer times sijk, which brings routing as-
pects into the RCPSP. The Resource-Constrained Project Scheduling Problem with Transfer Time
(RCPSP-TT) studied in Quilliot and Toussaint (2012), Poppenborg and Knust (2016), and Kadri
and Boctor (2018) is an extension that accounts that a resource k has to be transported from the
location of task i to the one of task j, with the implication that resource k remains unavailable
during its transport.

An extension similar to the RCPSP-TT can be found in Lacomme et al. (2019), which assumes that
resources must be physically transferred from task to task in order to process them. To this end, a
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limited fleet of vehicles with restricted capacity must be routed to pick up resource units and deliver
them to their assigned tasks. Transportation times can be seen as sequence-dependent setup times
that depend on the routing between two consecutive tasks processed by the same resource unit.

Precedence constraints

Precedence constraints are defined as a set of precedence relations between tasks stating that, if a
relation (i, j) with i ̸= j exists, it is required that j only start if i has been completed (Lenstra and
Rinnooy Kan, 1978; Möhring et al., 2004).

The ordered pairs (i, j) of precedence relations can be used to construct an acyclic digraph D =
(V, P ), where each node corresponds to a task and each arc represents a precedence relation in
the set of precedence constraints P(Möhring et al., 2004). Thus, the precedence constraints can be
written as:

Si + pi ≤ Sj ∀(i, j) ∈ P (2.3)

Where pi is the processing time of task i, while Si and Sj are the starting times of tasks i and j,
respectively.

In the literature, some RCPSP applications have employed precedence constraints to model op-
erational dependence between tasks (see, e.g., Sakuraba et al. (2016); Barbalho et al. (2023)); to
perform task prioritization (see, e.g., Ren and Tian (2016); Wu et al. (2019); Wang et al. (2020))
and to model complex interactions between tasks and resources (see, e.g., Hartmann and Briskorn
(2022)).

Minimal and maximal time lags

Precedence constraints can be extended by allowing minimal or maximal time lags between any
pair (i, j) of precedence-related tasks. These time lags can be employed in any of the following
ways: between (i) the starting times of both tasks; (ii) the starting time of i and the completion
time of j; (iii) the completion time of i and the starting time of j; or (iv) the completion times of
both tasks. Each of these types can be transformed into each other type if processing times are
known in advance.

For instance, time lag constraints between the starting times of consecutive tasks can be expressed
in the form (Hurink and Keuchel (2001)):

Si + lij ≤ Sj ∀(i, j) ∈ P (2.4)

Where lij is the minimal or maximal time lag. If lij ≥ 0, then task j cannot start earlier than lij
time units after the starting time of task i (minimal time lag). On the other hand, if lij < 0, then
task j cannot start earlier than |lij | time units before the starting time of task i (maximal time
lag). Expressing lij = pi is equivalent to the classical precedence constraints (2.3), while stating
lij = 0, may allow i and j to start at the same time if there are enough available resources.

A large number of works in the literature have considered the RCPSP with minimal and/or maximal
time lags, referred as RCPSP/max (see, e.g., Hartmann and Briskorn (2022)).
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Priority rules

In the scheduling literature, priority rules (or dispatching rules) are a technique by which an at-
tribute πi is assigned to each waiting task according to some method or metric. The scheduling
of tasks is then performed in such a way that the waiting tasks with smaller attribute values are
selected before the tasks with higher attribute values (Panwalkar and Iskander, 1977).

Dispatching rules can be classified into static, dynamic, local or global. Static rules are the ones
in which the task priority values do not change as a function of time, the opposite behavior is
classified as dynamic rules. Local rules are the ones that require information only about those tasks
that are waiting, while global rules require additional information about other tasks and resources
(Panwalkar and Iskander, 1977; Kolisch, 1996). For example, the following rules are often employed
as dispatching rules: Shortest or Longest Processing Time (respectively SPT or LPT); Earliest Due
Date (EDD), Shortest Setup Time (STT); First In, First Out (FIFO); Last In, First Out (LIFO),
etc. See, e. g., Panwalkar and Iskander (1977), Kolisch (1996) and Sels et al. (2012) for extensive
reviews on priority rules in the scheduling/sequencing literature.

An interesting example of task prioritization is the d-relaxed priority rule, introduced in Pan-
chamgam et al. (2013) and also examined in Doan et al. (2021); Hà et al. (2022) within the context
of the Vehicle Routing Problem (VRP) involving a single vehicle. In scenarios where certain loca-
tions require more immediate attention than others, this method establishes discrete priority groups
Π = 1, 2, ..., n, for some integer n ≥ 1, and assigns each demand node a priority group based on its
urgency πi ∈ Π. In this framework, node i is considered higher priority than node j if πi < πj . The
common requirement is to visit all nodes within a given priority group prior to moving on to the
subsequent one. Before departing from the depot, an integer threshold d ≥ 0 can be set to define
the degree of priority strictness the vehicle will adhere to. This means, depending on d, the vehicle
may visit groups πi + 1, ..., πi + d before completing its visits to all nodes in priority group πi, if
it results in a more efficient route. This innovative approach provides flexibility in adhering to the
priority structure, allowing for adaptability based on the specified threshold d.

The aforementioned d–relaxed priority rule is an interesting prioritization technique because it
provides flexible decision support according to the emergency level. Depending on the defined
threshold, the vehicle will visit nodes in a a) strict order of priorities; or may b) ignore some or c)
ignore all of them, if it leads to a shorter distance tour. The aforementioned concept can be applied
to scheduling applications by employing precedence constraints with a relaxation scheme that,
analogously, relax constraints according to the level of strictness. Thus, the precedence relations
among demand nodes can be obtained as:

P = {(i, j) ∈ V × V | πi < πj − d} (2.5)

In Chapter 3, we will use Inequalities 2.4 and the concept of the d-relaxed priority rules to implement
priority constraints, which are composed of precedence constraints with zero minimal time lag:

Si ≤ Sj ∀(i, j) ∈ P (2.6)
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2.2.2 Optimization methods

Optimization methods encompass a range of mathematical and algorithmic strategies that are
deployed to identify the most optimal solution among a set of potential solutions for a specific
problem. These techniques are used to minimize or maximize an objective function subject to a set
of constraints.

In general, methods for solving the RCPSP involve exact algorithms such as those proposed in
Brucker et al. (1999), Demeulemeester and Herroelen (1992), Demeulemeester and Herroelen (1997),
Mingozzi et al. (1998), Sprecher (2000), Demeulemeester and Herroelen (1997), Sprecher (2000);
as well as heuristics and metaheuristics such as those in Kochetov and Stolyar (2003), Kolisch and
Hartmann (2006), Mendes et al. (2009), Palpant et al. (2004), Tormos and Lova (2001), Kochetov
and Stolyar (2003) and Mendes et al. (2009). We describe below some of the methods used in the
aforementioned works.

• Mixed Integer Linear Programming (MILP): this method is used to solve combinatorial op-
timization problems by modeling problems as a minimization or maximization of a linear
function subject to several constraints written as linear equations or inequalities. In MILP
formulations, some or all the variables are constrained to be integers.

• Branch-and-bound algorithms: these methods involve partitioning the solution space into
smaller subproblems and systematically exploring each subproblem until the optimal solution
is found.

• Heuristics and metaheuristics: these methods are designed to tackle optimization problems
that are hard or even impossible to solve with exact methods. They usually employ high level
strategies to either approximate optimal values or explore the solution space in search for op-
timal solutions. Examples of metaheuristics include genetic algoritmhs, simulated annealing,
ant colony systems, local search algorithms, tabu search, etc.

In addition, a benchmark test set of instances have been proposed by Kolisch and Sprecher (1997).
This benchmark has been used by many researchers, and it is available from the Project Scheduling
Problem Library (PSPLIB). See Kolisch and Hartmann (2006) for a comparative among heuristics
and metaheuristics tested against the PSPLIB.

In the subsequent part of this section, we will present a selection of optimization methods that are
frequently encountered in the literature. These methods are employed to effectively address the
RCPSP.

Time-indexed mixed integer linear programming models

MILP models are often employed in project scheduling problems due to their high efficiency in
solving small to medium instance problems. Typically, those formulations may be classified into
three main categories: (i) time-indexed formulations; (ii) task sequencing or resource flow formu-
lations and (iii) start and end formulations. Usually, the use of time-indexed variables leads to
large models, but provides better lower bounds than other categories of MILP formulations (Sousa
and Wolsey, 1992). Below, we present two families of strong time-indexed formulations for the
non-preemptive project scheduling problem extracted from Artigues (2017).

Pulse formulations. The family of time-indexed formulations using pulse variables involves a
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pseudo-polynomial number of variables and constraints. The concept of pulse variables is that
they represent the exact time at which a task starts, i.e., Si = t if task i starts at t. To this
end, pulse binary variables xit, i ∈ V, t ∈ H are employed, such that xit = 1 if, and only if, task
i starts at period t. H is defined as the set of time units. We assume that, if a task i starts at
t, it stay in process during the interval [t, t + pi]. A strong formulation based on pulse variables
based on a disaggregated way of modeling the precedence constraints was proposed by Christofides
et al. (1987). This formulation, described below, is called the Pulse Disaggregated Discrete Time
(PDDT) formulation. The PDDT uses the problem input data summarized in Table 2.1.

Input parameter Description

V Set of tasks
P Set of precedence constraints
H Set of time units
wi Weight of task i
Bk Number of available resources of type k
bik Number of resources of type k required to process

task i
pi Processing time of task i
R Set of resources
ESi Release date or earliest possible start time of task i
LSi Latest possible start time of task i

Table 2.1: General problem input data and description.

min
∑
i∈V

wiCi s.t. (2.7)

t−pi∑
τ=0

xiτ −
t∑

τ=0

xjτ ≥ 0 ∀(i, t) ∈ P, t ∈ H (2.8)

∑
i∈V

t∑
τ=t−pi+1

bikxiτ ≤ Bk ∀t ∈ H, k ∈ R (2.9)

∑
t∈H

xit = 1 ∀i ∈ V (2.10)

Ci =
∑
t∈H

(t+ pi)xit ∀i ∈ V (2.11)

xit = 0 ∀i ∈ V, t ∈ H \ [ESi, LSi] (2.12)

xit ∈ {0, 1} ∀i ∈ V, t ∈ H (2.13)

Ci ≥ 0 ∀i ∈ V (2.14)

The objective function (2.7) minimizes the weighted sum of completion times, observing that,
according to the definition of the pulse variables, Si =

∑
t∈H txit. The inequalities (2.8) are the
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precedence constraints and the inequalities (2.9) represent the resource constraints. The constraints
(2.10) state that each activity has to be started exactly once in the scheduling horizon. Task
completion times are calculated by the constraints (2.11). The constraints (2.12) forbid that tasks
start outside the allowed time interval [ESi, LSi]. The decision variables are defined in (2.13) and
(2.14).

Step formulations. Another family of strong time-indexed formulation is known as the Step
Disaggregated Discrete Time (SDDT) formulation from Klein (1999), which is a variant of the
PDDT. This formulation is based on binary step variables zit such that zit = 1 if, and only if, task
i either starts at time t or has started before t. That is, for a given task, variables zit with t < Si

are all equal to 0, while the variables with t ≥ Si are all equal to one. With these definitions, the
start time can be expressed as:

Si =
∑
t∈H

t(zit − z,t−1) ∀i ∈ V (2.15)

The SDDT formulation can be expressed as (see Table 2.1 for a summary of the problem input
data):

min
∑
i∈V

wiCi s.t. (2.16)

zi,t−pi
− zjt ≥ 0 ∀(i, j) ∈ P, t ∈ H (2.17)∑

i∈V

bik(zit − zi,t−pi) ≤ Bk ∀t ∈ H, k ∈ R (2.18)

zi,LSi
= 1 ∀i ∈ V (2.19)

zit − zi,t−1 ≥ 0 ∀i ∈ V, t ∈ H (2.20)

zit = 0 ∀i ∈ V, t < ESi (2.21)

Ci =
∑
t∈H

(t+ pi)(zit − zi,t−1) ∀i ∈ V (2.22)

zit ∈ {0, 1} ∀i ∈ V, t ∈ H (2.23)

Ci ≥ 0 ∀i ∈ V (2.24)

The objective function (2.16) minimizes the weighted sum of completion times. The precedence
constraints (2.17) state that if a task j has started at time t or before (i.e. zjt = 1), then task i has
started at time t− pi or before. The inequalities (2.18) are the resource constraints. It is assumed
that a task is in process at time t if, and only if, zit − zi,t−pi = 1. The constraints (2.19) state that
each task has to be started at or before its latest start time LSi. The constraints (2.19) and (2.20)
define the step function, i. e. once zit = 1 for a given t, it cannot be zero for any other t′ > t. Note
that these constraints also force to 1 all variables zit with t ≥ LSi. The constraints (2.21) forbid
that tasks start before their earliest start times ESi. Task completion times are computed by the
constraints (2.22). The decision variables are defined in (2.23) and (2.24).
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Branch-and-bound algorithms

Branch-and-bound algorithms are a class of algorithms used in optimization and search problems.
They work by breaking a problem into smaller sub-problems and creating a tree-like structure to
represent the sub-problems. The algorithm explores the nodes of the tree in a particular order,
and at each node, it generates one or more child nodes that represent the sub-problems that can
be created by further dividing the current problem. The algorithm keeps track of the best solution
found so far and uses this information to prune the search tree. By eliminating branches that are
guaranteed not to yield an optimal solution, the algorithm can greatly reduce the search space
and find the optimal solution more quickly. Branch-and-bound algorithms are commonly used
in combinatorial optimization problems, such as the traveling salesman problem, the knapsack
problem, and the graph coloring problem. In the RCPSP literature, efficient branch-and-bounds
designs can be found, for example:

• In Demeulemeester and Herroelen (1992), a branch-and-bound approach for scheduling PERT/CPM1

projects is presented, considering precedence and resource constraints to minimize project du-
ration. The depth-first solution strategy employs nodes representing feasible partial schedules,
utilizing exhaustive combinations of activities to resolve resource conflicts.

• Furthermore, Demeulemeester and Herroelen (1997) explores insights gained from computa-
tional results using an enhanced version of Demeulemeester and Herroelen (1992) branch-and-
bound procedure. The study investigates the impact of variables such as addressable memory,
search strategy (depth-first, best-first, or hybrid), and a stronger lower bound on computation
time.

• Another branch-and-bound algorithm is introduced in Sprecher (2000). The concept is adapt-
able to various settings such as multimode problems, time-varying resource availability, and
diverse objectives. Despite its generality, the algorithm competes, in computational perfor-
mance, with the best single-mode problem approaches in the previous literature.

• In Sousa and Wolsey (1992), a non-preemptive single machine scheduling problems using
time-indexed variables is studied, resulting in extensive models but improved lower bounds
compared to other MILP formulations. The study introduces valid inequalities, emphasizing
the role of constraint aggregation with generalized upper bound constraints. Implementation
of a branch-and-bound algorithm based on these insights is discussed, with computational
results on small problems (20–30 tasks) and various constraints and objective functions.

Metaheuristics

Metaheuristics are largely used to solve optimization problems, since they can provide good solutions
to problem instances that are difficult to solve analytically. In the context of scheduling problems,
metaheuristics have been shown to be efficient for finding optimal or near-optimal solutions. For
instance, the studies of Asif Raza and Mustafa Al-Turki (2007) and Das and Acharyya (2011) (see
further below) compared the performance of different metaheuristics in the context of scheduling
problems, showing that they were able to find solutions closer to the optimal ones than traditional
heuristic methods.

1PERT/CPM (Program Evaluation and Review Technique/Critical Path Method) are project management
methodologies that aid in planning, scheduling, and controlling projects by identifying critical paths and estimating
activity durations.
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Metaheuristics are one of the most popular families of optimization methods applied to solve the
RCPSP and its extensions. We describe below some of the most common metaheuristics in the
literature that were successfully tested against the PSPLIB.

Genetic algorithms. A Genetic Algorithm (GA) is a class of algorithm that tries to emulate the
biological evolutionary process of natural selection and genetic crossover to find the best solution
to a problem. GAs use a computational approach for solving optimization problems by iteratively
optimizing a population of potential solutions through selection, crossover (recombination), and
mutation. In each iteration, the fittest solutions are selected for reproduction and their genetic
material (parameters) are combined to create new offspring solutions. This process continues until
an optimal solution is found or a stopping criterion is met. GAs are one of the most employed
metaheuristic for solving the classical RCPSP (Kolisch and Hartmann, 2006). Relevant works in
GAs for the RCPSP can found in, for example:

• Alcaraz and Maroto (2001) addressed the scarcity of studies on GAs for resource allocation in
project scheduling and presented a genetic algorithm for the single-mode RCPSP, introducing
a new solution representation based on the standard activity list. The study developed effec-
tive crossover techniques with extensive computational experiments using standard project
instances, the proposed GA demonstrated superior performance compared to existing algo-
rithms in the literature.

• Mendes et al. (2009) introduced a GA utilizing a chromosome representation based on random
keys. The schedule construction employs a heuristic priority rule, where activity priorities are
determined by the GA, resulting in parameterized active schedules. The approach was tested
on standard instances from the literature and compared with other methods, demonstrating
the effectiveness of the proposed algorithm through favorable computational results.

• Hartmann (2002) addressed the classical RCPSP, aiming to minimize project makespan. A
novel heuristic, the self-adapting GA, is proposed. Utilizing the activity list representation, the
algorithm employs two decoding procedures, and an additional gene determines their usage.
This self-adaptation allows the algorithm to learn and optimize its own decoding strategy
based on the problem instance. Computational experiments demonstrated the effectiveness of
this self-adaptive mechanism, showcasing the proposed heuristic as one of the top-performing
approaches for the RCPSP.

• Hindi et al. (2002) introduced an algorithmic framework involving a Memetic Algorithm2

with novel heuristics and multiple local search methods. The proposed methods were tested,
demonstrating significant improvements over traditional GAs and state-of-the-art algorithms
in terms of solution quality and computational efficiency, especially for large-scale problems.

• Toklu (2002) developed a GA applicable to both constrained and unconstrained projects. The
algorithm employs chromosomes representing activity start days, introduces mathematical
operators, and emphasizes a fine mutation operator. A generalized fitness function evaluation
was conducted, and the algorithm was applied to a simplified bridge construction problem.
The results and parameter effects were discussed.

2A Memetic Algorithm is a hybrid evolutionary optimization approach that combines genetic algorithms with
local search heuristics.
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• Valls et al. (2008) presented a hybrid GA, introducing specific changes in the genetic algorithm
paradigm. These changes included a problem-specific crossover operator, a universal local
improvement operator for all schedules, a novel parent selection method, and a two-phase
strategy involving a restart from a neighbor’s population in the second phase. Computational
results demonstrated this approach surpassed previous known state-of-the-art algorithms for
the RCPSP.

Tabu Search. Tabu Search (TS) is an optimization algorithm used to solve complex problems that
explore the space of possible solutions by employing local search methods to move towards optimal
solutions. TS algorithms are particularly useful when the solution space is large and complex,
making it difficult to find the optimal solutions using traditional exact methods and algorithms.
The algorithm operates based on the move generator, evaluator, and acceptance criterion. The
algorithm works by maintaining a ‘tabu list’ of previously visited solutions and avoiding them in
future searches. This helps the algorithm escape local maxima and explore a larger portion of
the solution space. In the RCPSP literature, efficient works such as have been proposed with
competitive results for the PSPLIB, such as:

• Artigues et al. (2003) introduced a flow network model for both static and dynamic RCPSP
based on a polynomial insertion algorithm. The algorithm efficiently inserts a new activity
into an existing solution represented by an activity-on-node-flow network. For the dynamic
context, a rescheduling algorithm is developed to handle unexpected activity occurrences.
Two heuristics for static RCPSP, incorporating the insertion algorithm, are presented: a
constructive method and a TS approach. Computational results on benchmark instances
demonstrated the efficiency of this approach compared to metaheuristics presented in previous
studies. The work provided experimental results, marking a significant contribution to solving
the static RCPSP.

• Ribeiro et al. (2002) extended the RCPSP formulation to handle various complex constraints
and objective functions, such as selectable modes for activities, variable amounts of renewable
resources, setup activities, and intricate objective functions. A TS heuristic algorithm was
developed, featuring innovations in solution representation and neighborhood construction.
Computational testing on RCPSP benchmarks and real-world instances demonstrated the
effectiveness of the approach, producing improved solutions compared to existing methods
and highlighting its practical utility.

• Thomas and Salhi (1998) presented a TS implementation that incorporates defined move
strategies, a structured neighborhood, appropriate tabu status and tenure, and integrates
objective function approximation for accelerated search. Informed by a solid understanding of
the problem, the methodology employs diversification, intensification, and strategic oscillation
to handle infeasibility. Computational tests were performed on existing literature instances
and on generated instances. Optimal solutions and lower bounds were compared to existing
results in the literature.

Simulated Annealing. Simulated Annealing (SA) is a type of metaheuristic algorithm inspired
by the annealing process used in metallurgy to achieve optimal crystalline structures. SA algo-
rithms use a randomized approach to find the global minimum or maximum of a given function by
iteratively modifying a potential solution. These modifications are done by swapping or changing
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the values of the variables in the solution. The new proposed solution is then evaluated using
a cost function. If the new solution is better than the previous solution, it is accepted, and the
process continues. However, if the new solution is worse, the algorithm will accept it with a certain
probability based on temperature (initially high and gradually decreased) that allows it to escape
local minima and explore the solution space. SA algorithms have been successfully used for solving
the RCPSP, for example:

• Bouleimen and Lecocq (2003) introduced SA algorithms to both classical RCPSP and its
multiple-mode version, with the objective of minimizing the makespan. The conventional
SA search scheme is replaced by designs tailored to the specific solution space of project
scheduling problems. For the RCPSP, an alternated activity and time incrementing process
is used, with parameters set after preliminary statistical experiments. For the RCPSP with
multiple modes, a unique approach employs two embedded search loops alternating activity
and mode neighborhood exploration. Evaluation on benchmark instances demonstrates the
efficiency of both adaptations, making them among the most competitive algorithms for these
problems.

• Valls et al. (2003) (see also Valls et al. (2005)) presented a novel SA metaheuristic incorpo-
rating fundamental concepts without explicit memory structures within a population-based
framework. The algorithm employs a search strategy for intensification and a strategic oscil-
lation mechanism for diversification. Using the topological order representation of schedules,
three types of moves are introduced, two based on relative criticality and a third on multi-pass
sampling ideas. The strategic use of probabilities for move construction further distinguishes
this approach. Extensive computational testing on over 2000 instances demonstrated the
effectiveness of the proposed solution method.

In addition to the aforementioned works dedicated to TS and SA approaches, Asif Raza and Mustafa
Al-Turki (2007) compared the effectiveness of TS and SA, hybridized using properties of an op-
timal schedule from existing literature, for scheduling maintenance operations and job processing
on a single machine. The numerical experimentation, involving large-sized problems, demonstrated
that the developed meta-heuristics outperform the previous best-known heuristic algorithm, show-
casing greater robustness against problem-related parameters. The study suggested future work
incorporating machine failure and preventive maintenance, exploring multi-criteria scheduling, and
considering stochastic parameters for job processing and maintenance-related factors. Furthermore,
Das and Acharyya (2011) explored hybrid TS ans SA approaches for solving the RCPSP. Building
upon the success of SA algorithms in previous works, the study introduced three new SA variants.
The results demonstrated that SA combined with a tabu list and greedy heuristic surpasses other
known methods, achieving optimal results in benchmark instances of the RCPSP.

Ant Colony Systems. Ant Colony System (ACS) is a class of optimization algorithms inspired by
the behavior of ant colonies. Ants use pheromone trails to communicate with each other and mark
their paths. When an ant finds a source of food, it leaves a trail of pheromones to guide other ants to
the food source. The pheromones act as a chemical message that the ant uses to communicate with
other members of the colony. Over time, the pheromone trails grow stronger as more ants follow
them, making the path to the food source more attractive. The basic idea behind ACS algorithms
is to mimic the behavior of ants as they forage for food. The algorithm starts by simulating a
number of ants moving through a network. As the ants move, they lay down pheromone trails,
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and the strength of these trails is updated based on the quality of the path they took. Over time,
the algorithm identifies the path with the strongest pheromone trail, which corresponds to the best
solution found to the problem. An efficient design of the ACS algorithm to solve the RCPSP can
be found in Merkle et al. (2002), which uses a weighted version of the Latest Start Time (LST)
priority rule to prioritize tasks to be scheduled. Unique features included a combination of two
pheromone evaluation methods, dynamic influence of heuristics on ant decisions, and the ability for
an elitist ant to forget the best-found solution. The algorithm was tested on a set of large benchmark
problems from the PSPLIB. Comparative evaluations against various heuristics revealed that the
proposed ACS algorithm performs well, on average. The results also revealed new best solutions
for nearly one-third of benchmark problems not previously known to be solved optimally.

Local search-oriented approaches. Local search algorithms are optimization methods used
to find the best solution for a particular problem by exploring the immediate neighborhood of a
starting point. These algorithms begin with an initial solution and then make incremental changes
to the solution in order to improve its quality. The goal is to find a locally optimal solution
that maximizes or minimizes a particular objective function. Below, we describe examples of local
search-oriented metaheuristics known for their ability to find high-quality solutions to complex
optimization problems.

The Variable Neighborhood Search (VNS) (Mladenović and Hansen, 1997) is a metaheuristic algo-
rithm used to explore different neighborhoods of a given solution to find a better candidate solution.
In a VNS algorithm, the neighborhood structure is varied dynamically during the search process,
allowing the algorithm to escape local optima and explore different regions of the solution space.
The basic steps of a VNS algorithm typically include: generating an initial solution, selecting a
neighborhood structure, generating a new solution in the neighborhood, evaluating the objective
function to determine if the new solution is better than the current solution, and repeating the pro-
cess until a satisfactory solution is found or a termination criterion is met. These algorithms have
been shown to be effective for a wide range of optimization problems, including traveling salesman
problems, vehicle routing problems, scheduling problems, and many others.

The Iterated Local Search (ILS) (Lourenço et al., 2003) is another local search-based metaheuristic
that combines two strategies to solve combinatorial optimization problems. The first strategy is
the local search, which starts from an initial solution and iteratively improves it by making small
modifications until a local minimum is reached. The second strategy is the perturbation, which
allows the algorithm to escape from local minima by introducing randomness and exploring new
regions of the search space. In the ILS algorithm, the local search procedure is repeated for a fixed
number of iterations or until no further improvements can be made. Then, a perturbation is applied
to the current solution to generate a new starting point for the local search. The perturbation
can be either a random shake-up of the current solution or a more sophisticated mechanism that
incorporates problem-specific knowledge. ILS is a flexible algorithm that can be adapted to various
optimization problems. Its effectiveness depends on the choice of the local search operator, the
perturbation operator, and the stopping criteria.

Efficient local search-oriented approaches designs to the RCPSP can be found in, for example:

• Fleszar and Hindi (2004) presented a solution scheme based on VNS. The solution is encoded
using valid activity sequences with respect to precedence constraints, and these sequences are
transformed into valid active schedules through a serial scheduler. The search in the solution
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space is facilitated by generating valid sequences using two types of move strategies. The
solution scheme’s effectiveness is attributed to the repeated use of effective lower bounding and
precedence augmentation, which help reduce the solution space. Extensive experimentation
on a standard set of 2040 benchmark instances demonstrated the scheme’s efficacy, improving
upon the best-known solutions for 48 instances and best-known lower bounds for 148 instances.

• Palpant et al. (2004) introduced a large neighborhood search approach for the RCPSP. The
method involves fixing a subpart of the current solution while solving the remaining sub-
problem externally using either a heuristic or an exact solution approach, making it a hybrid
scheme. The key aspect of the method lies in choosing the subproblem to be optimized. The
paper explored several strategies for generating the subproblem and conducted extensive nu-
merical experiments to evaluate these strategies. The results demonstrated the efficiency of
the proposed method, comparing favorably with previous state-of-the-art heuristics for the
RCPSP.

• In Barbalho et al. (2023), an extension of the RCPSP focusing on road network accessibility
for logistics operations in relief and supply distribution. The study introduced a dedicated
local search and an ILS metaheuristic. The methods were tested on theoretical instances and
applied to a realistic instance featuring a complex urban networks. The proposed approach
outperformed existing literature results.

2.3 Related problems and applications in disaster relief

In the recent scientific literature, new scheduling and routing problems and applications have been
used to model several aspects related to issues in post disaster relief, such as debris removal,
humanitarian logistics, risk mitigation and emergency response to forest fires. In general, these
scheduling or integrated scheduling-routing approaches aim at minimizing operational cost, or at
maximizing some satisfaction measure such as road accessibility, number of lives saved, etc. Another
characteristic is that decisions may be restricted by financial or time budgets, thus, not all demands
may be fulfilled (Duque and Sörensen, 2011; Duque et al., 2016). Some relevant reviews can be
found in Overstreet et al. (2011), Farahani et al. (2020), Santos (2019) and Hu et al. (2019). We
describe below in detail some of these approaches proposed in the literature.

2.3.1 Humanitarian logistics

Humanitarian logistics is the process of planning, implementing and coordinating the flow of goods,
services and information to support humanitarian efforts in response to crises and disaster situations.
It involves the management of resources to ensure that necessary aid reaches those in need as
efficiently as possible, with the aim of reducing the impact of disasters and their aftermath on
affected populations (Overstreet et al., 2011).

Humanitarian logistics play a crucial role to overcome natural disasters such as earthquakes, hur-
ricanes and floods that can cause immense destruction, leaving communities in urgent needs, such
as food, water, shelter, and medical aid (Sakuraba et al., 2016). Works in humanitarian logistics
have become an important component in developing efficient use of resources and effective dis-
aster management planning. Below, we review some optimization problems with applications in
humanitarian logistics that involve the coordination and management of work-forces, supplies, and
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equipment in response to these emergencies.

The Hierarchical Traveling Salesman Problem (HTSP) presented in Panchamgam et al. (2013)
consists of a routing problem for relief operations whose primary goal is to deliver relief supplies to
demand points. Each location has a priority indicating the urgency of the demand and the deliver of
supplies is performed by a single vehicle of unlimited capacity that takes into account the priority.
Typically, the demands with the highest priorities need to be satisfied before those with a lower
priority. The authors introduce the d–relaxed priority rule (see Section 2.2.1) to relax priorities
of demand locations and perform a tradeoff between minimizing vehicle route total distance and
satisfying location priorities.

The HTSP was later extended in Hà et al. (2022) as the Capacitated Traveling Salesman Problem
with d–relaxed priority rule (CTSP-d), introducing a more efficient MILP formulation. The authors
also develop a hybrid metaheuristic that mixes components of ILS, VNS and the Greedy Random-
ized Adaptive Search Procedure (GRASP). The methods were tested against a dataset from the
TSPLIB3, by randomly adding priorities {1, 3, 5} and d = {0, 1, 3} values. The computational
experiments evaluated the performance of the MILP formulations and the mataheuristic approach
on instances with 42–52 vertices. In addition, a set of instances with 100–200 vertices was also
generated to analyze the effectiveness of the metaheuristic on larger instances.

Similarly to the HTSP and the CTSP-d, the Vehicle Routing Problem with Relaxed Priority Rules
(VRP-RPR) presented in Doan et al. (2021) assigns costumers (demand locations) to several priority
groups and the ones with the higher priorities typically need to be served before the lower ones. The
authors also propose a relaxation scheme of priorities based on the d–relaxed priority rules from
Panchamgam et al. (2013), where choosing the appropriate d value depends on the emergency level.
The authors consider a fleet of heterogeneous vehicles and each route is constrained by the vehicle’s
capacity and autonomy with the objective of minimizing the weighted sum of the total demand lost
and the total travel cost. The authors also propose a MILP formulation and an Adaptive Large
Neighborhood Search (ALNS) to solve a benchmark of instances composed of theoretical instances
from Hà et al. (2022). For the computational experiments, the authors consider three test scenarios
with strict, partially and zero priority rules. Both optimization methods were applied to solve a
set of 10 small-sized instances with 20 to 30 nodes and 3 priority groups; and the ALNS alone was
tested against larger instances with 100 nodes and 3 priority groups.

Despite the aforementioned studies have focused on simple VRPs, one important factor presented
in those problems is the d–relaxed priority rules, where the trade-off between the demand urgency
and the solution quality may be adjusted by a value threshold. That is, less strict priority rules
(higher values of the d threshold) generate better solutions than stricter ones, but with the possible
negative effect that urgent locations may be neglected until late operation dates. In Chapter 3,
we investigate the RCPSP-RP, modeled as an integrated scheduling-routing application with the
d–relaxed priority rules.

2.3.2 Improving accessibility in post-disaster urban networks

During natural disasters such as earthquakes, hurricanes, floods, or wildfires, roads can become
damaged or unsafe, making it challenging for rescue teams and aid workers to reach the affected

3TSPLIB is a library of sample instances for the Travelling Salesman Problem from various sources and of various
types. See http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
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areas quickly. Some studies have focused on improving physical accessibility in urban networks
damaged by natural disasters, with the objective of reducing the delay in response time and help
mitigate the loss of life and property.

In Duque and Sörensen (2011), a GRASP metaheuristic coupled with a VNS was proposed to allo-
cate scarce resources to restore road connectivity between towns and regional distribution centers.
The authors consider financial and manpower-time budgets, which are associated with each road to
be repaired. Another study by Duque et al. (2016) formulated the Network Repair Crew Schedul-
ing and Routing Problem (NRCSRP)), which consists in defining optimal sequencing for repairing
damaged nodes in a network. The problem assumes that a repairing crew is employed to optimize
accessibility to the towns and villages that demand humanitarian relief by repairing roads. The
goal is to minimize the date in which each demand node is available, weighted by the amount of
demand. The authors proposed an exact dynamic programming algorithm and an iterated greedy-
randomized constructive procedure. Computational experiments were performed on instances with
nodes varying from 21 to 401 nodes, with percentage from 5% to 50% of the nodes damaged.

The study by Feng and Wang (2003) was dedicated to rehabilitation of intercity highways in emer-
gencies, where a multi-objective scheduling problem is formulated with the following three objec-
tives: maximizing the performance of emergency rehabilitation; minimizing the risk to rescuers;
and maximizing the savings of lives. The computational experiments are performed on an instance
based on the 1999 earthquake that struck Nantou county in Taiwan. This corresponding instance
is composed of 52 nodes, 62 arcs, and 10 damages nodes. In Aksu and Ozdamar (2014), two math-
ematical formulations are proposed for the Debris Clearance Scheduling Problem (DCSP), where
a set of work-troops is assigned to repair blocked paths, with the goal of maximizing the total
earliness in repairing all paths. The methods were tested over two districts of Istanbul in Turkey.
The first one contains 212 roads and 49 blocked roads, and the second instance has 386 roads and
79 blocked roads.

The Multivehicle Synchronized Arc Routing Problem to Restore Network Connectivity (K-ARCP)
presented in Akbari and Salman (2017) (see also Akbari et al. (2021)) is an open vehicle routing
problem to restore blocked arcs in an urban network. A mathematical formulation and a matheuris-
tic based on the linear relaxation of the problem are proposed. Three data sets based on Istanbul
city were generated including up to six vehicles: the first one corresponds to the highways network,
with 74 nodes and 179 edges, the second data set has 389 nodes and 689 edges, and the third one
is based on the southwestern region of Istanbul city with 250 nodes and 539 edges. Route damage
is taken as a probability of being impassable after a earthquake, high, medium and low-risk edges,
respectively 0.3, 0.2 and 0.1 of probability. In another study by Vodák et al. (2018), a VRP to
minimize the time of repairing blocked road segments is solved with an ant colony algorithm. The
authors have produced a realistic instance based on the road network of the Zĺın region in the Czech
Republic, composed of 723 nodes, 974 links and 46 blocked roads.

The Disruption Scheduling problem on Urban Networks (DSUN) was introduced in Coco et al.
(2020) in the context of rapid and unplanned urban growth. The authors address critical issues
that raise from various social, economic, and ecological challenges in urban mobility. The DSUN
involves scheduling planned disruptions in an urban road network while ensuring strong connectivity.
Disruptions can break network connections, requiring route direction modifications (arc reversals)
and potentially disturbing users habits. The objective is to minimize the number of arc reversals
and the sum of starting times for all disruptions simultaneously. The study formulates DSUN
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mathematically and presents an exact algorithm based on the ϵ-constraint method to handle its bi-
objective nature. Computational experiments were conducted on theoretical and realistic instances,
demonstrating the algorithm’s ability to prove optimality for instances with up to 100 vertices and
20 disruptions.

The Work-troops Scheduling Problem, described in Sakuraba et al. (2016), concerns the scheduling
of a homogeneous fleet of work-troops to unblock blocked roads in urban networks affected by
natural disasters, such as earthquakes. Implicit precedence relations are considered due to roads’
physical accessibility in the network. The authors developed three greedy heuristics to solve a
theoretical benchmark of small instances with up to 20 blocked roads and a large-scale realistic
instance of the 2010 Haiti earthquake with 16,660 nodes, 19,866 roads and 536 blocked roads. An
extension of this work is subsequently found in Barbalho et al. (2023), where the authors developed
a GRASP and an ILS metaheuristic coupled with a dedicated local search to solve the set of
theoretical and realistic instances from Sakuraba et al. (2016).

A similar application is the Scheduling vehicle Routing Problem to Clean Debris (SRP-CD), pre-
sented in Pena et al. (2023) as an integrated scheduling-routing problem, concerning the strategic
(scheduling) and the operational (routing) decisions to remove debris in urban areas damaged by
major disasters. The objective is simultaneously to minimize the operation duration, at the strate-
gic level, and the total costs of vehicles routes, at the operational one. The authors propose a new
mathematical model based on a dynamic multi-flow formulation, several constructive heuristics
and a Large Neighborhood Search (LNS)-based metaheuristics. These methods were applied to
theoretical instances with 10 to 500 demand nodes and 2 to 7 homogeneous vehicles.

2.3.3 Scheduling problems in emergencies

Some works in the literature focus on providing emergency response models to minimize the impact
of an incident or emergency, by enabling organizations and individuals to take measures to mitigate
the risks and prevent further harm, ensuring the health and safety of people, property and the
environment.

The Rescue Unit Assignment and Scheduling Problem (RUASP), presented in Wex et al. (2014),
concerns the allocation and scheduling of heterogeneous rescue units located in operation centers,
to emerging incidents with the objective of minimizing the sum of completion times of incidents
weighted by their severity. The problem was modeled as a binary quadratic optimization model
where each incident may require a specific type of rescue unit. The authors developed a GRASP
metaheuristic, a Monte Carlo-based heuristic and a conjoint of 8 construction heuristics coupled
with 5 improvement heuristics. The methods were tested against small and medium sized instances
with up to 40 incidents and 40 rescue units, designed in contact with rescue teams active in the
major 2011 Japan earthquake.

The Early Stage Response Problem (ESRP), presented in Kim et al. (2018), provides an emer-
gency response composed of routing and scheduling of teams with the objective of maximizing risk
prevention to buildings under imminent threat such as fire spread, gas leak and explosions, neu-
tralizing further hazards to material and human lives. Thus, the model reflects dynamic changes in
emergency situations, such as changes in hazard intensity and time required to neutralize dangerous
targets. In addition, the authors developed a MILP and two greedy algorithms to solve theoretical
instances based on data from the central city building in Seoul, Korea, with up to 5 dangerous
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targets.

In addition to previous publications, in recent years, works in the actual context of emergency
response to forest fires have been proposed as integrated scheduling-routing problems with static,
dynamic or stochastic characteristics. The Resource-Constrained Emergency Scheduling Problem
for Forest Fires with Priority Areas (RCESP) presented in Ren and Tian (2016) provides a disaster
relief model to extinguish forest fires, where a homogeneous fleet of firefighting teams is dispatched
to multiple areas according to their priorities following a strict policy, with the objective of mini-
mizing teams’ total travel distance constrained by a maximum operational autonomy. The authors
developed a genetic algorithm coupled with a particle swarm metaheuristic to solve a case study
based on realistic data from Heilongjiang, China, with 7 fire points and 3 teams. A dynamic version
of the RCESP was later presented in Wu et al. (2019), where fire spreading and fire extinguishing
speed of teams were considered. The problem was solved as a MILP with total rescue time min-
imization. Furthermore, Wang et al. (2020) extended the two previous works with a bi-objective
MILP to simultaneously minimize the total travel distance and the total fire extinguishing rescue
time. Fuzzy logic decision-making based on an ϵ-constraint method was also designed to obtain
schedule schemes and produce Pareto fronts. The MILP and the ϵ-constraint method were tested
against the benchmark instances of Ren and Tian (2016) and several randomly generated instances
with up to 16 fire points and 6 rescue teams.

The RCESP was examined in Fang et al. (2019), where the concept of “weak” priority levels was
introduced. This allows fire points to share the same priority level, enabling methods to optimize
routes within that level while maintaining priorities between different priority levels. This can be
seen as a weaker version of the d–relaxed priority rules.

2.3.4 Scheduling problems under uncertainties

Parameter uncertainty refers to the situation where the values of some or all problem parameters
are unknown or uncertain (probabilistic). Solving optimization problems with parameter uncer-
tainty requires the use of stochastic optimization techniques, which involves modeling the uncertain
parameters as random variables and solving the problem using probabilistic methods. Another
approach is to use robust optimization techniques, which involve optimizing the worst-case sce-
nario under the assumed uncertainty. Ultimately, the choice of method for handling parameter
uncertainty will depend on the specific problem and the degree of uncertainty in the problem’s pa-
rameters. The book Billaut et al. (2013) covers many important models flexibility and robustness
in scheduling problems.

In the Stochastic Debris Clearance Problem (SDCP), presented in Çelik et al. (2015), the main
objective is to clear blocked roads during the response phase by moving debris to the sides of the
roads in order to maximize benefit received from meeting relief demand. To find an optimal solution
for small and large instances of this problem, a partially observable Markov decision process model
was used. Tests were conducted using two benchmark sets of instances: one featuring structured
grid and ring networks resembling urban city road networks with 25–225 nodes, and another based
on a realistic earthquake scenario in Boston, simulated using a disaster simulation tool.

The Multi-Resource Scheduling Model under Uncertainty (MRSU), introduced in Bodaghi et al.
(2020), presents a MILP framework for scheduling and sequencing heterogeneous resources under
uncertain parameters, where the deterministic MILP is solved many times with multiple stochas-
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tic scenarios to identify the most persistent optimal solution. The authors applied the MRSU
framework to a 2009 bushfire case study in Australia with 25 bushfires with stochastic severity
and propagation and 16 vehicles, where a total of 1000 scenarios were solved to identify the most
probable one.

In Tirkolaee et al. (2020), an extension of Wex et al. (2014) was proposed by adding a second
objective function and parameter uncertainty such as travel times, incident severity and processing
times to minimize also the total delay time. The authors applied the robust optimization technique
to solve the model using several theoretical instances with up to 20 incidents and 15 rescue units.

2.3.5 Position of this thesis

Based on our current understanding, none of the previous relevant contributions addresses the
particularities of industrial catastrophe scenarios where the toxicity of the released substances must
be considered. Knowledge about the long-term consequences of these substances to the environment
and human health are often unknown or limited (Keim, 2011), which motivates further study of
industrial disasters from the perspective of operational research so in order to minimize their impacts
once they occur. The main contributions of this thesis are both proposing and modeling the RCPSP-
RP and the RCPSP-RTD as optimization problems in the context of industrial disasters, as well
as proposing methods that, in conjunction with existing risk management plans, can help support
decision making in the occurrence of such situations.

In Table 2.2, we present an overview of the most related works to the RCPSP-RP regarding the
characteristics of problems found in the literature and the approaches proposed. The works describ-
ing at least 4 features similar to RCPSP-RP and the RCPSP-RTD were included. The works are
sorted by year, by classical problem or by application. A black dot expresses that the corresponding
study includes the characteristic described on the top of the column, such that:

• The column Problem class indicates whether the work is an scheduling, routing or integrated
scheduling and routing problem.

• The column Precedence relations specify if the problem includes implicit or explicit prece-
dence relations between tasks. The relations may either refer to operational dependence
(such as the classical precedence constraints) or priority constraints coupled with a relaxation
threshold.

• The column Task type describes whether the tasks are considered to be static, dynamic or
have uncertain parameters.

• The column Depot/source are related to routing or integrated scheduling-routing problems
and state if vehicles/resources initially start on one or more specific nodes in the network.

• The column Resources/fleet state if single or multiple resources or vehicles are considered
and whether they are homogeneous or heterogeneous.

• The column Objective function refers to the optimality criteria.

• The column Approaches state the optimization methods applied to solve the proposed prob-
lem.
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Humanitarian
logistics

Panchamgam et al. (2013) • • • • • • • •
Hà et al. (2022) • • • • • • • • •
Doan et al. (2021) • • • • • • • • •

Post-disaster
recovery

Duque and Sörensen (2011) • • • • • • •
Duque et al. (2016) • • • • • • • • • •
Akbari and Salman (2017) • • • • • • • •
Pena et al. (2023) • • • • • • • • • •
Sakuraba et al. (2016) • • • • • • • • •
Barbalho et al. (2023) • • • • • • • •

Emergency
response

Wex et al. (2014) • • • • • • • •
Kim et al. (2018) • • • • • • • • •
Ren and Tian (2016) • • • • • • • • • •
Wu et al. (2019) • • • • • • • • •
Wang et al. (2020) • • • • • • • • • • •
Fang et al. (2019) • • • • • • • • •

Parameter
uncertainty

Çelik et al. (2015) • • • • • • • •
Bodaghi et al. (2020) • • • • • • • • •
Tirkolaee et al. (2020) • • • • • • •

Thesis
contributions

RCPSP-RP (Chapter 3) • • • • • • • • • •
RCPSP-RTD (Chapter 4) • • • • • • • •

Table 2.2: Summary of the application works related to the RCPSP-RP and the RCPSP-RTD.



Chapter 3

The resource-constrained project
scheduling problem with risk and
priorities

In this chapter, we investigate the post-catastrophe operations in the event of industrial disasters,
where a group of specialized teams and equipment are deployed to clean up areas contaminated
by dangerous substances, with the objective of mitigating the impact of accidents as quickly as
possible. In this scenario, the whole contaminated area is mapped as a connected graph, where
each contaminated site is represented as a node with an associated risk attribute that depends on
the hazardous nature of the pollutants present on it. Teams can be deployed in the area covered
by the graph by traversing secured paths to perform the cleaning operation and neutralize the risk
associated with each node. In order to model this scenario, we propose a new optimization problem
named RCPSP-RP, which is composed of an integrated scheduling and routing model with different
policies of task prioritization.

The proposed RCPSP-RP is an extension of the well-known RCPSP, were resources represent the
specialized teams and equipment that are deployed from a specific node in the graph (called the
depot) to perform the cleaning operation and mitigate risk by processing all mapped tasks. Travel
times when traversing the edges are implied based on their traveling distance. More specifically,
these travel times are treated as Sequence-Dependent Setup Times (SDST) (see, e.g., Allahverdi
et al. (2008)) by taking into account the shortest travel time between every pair of nodes in the
graph. The RCPSP-RP performs task prioritization by employing precedence constraints between
tasks based on their risk attribute. As a consequence, tasks with higher risk take precedence over
lower risk ones. This behavior is defined as a strict priority policy. In order to gain insights on
the impact that task prioritization may have on the quality of solutions, we follow a relaxation
schema inspired by Panchamgam et al. (2013) by introducing a relaxation threshold that partially
or completely relaxes precedence constraints according to the stated level of strictness. Thus,
providing a moderate or no priority policy, respectively.

In order to conduct an experimental analysis on the RCPSP-RP, we propose mathematical for-
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mulations inspired by an exact formulation for the classical RCPSP-RP from Christofides et al.
(1987). In addition, an ILS metaheuristic is also developed to cope with large problem instances,
when optimal – or even integer – solutions cannot be computed by the exact methods in reasonable
time. Experiments are conducted on a set of theoretical instances to investigate different problem
scenarios and the three types of priority schemes, namely strict, moderate and no priority policies.
Overall, results show that less strict priority policies can improve the quality of the solutions, al-
though longer running times are required due to the exploration of a larger solution space. Likewise,
in certain instances, a full relaxation of travel times yields up to 100% improvement in solutions.
This particular scenario can arise in the context of industrial disasters contained within enclosed
areas, where traveling times are significantly smaller than processing times and, therefore, they can
be neglected from a practical perspective.

The remainder of this chapter is organized as follows: Section 3.1 introduces the formal math-
ematical formulation of the RCPSP-RP, including the modeling of task prioritization in Section
3.1.2 and integer programming models in Section 3.1.3. Section 3.2 is dedicated to the proposed
ILS metaheuristic. Afterwards, a description of the computational experiments including the ex-
perimental setup, data generation and automated calibration of ILS parameters using the Iterated
Racing for Automatic Algorithm Configuration (IRACE) package are presented in Section 3.3. In
this section, the analysis of results is presented, including a comparison between the results obtained
using CPLEX and ILS for the different experimental scenarios. Finally, concluding remarks and
perspectives for future works are discussed in Section 3.4.

3.1 Problem definition

Let G = (V,E) be a connected spatial graph, where V is the set of nodes and E is the set of
edges. Let Vo ⊂ V be defined as the singleton set containing the depot node where K homogeneous
resources are initially located. Let Vd ⊂ V (Vo∩Vd = ∅) be the set containing tasks that need to be
performed by the resources, where each task i ∈ Vd has risk ri ∈ (0, 1] and processing time pi ∈ N+

attributes. The ri is determined by the hazardous nature of the materials present at i in a scale of
low- (ri ≤ 0.3), medium- (0.3 < ri ≤ 0.5), high- (0.5 < ri < 0.9) or critical- (ri ≥ 0.9) risk; and pi is
the estimation of the time required to process it, i.e. completely remove the hazardous pollutants
from the site. Every task should be processed by a single resource and after been started it may
not be interrupted (preemption is not allowed).

The set E stands for the secured paths resources use to traverse from the depot to tasks, and from
tasks to other tasks, with reduced exposition to dangerous substances. Each path has a sij ∈ N0,
(i, j) ∈ V × V , that represents the sequence-dependent setup time between i and j. Thus, the
problem consists in defining a feasible scheduling over a time horizon H = {1, ..., T}, for some large
enough integer T , that minimizes the sum of completion times weighted by task risk:

F =
∑
i∈Vd

riCi (3.1)

The objective function F represents the accumulated risk of unfinished tasks at each time unit
t ∈ H, from which we can generate a graph that represents the risk mitigation process over the
time horizon. For instance, Figure 3.1 presents the visualization of the example problem input and
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solution in Table 3.1. The accumulated risk, in orange, starts at its maximum and decreases every
time a task is completed. The graph total area is denoted as the solution overall risk. Naturally,
graphs with the smallest possible areas in the interval [1, T ] are optimal solutions.

2 4 6 8

1

2

3

4

time

ri
sk

Figure 3.1: Example solution with a total area (overall risk) of 16.3.

Problem data Completion time
i pi ri Ci

1 9 0.7 9
2 7 0.3 8
3 6 0.1 8
4 3 0.1 7
5 4 0.8 4
6 1 0.9 1
7 1 0.6 2
8 1 0.8 1

Table 3.1: Example problem input and optimal solution.

3.1.1 Estimating an upper bound for the operation horizon

Estimating a good value for T is not a simple task, and actually determining its optimal value is
as hard as solving the RCPSP-RP. Although methods such as the earliest start time are useful for
K = 1, they do not work for K ≥ 2 since tasks may overlap (Section 3.1.2 will review this with
more detail). If sequence-dependent setup times are not considered, a good estimation for T can
be obtained by Equation (3.2):

T = maxi∈Vd
{pi}+

⌈∑
i∈Vd

pi

K

⌉
(3.2)

Equation (3.2) is composed of the longest processing time added to the ceiling the of the sum of
processing times divided by the number of resources to account for tasks being executed in parallel.
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On the other side, if sequence-dependent setup times are required, Equation (3.3) can offer a decent
estimation for T in most cases:

T =

⌈ |Vd| maxi,j∈V×V {sij}+
∑

i∈Vd
pi

K

⌉
(3.3)

Equation (3.3) is composed of the ceiling of the number of tasks multiplied by the longest sequence-
dependent setup time, added to the sum of processing times, divided by the number of resources
to account for tasks that execute in parallel.

3.1.2 Priority constraints

The RCPSP-RP performs task prioritization in a similar fashion as the d–relaxed priority rule
presented in Panchamgam et al. (2013) (see also Doan et al. (2021)). Priority constraints are
represented by a Direct Acyclic Graph (DAG) defined as D = (Vd, P ), P is defined as the set of
ordered pairs P = {(i, j) ∈ V 2

d | ri > rj + d} representing the priority relations. The relaxation
threshold d ∈ [0, 1] is used to adjust the priority policy strictness. We define the cases d = 0, d = 0.5
and d = 1 as, respectively, strict, moderate and no priority policy. The strict policy (d = 0) imposes
tasks to be processed in a decreasing order of risk; the moderate policy (d = 0.5) provides relative
task prioritization; and the no priority policy (d = 1) completely disables task prioritization.

As an illustration, Figure 3.2 shows the priority relations generated for the strict and moderate
priority policies using the example problem data r = [0.9, 0.7, 0.7, 0.7].

• Figure 3.2a displays the complete set of priority relations. It is worth noting that the priority
relation (1, 3) is included for illustrative purposes and do not need be a part of set P since
it is redundant. Redundant arcs can be eliminated through a process known as transitive
reduction of acyclic graphs (see, e. g., Gries et al. (1989)).

• In Figure 3.2b, the moderate case, the priorities (1, 2) and (1, 4) have been relaxed because
the conditions r1 > r2 + d and r1 > r4 + d are no longer met. Recall that an arc (i, j) is
inserted whenever the condition ri > rj+d is satisfied. For example, let ri = 0.9 and rj = 0.5,
this condition is not met for d = 0.5, thus the arc (i, j) is not present. Moreover, the priority
relation (1, 3) emerges as it is no longer redundant.

It is clear that P = ∅ for the no priority policy.

Given that priority constraints aim at modeling task prioritization and not operational relations,
tasks are allowed starting at the same time as their predecessors as long as there are enough available
resources. For instance, (i, j) ∈ P indicates that i has priority over j and j may start at the same
time or after i, but never before.

3.1.3 Mathematical formulations

This section presents the mathematical models for the problem scenarios with and without sequence-
dependent setup times. The models are designed as time-indexed integer formulations inspired by
Christofides et al. (1987) formulation for the RCPSP (see Artigues (2017) for a review on time-
indexed formulations for the RCPSP). For reference, Table 3.2 summarizes the notations for the
problem input data.
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r = 0.9

r = 0.7

r = 0.1

r = 0.7

(a) strict policy.

1

2

3
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r = 0.9

r = 0.7

r = 0.1

r = 0.7

(b) moderate policy.

Figure 3.2: Priority relations for the (3.2a) strict and (3.2b) moderate priority policies.

Input parameter Description

V Set of nodes
E Set of secured paths
Vd Set of tasks
Vo Singleton set containing the depot node
P Set of precedence relations (see Section 3.1.2)
H Set of time units
T Operation duration upper bound
K Number of available resources at the depot
ri ∈ (0, 1] Risk attribute of i ∈ Vd

pi ∈ N+ Processing time attribute of task i ∈ Vd

sij ∈ Z+
0 Sequence-dependent setup times (travel times) be-

tween i and j, (i, j) ∈ V × V

Table 3.2: General problem input data and description.

Scenario without sequence-dependent setup times

The model for the scenario without sequence-dependent setup times employs the following decision
variables:

• The binary pulse variables xt
i, (i, t) ∈ Vd ×H, are such that xt

i = 1 if task i starts at period
t, xt

i = 0 otherwise;

• The integer variables Si and Ci determine, respectively, the start and completion times of
task i ∈ Vd and are calculated in function of the xt

i variables.
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Minimize
∑
i∈Vd

riCi s.t. (3.4)

∑
i∈Vd

t∑
τ=t−pi+1

xτ
i ≤ K ∀t ∈ H (3.5)

∑
t∈H

xt
i = 1 ∀i ∈ Vd (3.6)

Si =
∑
t∈H

txt
i ∀i ∈ Vd (3.7)

Ci = Si + pi ∀i ∈ Vd (3.8)

Si ≤ Sj ∀(i, j) ∈ P (3.9)

Si ≥ 0 ∀i ∈ Vd (3.10)

Ci ≥ 0 ∀i ∈ Vd (3.11)

xt
i ∈ {0, 1} ∀(i, t) ∈ Vd ×H (3.12)

The objective function (3.4) minimizes the sum of completion times weighted by task risk. The
resource constraints are defined by inequalities (3.5). The constraints (3.6) state that every task
starts exactly once in the scheduling horizon. The equations (3.7) and (3.8) compute, respectively,
the start and completion times of tasks. The constraints (3.9) are the priority constraints generated
by the the employed priority policy. The model’s variables are defined in (3.10) – (3.12). This
formulation has O(|Vd × H|) binary variables, O(|Vd|) integer variables and O(|Vd| + |P | + |H|)
constraints.

Scenario with sequence-dependent setup times

The model for the scenario with sequence-dependent setup times employs the following decision
variables:

• The binary pulse variables ytij represent the time-indexed flow between i and j at period t,
(i, j, t) ∈ V × V ×H, such that ytij = 1 if task j starts after i at period t, ytij = 0 otherwise;

• The integer variables Si and Ci determine, respectively, the start and completion times of
task i ∈ Vd and are calculated in function of the ytij variables.
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Minimize
∑
i∈Vd

riCi s.t. (3.13)

Constraints (3.9)∑
t∈H

∑
j∈Vd

ytij ≤ K i ∈ Vo (3.14)

∑
t∈H

∑
i∈V \{j}

ytij = 1 ∀j ∈ Vd (3.15)

∑
t∈H

∑
i∈V \{j}

ytji = 1 ∀j ∈ Vd (3.16)

∑
t∈H

∑
i∈V \{j}

tytji ≥ Cj ∀j ∈ Vd (3.17)

Sj =
∑
t∈H

∑
i∈V \{j}

tytij ∀j ∈ Vd (3.18)

Cj =
∑
t∈H

∑
i∈V \{j}

(t+ sij + pj)y
t
ij ∀j ∈ Vd (3.19)

Variables (3.10) – (3.11)

ytij ∈ {0, 1} ∀(i, j, t) ∈ V × V ×H (3.20)

The objective function (3.13) and the priority constraints (3.9) are previously defined. The con-
straints (3.14) represent the resources allocation from the depot node, and their flow conservation
of allocations from task to task is ensured by the constraints (3.15) – (3.17). The equations (3.18)
and (3.19) calculate, respectively, the start and completion times of tasks. The model’s variables
are defined by (3.10) – (3.11) and (3.20). This formulation has O(|V × V ×H|) binary variables,
O(|Vd|) integer variables and O(|Vd| + |P | + |H|) constraints. One may note that the model (3.4)
- (3.12) can be simulated by switching off sequence-dependent setup times, i.e. setting sij = 0 ∀
(i, j) ∈ V 2, but with a considerably less efficient formulation.

Waiting time constraints

The waiting time constraints (3.17) are required to avoid a very specific case when priority con-
straints together with sequence-dependent setup times and processing times can lead to a non-
optimal greedy decision. Without those constraints, resources, after finishing a task, can prema-
turely start a next task that would be better serviced by another resource in a future time unit.

In order to illustrate that specific scenario, Figure 3.3 presents a graph with 4 task nodes that is
part of an omitted larger graph. The tasks are numbered from 1 to for 4 and r1 = 0.9, r2 = 0.9,
r3 = 0.7 and r4 = 0.5; and p1 = 2, p2 = 1, p3 = 1 and p4 = 1 are their respective attributes (see
Table 3.3). The edges indicate the sequence-dependent setup times. It is assumed that M and m
are two arbitrary integer values, with M > m+ 1.

The Figure 3.4 illustrates the issue faced when the strict policy is applied but waiting times are not
supported. A non-optimal solution is obtained after the following order of decisions:
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Figure 3.3: Special case: graph fragment.

1. Suppose that at time t, the resource k1 starts task 1 and the resource k2 starts task 2, since
these are the highest priority tasks.

2. At time t+ p2, k2 finishes processing task 2 (C2 = t+ p2) and will immediately start task 3,
since it is the next highest priority task.

3. At a later time t+ p1, k1 finishes processing task 1 (C1 = t+ p1) and will immediately start
task 4, which is the last remaining task.

4. At time t+ p2 +M + p3, task 3 is completed (C3 = C2 +M + p3);

5. At time t+ p1 +M + p4, task 4 is completed (C4 = C1 +M + p4).
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Figure 3.4: Special case: non-optimal solution without waiting time.

It is clear to see that the decision taken at step 2 is not optimal, since task 3 would be better
serviced by the resource processing task 1. This issue is handled by the waiting time constraints
which provide resources with the option to stay idle and wait for a better suitable task instead
of immediately starting the next one. The correct solution is obtained by the following order of
optimal decisions:

1. Suppose that at time t, the resource k1 starts task 1 and the resource k2 starts task 2, since
these are the highest priority tasks.

2. At time t+ p2, k2 finishes processing task 2 (C∗
2 = t+ p2). Recall that starting task 3 now is

not an optimal decision and starting task 4 is not possible due to the priority constraints. k2
now stays idle for 1 time unit.

3. At a later time t+ p1, k1 finishes processing task 1 (C∗
1 = t+ p1). Now each remaining tasks

can be optimally allocated to the best resource available: k1 starts task 3 and k2 starts task
4.

4. At time t+ p1 +m+ p3, task 3 is completed (C∗
3 = C∗

1 +m+ p3);
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5. At time t+ p2 + 1 +m+ p4, task 4 is completed (C∗
4 = C∗

2 + 1 +m+ p4).
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Figure 3.5: Special case: optimal solution with waiting times.

Input parameter Solution
i pi ri Ci C∗

i

1 2 0.9 t+ p1 t+ p1
2 1 0.9 t+ p2 t+ p2
3 1 0.7 C2 +M + p3 C∗

1 +m+ p3
4 1 0.5 C1 +M + p4 C∗

2 + 1 +m+ p4

Table 3.3: Comparison of non-optimal (Ci) and optimal (C∗
i ) solutions.

The optimal decisions at step 3 were possible due the idle time unit at step 2. The optimality is
verified by C3 > C∗

3 and C4 > C∗
4 , which holds for any M > m+ 1 and p1 > p2:

C3 > C∗
3 (3.21)

t+ p2 +M + p3 > t+ p1 +m+ p3 (apply p1 = p2 + 1) (3.22)

t+ p2 +M + p3 > t+ p2 + 1 +m+ p3 (3.23)

C4 > C∗
4 (3.24)

t+ p1 +M + p4 > t+ p2 + 1 +m+ p4 (apply p2 = p1 − 1) (3.25)

t+ p1 +M + p4 > t+ p1 +m+ p4 (3.26)

3.2 Iterated local search for the RCPSP-RP

The ILS is a metaheuristic composed of an iterative single-chain of solutions generated by an
embedded heuristic. From the stand point of metaheuristic classification, it opposes to population-
based algorithms because it starts with one single initial solution and interactively improves that
solution by applying consecutive perturbations and local search heuristics. Usually, ILS leads to
better solutions than if one were to use repeated random trials of that same embedded heuristic
(Lourenço et al., 2003).
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The concept of ILS leaves many implementation choices to developers – thus, one can apply problem-
specific knowledge to the optimization process – and is known to have achieved numerous state-of-
the-art results in the past (Lourenço et al., 2003).

The objective of ILS, as described in Lourenço et al. (2003), is to explore the set of possible solutions
S using a stochastic walk that interactively steps from one local optima to another “nearby” local
optima in the smaller set S∗ ⊂ S of locally optimal solutions.

This stochastic walk is presented in Algorithm 1 and is explained as follows. The optimization
process starts by generating an initial feasible solution s0 ∈ S using a problem-specific constructive
heuristic. Then, a local search heuristic is applied to s0 to obtain a local optimal solution s∗ ∈ S∗.
Subsequently, the optimization loop (lines 3 – 7) starts with s∗ as the current state of the random
walk in S∗, from where consecutive calls to the perturbation procedure and the local search are
sequentially performed on s∗. Given any current state s∗, a perturbation is applied on s∗ that
leads to an intermediate state s′ (which belongs to S). Then, local search is applied to s′, reaching
a local optima solution s∗′ ∈ S∗. If s∗′ passes an acceptance test, it becomes the next element
of the walk in S∗; otherwise, the walk returns to s∗. If the acceptance test depends exclusively
on the current state of the walk, the walk has no memory. The random walk continues until the
termination condition is fulfilled.

Algorithm 1: Pseudo-code for the Iterated local search

Data: Problem data G = (V,E)
Result: A feasible solution

1 s0 ← GenerateInitialSolution()
2 s∗ ← LocalSearch(s0)
3 repeat
4 s′ ← Perturbation(s∗)
5 s∗′ ← LocalSearch(s′)
6 s∗ ← AcceptanceCriterion(s∗, s∗′)

7 until termination condition met ;
8 return s∗

A detailed description of the components of the proposed ILS is provided in the following sections.

3.2.1 The solution representation

A solution is represented by a tuple s = (j1, . . . , j|Vd|) of length |Vd| containing tasks ji ∈ Vd queued
in an explicit scheduling order. A solution s is feasible if each task appears exactly once in s and the
task scheduling does not violate the priority constraints. That is, if we define R(ji) as a function
that returns the risk of task ji, we have {ji|1 ≤ i ≤ Vd} = Vd and R(ju) ≥ R(jv)−d holds for every
u-th and v-th elements in s, with u < v.

3.2.2 The constructive heuristic

The construction of the initial solution is performed by a greedy heuristic that sequences tasks in a
non-increasing order of risk. That is, the tasks with the highest risk attributes are queued before the



3.2. Iterated local search for the RCPSP-RP 57

tasks with lower risk ones. This is a computationally efficient greedy method that always generates
a feasible solution. The constructive heuristic is described in Algorithm 2 and can be performed by
a sorting algorithm with a O(|Vd|log|Vd|) computational complexity.

The constructive phase is equivalent to assuming that the strict priority policy is always enforced,
thus, one can provide a quick solution by simply ordering tasks by risk attribute. Nevertheless,
the construction phase provides a good starting solution that will be iteractively improved in the
optimization loop.

Algorithm 2: Pseudo-code for the constructive heuristic

Data: Vd

Result: a solution s
1 return s = (j1, . . . , j|Vd|), such that R(ji) ≥ R(ji+1) ∀1 ≤ i < |Vd|

3.2.3 The evaluation procedure

The evaluation procedure is a deterministic function E(s) that evaluates a feasible solution s and
calculates the tasks weighted sum of the completion times. It works by scanning the solution, from
head to tail, and assigning resources to tasks in the order the tasks appear in s. If, at any given
time, more than one resource can be assigned to the same task, the resource that provides the
earliest completion time is chosen.

Algorithm 3 presents a pseudo-code for E(s) that works as following. Initially, a vector of size |Vd|
is allocated to store tasks’ completion times. It then starts scheduling tasks to available resources,
choosing the resource that provides the earliest completion time. The expected completion time on
line 6 is computed by the sum of the completion time of the previous task processed by the resource
and the processing time of the current task, added to the sequence-dependent setup time between
the previous and the current task. For instance, suppose k1 is a resource that just finish processing
task i and is now available; if j is the current task to be scheduled, the expected completion time
of j, if processed by k1 is calculated as Ci + sij + pj .

Algorithm 3: Pseudo-code for the evaluation procedure (E)
Data: a solution s
Result: the weighted sum of completion times

1 C ← [C1, . . . , C|Vd|]
2 for l← 1 to |Vd| do
3 i← jl
4 Ci ← T
5 for k ← 1 to K do
6 C ′ ← the expected completion time of jl, if processed by k
7 if Ci > C ′ then
8 Ci ← C ′

9 return
∑

i∈Vd
riCi
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3.2.4 The local search and the N solution neighborhood

The local search, presented in Algorithm 5, is a first-improving heuristic (see, e. g., Anderson
(1996)) that searches for local optima in a solution’s neighborhood N (s) defined by the swap move:

N (s) = {swap(s, ju, jv) | ∀(ju, jv) ∈ V 2
d } (3.27)

The swap move, presented in Algorithm 4, is a procedure that changes the scheduling order of two
tasks in a solution s if the resulting solution remains feasible according to the priority constraints.
The line (1) performs the swap, while in the lines (2) – (5) it is checked if the solution remains
feasible. For instance, when the strict policy is considered, it is only feasible to apply swap to tasks
that have the same risk attributes. On the other hand, when the no priority policy is applied, swap
can always be employed since the set of priority constraints is empty. Thus, the neighborhood N (s)
may contain up to O(|Vd|2) solutions.

The local search begins with a given solution s and iteratively searches for a solution s∗ ∈ N (s)
that has a better objective function than s. If s∗ exists, the local search will continue by assigning
s ← s∗ and repeating the process until no neighbor s∗ outperforms s, which means that a local
optimum has been found.

Algorithm 4: Pseudo-code for the swap procedure

Data: a solution s and two candidate tasks ju, jv
Result: a solution s′ if feasible, s otherwise

1 s′ ← s, but swap indices of tasks ju and jv
2 for u← 1 to |Vd| − 1 do
3 for v ← v + 1 to |Vd| do
4 if R(ju) < R(jv)− d then
5 return s

6 return s′

Algorithm 5: Pseudo-code for the local search heuristic

Data: a solution s′

Result: a solution s∗, such that E(s∗) ≤ mins∈N (s∗){E(s)}
1 foreach s∗ ∈ N (s′) do
2 if E(s∗) < E(s′) then
3 return LocalSearch(s∗)

4 return s′

3.2.5 The perturbation phase

The perturbation phase is the process of performing a random step from a local optima solution
in S∗ to another solution in S, which will be the new starting point for the local search. The
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perturbation, together with the acceptance test will define the next state of the walk in S∗. If
the perturbation is too strong, ILS may behave like a random restart, since all or most of the
characteristics of the current solution will be lost. On the other hand, if the perturbation is too
weak, the search space will be very limited, since the local search will often fall back to a local
optimum previously visited in the walk.

In Algorithm 6, the perturbation phase is defined as a procedure that receives a local optimal
solution s∗ and a strength parameter (ρ ∈ [0, 1]). This parameter is used to control the number of
random moves that are introduced in s∗, calculated by the formula ⌊|Vd| × ρ÷ 2⌋. Thus, the higher
the value of the strength parameter, the more diversified the resulting s′ is. The perturbation
procedure uses the same swap move defined in Algorithm 6 between two random indices drawn
over the uniform distribution U [1, |Vd|]. A random swap is only introduced if the solution remains
feasible. The perturbation phase results in an intermediate solution s′ that usually is not locally
optimal.

Algorithm 6: Pseudo-code for the perturbation procedure

Data: a solution s∗, ρ
Result: a solution s′

1 s′ ← s∗

2 repeat
3 u← a random integer in U [1, |Vd|]
4 v ← a random integer in U [1, |Vd|]
5 s′ ← swap(s′, ju, jv)

6 until ⌊|Vd| × ρ÷ 2⌋ swaps are performed ;
7 return s′

3.2.6 The acceptance criterion

The acceptance criterion is a memory less function that prioritizes solutions with better objective
function values, defined as:

Better(s∗, s∗′) =

{
s∗′ if E(s∗′) < E(s∗)
s∗ otherwise

(3.28)

In particular, s∗′ is only accepted if it is better than s∗. This criterion performs a strong inten-
sification over diversification, forcing the walk to move to a state with smaller objective function
value, which corresponds to a first-improvement descent in S∗.

3.2.7 The termination condition

The termination condition is defined as a maximum number of calls to the evaluation procedure.
This number is named the solution budget and it is a configurable parameter that can vary from 1
to any large integer. Each time a solution is evaluated, the solution budged decreases by 1. Once the
solution budget reaches 0, the optimization process will stop and return the current local optima
solution s∗. This strategy is used to limit ILS complexity to a certain polynomial in the worst-case,
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defined by the solution budget value. It is also particularly interesting for ensuring repeatability of
results and fair comparison across methods of different nature (Wang et al., 2015).

3.3 Computational experiments

In order to further investigate the the RCPSP-RP, we conducted computational experiments to
measure the impact of different experimental settings on the problem complexity, quality of solution
and algorithmic performance with a diverse experimental instance benchmark. The benchmark tests
aim precisely at (a) analyzing the scalability of the problem versus different problem instances of
increasing order of complexity; (b) assessing the impact of sequence-dependent setup times that
may or may not be considered depending on whether we assume large or confined areas, and (c)
evaluating the effects of the priority constraints under the three different priority schemes in use,
namely strict, moderate and no priority policies.

The remainder of this section is organized as follows: the experimental setup for the benchmark
tests is detailed in Section 3.3.1, including the virtual environment where tests were performed,
data generation, implementation details and tuning of parameters; and the analysis of results are
presented in Section 3.3.2, including a comparison between results obtained using CPLEX and ILS
for the two problem scenarios and the different priority schemes under consideration.

3.3.1 Experimental setup

All the benchmark tests were carried out in a Ubuntu (version 18.04.1) machine with a 26 core Intel
Xeon Processor (Skylake) CPU @ 2.1Ghz and 288GB available RAM, at the computing facilities
of the Laboratoire d’Informatique, de Traitement de l’Information et des Systèmes (LITIS).

Below, the procedure for generating the benchmark instances, the algorithm implementation details
and the parameter tuning are detailed. The source code for the all implementations has been made
publicly available under MIT license at Barbalho (2022) with instructions on how to setup and
reproduce the results obtained in the benchmark tests.

Data generation

We follow an analogous approach to the one presented in Pena et al. (2023) to propose a theoretical
benchmark composed of regular hexagonal grid instances (see Figure 3.6). The objective of using
this graph topology is that they provide more precise euclidean distance measures than other planar
graph structures (Birch et al., 2007; Mora et al., 2007), which is useful for accurately representing
planar terrains in the context of applications in industrial disaster management.

The instance benchmark is designed with the objective of investigating which features render the
RCPSP-RP more or less intractable. To this end, we produce instances with an increasing number
of tasks and with a variable number of resources. Each of the instances resembles the one illustrated
in Figure 3.6. That is, Figure 3.6a represents a planar region mapped as a hexagonal lattice, and
Figure 3.6b represents its respective graph topology, where adjacent hexagons are viewed as adjacent
nodes.

The procedure to generate the instance benchmark is described as follows.
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(a) Hexagonal lattice. (b) Generated graph.

Figure 3.6: Example of a hexagonal grid instance.

1. It starts by generating a hexagonal grid graph with n = |Vd| + 1 nodes; the top-left node is
set to be the depot; for every other node, the attributes ri and pi are individually drawn over
the discrete uniform distributions U(0, 1] and U [1, 10], respectively.

2. Subsequently, the sequence-dependent setup times are calculated as the shortest distances
between each pair of nodes in the graph; where each edge is weighted by 1.

3. Afterwards, a copy of this instance is created for each value of K = {20, 21, 22, ..., 2log2|Vd|},
with each copy getting a different number of available resources at the the depot node.

Table 3.4 presents a summary of the different parameters and values that were used for the gener-
ation of such instances. Following this procedure for the values of |Vd| and K present in Table 3.4,
the instance benchmark contains 22 unique instances, although it could be easily parameterized to
generate other instances at will.

Parameter Value

graph topology regular hexagonal grid
number of tasks (|Vd|) 8, 16, 32, 64
number of resources (K) from 1 to |Vd|, in powers of 2
task risk (ri) randomly drawn over U(0, 1]
task duration (pi) randomly drawn over U [1, 10]

Table 3.4: Summary of the benchmark instance parameters.

Implementation details and tuning of parameters

The integer models for the first [(3.4) – (3.12)] and second [(3.13) – (3.20), (3.9) – (3.11)] problem
scenarios were implemented in Python (version 3.8.10) using the PulP package (version 2.4) and
linked to IBM ILOG CPLEX (version 22.1.0.0) via CPLEX’s Python bindings. The experiments
in CPLEX were carried out with the default parameters and time limit of 4h for every individual
instance.

The ILS components were implemented in Python (version 3.8.10), except the local search and
the evaluation procedure that were written in C for faster performance and compiled with GCC
(version 9.4.0) as a shared library. The experiments with ILS were carried out with the following
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parameter configuration: the solution budget was set by the formula |Vd| × 10, 000, which is large
enough to evaluate an extensive number of solutions; since ILS is a stochastic method, a total of
35 repetitions with different random seeds were performed for every instance; and the perturbation
strength parameter (ρ) was tuned by the IRACE package as described below.

The IRACE package (López-Ibáñez et al., 2016) is a software that implements the iterated F-race
algorithm to automatically find the best parameter settings of an optimizer. The package performs
an elitist racing procedure to ensure that the best configurations returned are evaluated in the
highest number of training instances.

For tuning ILS perturbation parameter, 5 training instances in which optimal values were known
were used as training samples for the two problem scenarios and the three priority policies. The
elite configurations returned by IRACE are shown in Table 3.5, these values of ρ were then used to
solve the instance benchmark.

Sequence-dependent
setup times?

Priority policy
ρ (strict) ρ (moderate) ρ (none)

Scenario 1: no 0.61 0.19 0.86
Scenario 2: yes 0.50 0.56 0.24

Table 3.5: Best configuration returned by IRACE for ILS perturbation strength parameter according
to problem scenario × priority policy.

3.3.2 Analysis of results

In this section we analyze the numerical results for the two problem scenarios obtained by CPLEX
and ILS for the benchmark instances under study. From now on, for the sake of simplicity, each
individual instance is identified by a tuple (|Vd|,K) representing the number of tasks and the number
of resources, respectively.

The complete experimental results are compiled in Tables 3.6 and 3.7 and will be analyzed in
dedicated sections further below. These tables can be read as follows. In the case of CPLEX,
results show both the best Lower Bound (LB) and, if available, the Upper Bound (UB). As for ILS,
the best solution found out of all independent runs is given as well as the mean solution values in
all the runs. Solutions known to be optimal are shown in bold font in both cases, CPLEX and
ILS. A preliminary analysis of these results suggests that:

• In general terms, and not surprisingly, the bigger the instance size is, the more computation
time is required by both methods to solve it. For example, in CPLEX, problem complexity
can vary from solvable within fraction of seconds to completely untracktable within the time
limit of 4 hours. On the other side, ILS presents a polynomial growth in complexity for all
instance sizes, while still reliably providing good results.

• Another aspect that influences the problem’s tractability is the type of problem scenario in
consideration, i.e. by adding travel times, optimizing both sequence-dependent setup times
and task sequencing adds additional complexity to the scheduling problem.

• In contrast to the previous points, the larger the number of resources (K) is, the easier the
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problem instance gets. The specific case K = |Vd| can be trivially solved in O(|Vd|) by
allocating 1 resource to each task.

• Also, the three priority schemes can have different effects on the computational performance
of methods:

– The integer model for the first problem scenario gets easier to solve the less priority
constraints there are.

– In opposition, both the integer model for the second problem scenario and ILS complexity
(in both scenarios) increase as the number of priority constraints decreases. A possible
explanation is that relaxing these constraints implies exploring a larger solution space.

• Despite the fact that the problem complexity is hardened when relaxing priority constraints,
it usually pays off in terms of objective function value, i. e. solving an instance with the
no priority policy can yield up to −20.87%, in the first scenario, and up to −20.02%, in the
second scenario, objective function value than the strict priority policy.

• In all of the instances under study in which CPLEX is able of computing the optimum, ILS
is able to yield either the optimal or a near-optimal value with a small percentage deviation.
This fact, together with CPLEX incapability to find solutions for the hardest instances, points
to the proposed ILS implementation as a good alternative to solve the RCPSP-RP efficiently
both in computational and algorithmic terms.

Given the impact that travel times and priority policies have on the numerical results, the following
sections provide a more detailed analysis of such experimental scenarios.

To compute the percentage differences between solutions found by CPLEX and ILS, the following
formula is used, where S1 represents the UB found by CPLEX and S2 represents the best solution
found by ILS. Negative percentage gaps indicate cases where ILS provided a better solution than
CPLEX.

(S2 − S1)

S1
× 100 (3.29)

Scenario without sequence-dependent setup times

The first experimental scenario aims at analyzing the results of the benchmark instances without
sequence-dependent setup times, i. e. we set sij = 0 ∀(i, j) ∈ V 2

d . In practice, this scenario can
arise, for instance, in the context of industrial disasters contained in self-enclosed spaces, where
travel times can be neglected from a practical perspective since processing times are considerable
longer. The complete numerical results are compiled in Table 3.6.

In the experiments carried out using CPLEX, out of the 22 instances, the number of obtained
optimal solutions was 20, 22 and 22 for the strict, moderate and no priority policy, respectively.
For the strict policy, the integer solutions found for the instances (64, 1) and (64, 2) are the only
ones not guaranteed to be optimal, with gaps of 0.42% and 0.26% to their best lower bounds,
respectively.

The number of optimal solutions obtained by ILS was 20 out of 22 for every different priority policy
under study:
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• For the strict priority policy, all the solutions are identical to the ones obtained by CPLEX,
including the solutions for the instance (64, 1) and (64, 2), which are not guaranteed to be
optimal.

• For the moderate priority policy, the best solutions found for the instances (64, 1) and (64, 2)
are the only non-optimal, with percentage deviation of 0.011% and 0.017% to the optimal
solutions, respectively.

• For the no priority policy, the best solutions found for the instances (64, 2) and (64, 4) are the
only non-optimal, with percentage deviation of 0.021% and 0.005%, respectively.

Even though ILS failed to compute the optimal solutions in the last 4 cases, the obtained solutions
are considered near-optimal, since the percentage deviations to the optimal solutions are in the
order of hundredths or even thousandths. In absolute values, those errors present an increase of,
at maximum, 0.6 in the objective function value.
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65 Instance Priority policy

|Vd| K
strict moderate none

CPLEX ILS CPLEX ILS CPLEX ILS
UB LB best UB mean UB UB LB best UB mean UB UB LB best UB mean UB

8

1 40.1 40.1 40.1 40.1 33.8 33.8 33.8 33.8 33.8 33.8 33.8 33.8
2 23.2 23.2 23.2 23.2 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4
4 16.3 16.3 16.3 16.3 16.3 16.3 16.3 16.3 16.3 16.3 16.3 16.3
8 14.8 14.8 14.8 14.8 14.8 14.8 14.8 14.8 14.8 14.8 14.8 14.8

16

1 264.5 264.5 264.5 264.5 209.3 209.3 209.3 209.3 209.3 209.3 209.3 209.3
2 141.2 141.2 141.2 141.2 117.3 117.3 117.3 117.3 117.3 117.3 117.3 117.4
4 79.6 79.6 79.6 79.6 72.5 72.5 75.5 72.5 72.5 72.5 72.5 72.5
8 52.3 52.3 52.3 52.3 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0
16 47.2 47.2 47.2 47.2 47.2 47.2 47.2 47.2 47.2 47.2 47.2 47.2

32

1 1167.1 1167.1 1167.1 1167.1 977.9 977.9 977.9 977.9 977.9 977.9 977.9 977.9
2 601.8 601.8 601.8 601.8 516.0 516.0 516.0 516.0 516.0 516.0 516.0 516.0
4 324.3 324.3 324.3 324.3 285.5 285.5 285.5 285.5 285.5 285.5 285.5 285.6
8 183.3 183.3 183.3 183.3 172.5 172.5 172.5 172.5 172.5 172.5 172.5 172.5
16 120.1 120.1 120.1 120.1 118.7 118.7 118.7 118.7 118.7 118.7 118.7 118.7
32 104.1 104.1 104.1 104.1 104.1 104.1 104.1 104.1 104.1 104.1 104.1 104.1

64

1 4258.2 4240.2 4258.2 4258.2 3501.6 3501.6 3502.2 3504.5 3486.6 3486.6 3486.6 3486.6
2 2161.2 2155.5 2161.2 2161.2 1797.5 1797.5 1797.7 1798.4 1791.4 1791.4 1791.5 1791.5
4 1115.8 1115.8 1115.8 1116.5 947.2 947.2 947.2 947.3 944.6 944.6 944.8 944.9
8 600.1 600.1 600.1 600.2 523.7 523.7 523.7 523.8 522.8 522.8 522.8 522.9
16 345.0 345.0 345.0 345.1 315.7 315.7 315.7 315.7 315.3 315.3 315.3 315.4
32 220.3 220.3 220.3 220.3 217.9 217.9 217.9 217.9 217.9 217.9 217.9 217.9
64 189.4 189.4 189.4 189.4 189.4 189.4 189.4 189.4 189.4 189.4 189.4 189.4

Table 3.6: Results for the problem scenario without sequence-dependent setup times.
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Another aspect to analyze is the effect that the priority policy strictness has on the computed
overall risk. The strict priority policy is, in general, the one that yields the worst objective function
values. Clearly, results indicate that using such policy is not the best operational strategy if one
wants to obtain the best solutions possible. Nonetheless, it can be argued that decision makers
may impose task prioritization in certain emergency situations, or task priorities cannot easily be
ignored. In such cases, the moderate policy seems to be a good alternative to the strict one.
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(a) Instance (8, 1).
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(b) Instance (32, 8).

Figure 3.7: Comparison of optimal solutions for the strict and no priority policies. Purple regions
are the overlapping of the solutions in orange and blue. The respective objective functions are
(3.7a) 40.1 and 33.8; and (3.7b) 183.3 and 172.5.

While imposing certain constraints in the order that tasks are processed, the moderate policy is
able of generating solutions that are, on average 8.74% (and up to 20.87% in the best case) better
than the strict policy. Although, if task prioritization is not required, the no priority policy can
yield solutions that are, on average, 8.79% (and also up to 20.87% in the best case) better than the
strict policy. The no priority policy is also slightly better than the moderate by 0.06%, on average,
and up to 0.43% in the best case. For visualization purposes, Figure 3.7 shows the strict vs. no
priority policies comparison for two representative instances. Naturally, the no priority policy yields
smaller graph areas, mostly due to a stronger decrease of the overall risk at early periods.

Another important aspect to consider is the running times of the different algorithmic approaches.
Typically, when comparing different optimization techniques, the preference is to select the one
that, given the same results, takes the shorter time. Moreover, in many cases, a small loss in the
quality of the solutions provided by a method can be justified if its running time is substantially
shorter than that of another method. This may be the case, for instance, in disaster relief operations
where a rapid post-disaster response is usually expected.

In order to compare CPLEX and ILS in terms of their computational performance, Figure 3.8
shows the running times of both algorithmic approaches for the benchmark instances. The plots
were obtained by retrieving, for each instance, the time to solution for CPLEX and the average
execution time of the 35 independent runs for ILS. The running times are presented in log scale for
better visualization. In general, the instances towards the bottom right corner are the hardest to
solve. These are the ones with the largest |Vd| ÷K ratio. The source data for these plots can be
found in Appendix A, Table A.1.
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(a) CPLEX’s running times.
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(b) ILS running times.

Figure 3.8: Color maps representing CPLEX and ILS running times for the scenario without
sequence-dependent setup times. The gray scale, from light to dark, stands for the number of
seconds (in log scale) employed to find the best solution. Each gray box represents an instance
(|Vd|,K).

For CPLEX, instances under the strict policy usually have longer running times than their moderate
or none counterparts. In particular, the instances (64, 1) and (64, 2) are the hardest ones for CPLEX.
Under strict priorities, they reached the 4 hours time limit while their moderate and none equivalent
required respectively 12.45s and 3.36s to complete. These two specific instances required between
0.20s and 1.5s to be solved in ILS, with the shortest running time for the instance (64, 1) under
strict priorities and the longest running time for the instance (64, 2) under moderate policy. This
signals that the problem scenario becomes easier to solve in CPLEX as the number of priority
constraints decreases. For ILS, contrary to CPLEX, the relaxation of priority constraints slightly
increases the running times due to the exploration of a larger solution space, which consumes more
times during local search.

In the experiments carried out with the moderate and no priority policies, CPLEX and ILS can
be considered equivalent in terms of solution quality and computational complexity, since both
methods can calculate optimal solutions with similar running times in the order of milliseconds
or seconds, depending on the instance size and number of available resources. The only notable
difference is for the strict policy, where ILS can provide the same optimal solutions as CPLEX
in substantially less time. For more complex scenarios as the one presented in the next section,
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CPLEX starts to fail to obtain optimal – or even integer – results while ILS continues to scale
polynomially to the instance size, while still reliably providing optimal or near-optimal solutions,
when optima are known.

Scenario with sequence-dependent setup times

This second experimental scenario aims at analyzing the results of the benchmark instances with
enabled sequence-dependent setup times. In practice, this scenario can arise, for instance, in the
context of industrial disasters affecting large areas, where travel times cannot be neglected and
must be taken into consideration in the optimization process. The complete numerical results are
compiled in Table 3.7.

In the experiments carried out using CPLEX, out of the 22 instances, the number of obtained
optimal solutions was 14, 13 and 13 for the strict, moderate and no priority policies, respectively.
CPLEX failed to compute 8, 9 and 7 integer solutions for each priority policy, which shows that this
scenario is harder to solve than the one without sequence-dependent setup times. Additionally, for
the no priority policy, the solutions found for the instances (16, 1) and (32, 4) are not guaranteed
to be optimal, with gaps of 55.02% and 27.24% to their respective best lower bounds.

Overall, results show that ILS is able to solve all instances with enabled sequence-dependent setup
times, while CPLEX does not. Since CPLEX failed to yield integer solutions for some of the
instances and obtained non-optimal results in another two of them, it was not possible to determine
optimality for the strict, moderate and no priority policies in 8, 9, and 9 of the instances, respectively.
Clearly, by adding sequence-dependent setup times to the optimization process, a large portion of
the instances becomes unsolvable by CPLEX within the given time limit of 4 hours and most of the
solution from 32 tasks ahead are left without integer solutions. Meanwhile, ILS presents the same
polynomial complexity growth shown in the first problem scenario.

ILS obtains both optimal and near-optimal results in instances with known optimal values and
is capable of obtaining competitive results in instances where CPLEX fails to achieve any integer
solution. ILS was able to provide a solution in all of these test cases and to outperform the non-
optimal integer solutions provided by CPLEX, such as the solutions obtained for the instances
(64, 2) and (64, 4) that are, respectively, 3.19% and 10.81% better than those achieved by CPLEX.
Additionally, ILS also obtained 11, 11 and 12 optimal solutions for the strict, moderate and no
priority policies, respectively. Below we detail the cases in which ILS was not able to attain known
optimal solutions:

• For the strict policy, the solutions computed for the instances (16, 4), (32, 16) and (64, 32)
are non-optimal with percentage deviation of 0.33%, 0.19% and 0.66% to the optimal values,
respectively.

• For the moderate policy, the solutions calculated for the instances (16, 2) and (64, 32) are also
non-optimal with percentage deviation of 0.06% and 0.16%, respectively.

• For the no policy, the solution for the instance (64, 32) is non-optimal with a percentage
deviation of 0.18%.
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Instance Priority policy

|Vd| K
strict moderate none

CPLEX ILS CPLEX ILS CPLEX ILS
UB LB best UB mean UB UB LB best UB mean UB UB LB best UB mean UB

8

1 77.5 77.5 77.5 77.5 63.4 63.4 63.4 63.4 63.4 63.4 63.4 63.4
2 45.1 45.1 45.1 45.1 43.4 43.4 43.4 43.4 43.4 43.4 43.4 43.4
4 33.7 33.7 33.7 33.7 32.9 32.9 32.9 32.9 32.9 32.9 32.9 32.9
8 28.6 28.6 28.6 28.6 28.6 28.6 28.6 28.6 28.6 28.6 28.6 28.6

16

1 376.6 376.6 376.6 376.6 - 190.8 291.6 291.6 301.2 194.3 291.6 291.7
2 202.5 202.5 202.5 202.5 162.6 162.6 162.7 165.53 162.6 162.6 162.6 163.1
4 121.2 121.2 121.6 121.6 106.6 106.6 106.6 107.4 106.6 106.6 106.6 106.7
8 81.2 81.2 81.2 82.2 81.1 81.1 81.1 81.1 81.1 81.1 81.1 81.1
16 75.3 75.3 75.3 75.3 75.3 75.3 75.3 75.3 75.3 75.3 75.3 75.3

32

1 - 349.5 1667.0 1669.4 - 331.0 1402.0 1410.5 - 381.9 1402.3 1412.0
2 - 430.7 900.6 903.5 - 364.4 735.5 739.7 - 297.9 735.4 739.4
4 - 433.1 500.4 502.9 - 368.0 420.9 426.4 471.8 370.8 420.8 424.6
8 300.6 300.6 300.6 301.4 272.1 272.1 272.1 274.4 272.1 272.1 272.1 273.0
16 214.7 214.7 215.1 215.1 205.9 205.9 205.9 205.9 205.9 205.9 205.9 205.9
32 185.6 185.6 185.6 185.6 185.6 185.6 185.6 185.6 185.6 185.6 185.6 185.6

64

1 - 433.3 6250.1 6333.9 - 421.1 4936.6 5117.1 - 420.0 4987.3 5118.3
2 - 429.2 3164.6 3202.8 - 417.3 2578.0 2650.3 - 648.5 2634.8 2710.9
4 - 533.9 1681.4 1698.2 - 417.3 1401.4 1429.3 - 493.0 1403.0 1450.7
8 - 497.5 979.7 986.2 - 504.4 823.0 838.4 - 490.5 831.1 850.0
16 - 591.8 615.1 616.6 - 489.6 547.2 553.2 - 542.2 551.4 559.1
32 439.3 439.3 442.2 443.3 431.0 431.0 431.7 432.2 430.5 430.5 431.3 432.2
64 392.6 392.6 392.6 392.6 392.6 392.6 392.6 392.6 392.6 392.6 392.6 392.6

Table 3.7: Results for the problem scenario with sequence-dependent setup times.
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In order to compare CPLEX and ILS in terms of their computational performance, Figure 3.9 shows
the running times of both algorithmic approaches for the different benchmark instances. Instances
towards the right and bottom-right corner are hardest ones to solve. These instances present the
largest |Vd|÷K ratio. This comparison reinforces the previous conclusion that by enabling sequence-
dependent setup times in the optimization process, the problem becomes considerably less tractable
for exact solvers such as CPLEX, while the computational performance of ILS scales polynomially.
The source data for these plots can be found in Appendix A, Table A.2.
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Figure 3.9: Color maps representing CPLEX and ILS running times for the scenario with sequence-
dependent setup times. The gray scale, from light to dark, stands for the number of seconds (in
log scale) employed to find the best solution. Each gray box represents an instance (|Vd|,K).

Finally and similarly to the first experimental scenario, the regime of task prioritization has a great
effect in the overall risk as illustrated in Figure 3.10. The no priority policy, in general, yields the
smallest objective function values, although it can be considered virtually equivalent in terms of
solution quality and running times to the moderate priority policy:

• The no policy can yield solutions that are, on average, 6.56% (and up to 20.02% in the best
case) better than the strict policy.

• The moderate policy is able of generating solutions that are, on average 5.51% (and up to
19.70% in the best case) better than the strict policy.
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Figure 3.10: Comparison of optimal solutions for the strict and no priority policies. Purple regions
are the overlapping of the solutions in orange and blue. The respective objective functions are
(3.10a) 77.5 and 63.4; and (3.10b) 300.6 and 272.1.

Comparison between RCPSP-RP scenarios

One last point worth analyzing is the impact of sequence-dependent setup times in the objective
function values. For example, in the context of industrial disasters, how much does the overall risk
increase when considering travel times? We may answer this question by looking at the differences
in objective function values between the two experimental scenarios in Tables 3.6 and 3.7. These
relative differences are presented in Table 3.8 for better visualization. See also Figure 3.11) for
a visual comparison of instances (8, 1) and (32, 8) regarding the two problem scenarios, which is
representative of the overall instances.
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Figure 3.11: Comparison of optimal solutions between the first (dark orange) and the second (light
orange) problem scenarios. The respective objective functions are (3.11a) 40.1 and 77.5; and (3.11b)
183.3 and 300.6.

By analyzing Table 3.8, one may note that sequence-dependent setup times may add up to 100% to
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Instance Priority policy
|Vd| K strict moderate none

8

1 93.27% 87.57% 87.57%
2 94.40% 102.80% 102.80%
4 106.75% 101.84% 101.84%
8 93.24% 93.24% 93.24%

16

1 42.38% - 43.91%
2 43.41% 38.62% 38.62%
4 52.26% 47.03% 47.03%
8 55.26% 55.96% 55.96%
16 59.53% 59.53% 59.53%

32

1 - - -
2 - - -
4 - - 65.25%
8 63.99% 57.74% 57.74%
16 78.77% 73.46% 73.46%
32 78.29% 78.29% 78.29%

64

1 - - -
2 - - -
4 - - -
8 - - -
16 - - 73.04%
32 99.41% 97.80% 97.57%
64 107.29% 107.29% 107.29%

Table 3.8: Comparison between first and second problem scenario: relative increase in objective
function values resulted by sequence-dependent setup times. Only optimal solutions were consid-
ered.

the overall risk, which is an interesting insight when assessing the extent of an industrial incident.
We may know, a priori, if an incident can be more or less disastrous based on the extent of the
contaminated area. Not only since larger areas may be affected, but also because time to move
teams and equipment from one contaminated site to another may account for a valuable operational
time.

3.4 Concluding remarks

This chapter presented an extended version of the RCPSP which allows the problem to be adapted
to new application domaines where tasks have priorities associated with their risk attribute. The
proposed RCPSP-RP is an integrated scheduling and routing optimization model that aims at
minimizing the sum of completion times of tasks weighted by their risk factor, and that allows
task prioritization employing priority constraints. These constraints are represented as precedence
relations disposed as a directed acyclic graph with two particularities: i) they can be relaxed by
means of a relaxation threshold parameter and ii) tasks are allowed starting at the same time as
their predecessors as long as there are enough available resources. In addition, two versions of the
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problem considering or not sequence-dependent setup times are investigated.

In order to conduct a study on the problem’s tractability, we performed computational experiments
on a theoretical instance benchmark designed on the context of the post-catastrophe operations in
the event of industrial disasters application, where a group of specialized teams are deployed to clean
up areas contaminated by dangerous substances after an industrial disaster. The contaminated area
is mapped as a hexagonal grid graph, where each contaminated node is treated as a task with a
associated risk that depends on the hazardous nature of pollutants present on it.

We developed two integer models and an ILS metaheuristic as the optimization methods. These
methods were tested on a theoretical benchmark, where two problem scenarios were considered:
with or without travel times, which implies the usage or not of sequence-dependent setup times.

A first conclusion that can be drawn from this study is that travel times make the problem far
less tractable for the integer models. Particularly in CPLEX, instances with 16 tasks or more start
to become unsolvable within the prefixed computing time limit of 4 hours. On the other hand,
ILS shows polynomial scalability of the running times, obtaining solutions for every instance in
the benchmark in the order of seconds. Furthermore, ILS is able to find optimal or near-optimal
solutions in instances with known optimal values, and, in some specific case, better solutions than
the ones achieved by CPLEX. Therefore, it is advisable to use a metaheuristic approach such as
ILS, specially when tackling large or demanding instances.

A second conclusion concerning the RCPSP-RP is that relaxing the priority constraints, by increas-
ing the value of the relaxation threshold, leads to a much stronger minimization of the overall risk.
In particular, imposing priority constraints significantly impairs the results obtained. The more
constraints, the smaller the search space and the worse the optimal value. Meanwhile, results show
that, partially or completely disabling those constraints is a good strategy to improve the attainable
optimal values, with the downside of longer running times.

Overall, this study on the RCPSP-RP shows the capabilities of the problem to address application
domaines that take into account risks, priorities, and sequence-dependent context changes or costs.
In addition to industrial post-disaster situations, the RCPSP-RP may be applied to other applica-
tion domaines that involve risk or priority components such as preventive maintenance scheduling,
evacuation planning with priorities or humanitarian logistics, etc.

Finally, this study opens several avenues of research and future work in operational research in
the field of industrial catastrophes. In the next chapter, we will study a dynamic version of the
RCPSP-RP, where task state may change through time. As a case study, we will investigate the
application with dynamic transformation of chemicals released into the environment, where site
contamination may evolve over time.
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Chapter 4

The resource-constrained project
scheduling problem with risk and
product transformation dynamics

In this chapter, we present the RCPSP-RTD, which is an extended version of the RCPSP-RP
model that incorporates product transformation dynamics, chemical transformations, and product
degradation. Our primary focus is to examine the dynamics of these transformations. For this
purpose, we propose an extension of a specific case of the RCPSP-RP, excluding sequence-dependent
setup times and strict/moderate priority rules (see Table 4.1). By doing so, we investigate intricate
dynamics of product transformations and degradation within the context of the problem. We
consider the potential support for sequence-dependent setup times and alternative priority rules in
the concluding remarks. These considerations expand the scope of our research and provide avenues
for future studies to explore different aspects of the extended RCPSP-RTD model.

The objective of the RCPSP-RTD remains focused on reducing contamination risk. The model
incorporates two types of on-site operations. While inspired by existing scientific literature, the
extended model is kept generic, allowing it to handle a wide range of scenarios without specific
product parameters. Instead of focusing on individual products, we explore a diverse set of generic
scenarios to demonstrate its versatility in addressing real-world scenarios.

This chapter explores the concept of product transformation dynamics and operation speed, where
task durations vary based on products’ current amount on sites. This dynamic approach to task
duration calculations ensures accurate and context-specific scheduling of on-site operations.

In summary, this chapter presents a comprehensive mathematical formulation for optimizing haz-
ardous substance management in industrial disaster scenarios. By utilizing the time-indexed MILP
model and considering the dynamic nature of product, the proposed approach enhances the ef-
fectiveness and safety of on-site operations. The integration of the optimization framework and
heuristic for estimating the operation horizon provides a solution for mitigating risks and opti-
mizing the use of limited resources during hazardous substance management in industrial disaster

75
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RCPSP-RP (Chapter 3) • • • •

RCPSP-RTD • • • • • •

Table 4.1: Summary of RCPSP-RP and RCPSP-RTD problem features.

scenarios.

4.1 Introduction to risk assessment and parameter estima-
tion

Understanding the evolution and dynamics of chemicals released into the environment is relevant
for assessing risks, such as determining transformation and degradation rates of substances. Pa-
rameters, like the degradation and transformation rates of products, are often indirectly inferred
from experimental data collected in controlled environments. Generally, nonlinear mathematical
models are used to fit empirical data and estimate real parameter values, with statistical analysis
employed to assess uncertainty. The objective of such models is to ascertain whether degrada-
tion rates significantly differ from zero. Although standard nonlinear least-squares methods are
commonly employed, they can yield counterintuitive results due to wide or misshapen estimated
probability distributions (Görlitz et al., 2011). Below, we review some materials and studies in the
literature related to the risk assessment of chemicals, which provide a useful introduction to the
field.

John W. Green and Holbech (2018) provide an introduction to fundamental concepts present in
toxicology studies, particularly in the context of regulatory risk assessment. The authors covers
among others subjects such as randomization, selecting test concentrations or doses, the choice of
experimental species, and the challenges of extrapolating results to human toxicity. In addition
to design issues, the authors detail the sources of variability and uncertainty in toxicity experi-
ments. Various types of responses observed in toxicity experiments are introduced, with references
to specific chapters where statistical analysis methods for each type are developed. The use of his-
torical controls and their relevance to regulatory risk assessment of environmental chemicals is also
discussed. A hierarchy of statistical models is presented, providing an overview of the statistical
techniques employed in this field of study and throughout the text.

In addition to traditional nonlinear regression, some studies introduced alternative models for es-
timating transformation parameters from empirical data. In Görlitz et al. (2011), the authors pro-
posed an approach based on Markov-Chain Monte Carlo (MCMC) sampling to estimate the real
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probability distribution of model parameters. The effectiveness of this method is demonstrated us-
ing three data sets, specifically evaluating degradation of chemicals in soil. The method was applied
to several complex scenarios, including kinetic data from compounds with one and five metabolites.
Simulated data further confirms the MCMC method’s ability to estimate real probability distribu-
tions of parameters more accurately than the standard nonlinear least square method. The efficacy
of the approach is demonstrated through artificial and real data sets. The MCMC model correctly
identifies situations with zero and nonzero degradation rates, providing more reliable and plausible
characterizations compared to traditional methods.

In Figure 4.1, we present a schematic representation of the models utilized in Görlitz et al. (2011).
The model is designed for scenarios in which a parent substance (the initial substance initiating
chemical transformation) can undergo either transformation (metabolization) into another sub-
stance or degradation. The resulting product (metabolite) of the parent substance can only undergo
degradation. The authors employed such model to study two datasets:

• Two species model with nonzero degradation rate: the first dataset correspond to a parent
product p and a resulting product (metabolite) m, where Kpm > 0, Kp∗ > 0 and Km∗ > 0.
That is, product p transforms (metabolizes) into product m at a rate Kpm. In addition, p
and m degrade at rates Kp∗ and Km∗, respectively.

• Two species model with zero degradation rate: the second dataset correspond to a parent
product p and a resulting product (metabolite) m, such that Kpm > 0, Kp∗ > 0 and Km∗ = 0.
That is, product p transforms (metabolizes) into product m at a rate Kpm. In addition, p
degrades at a rate Kp∗, but m has a zero degradation rate.

Figure 4.1: Schematic representation of a chemical transformation model. Adapted from Görlitz
et al. (2011).

In Murzin et al. (2021), a MCMC model was also proposed for kinectic analysis and parameter es-
timation of the hydrogenation of toluene to methylcyclohexane in both gas and liquid phases. The
study showed that, when dealing with complex reaction mechanisms involving multiple kinetically
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significant steps, traditional nonlinear regression provided resulted in poorly defined kinetic param-
eters, which was also noticed by Görlitz et al. (2011). In contrast, the Bayesian statistics approach
allowed for the identification of the most statistically probable values for those parameters.

Overall, the majority of studies in this field deal with the estimation of parameters from empirical
data to determine transformation and degradation rates. However, providing an estimation model
for transformation and degradation parameters is outside the scope of this study. Our focus is
centered on delivering an optimization model able to use these estimated parameters to take into
account the transformation dynamics of products, while minimizing risks.

4.2 Problem definition

In the following problem definition, we acknowledge that products may undergo chemical reactions,
transforming into other products at specific rates, and that the byproducts can possess varying
levels of risk compared to their parent products. In addition, products may experience natural
degradation over time, causing their presence to diminish or disperse gradually. For instance, Figure
4.1 illustrates a dynamic transformation scheme involving a parent product A, which simultaneously
degrades and undergoes transformation into product B at the rates Kpm and Kp∗, respectively.
The product B, on the other side, has no transformation rates but undergoes degradation at a rate
Km∗. The process of transformation a product A into product B at a rate Kpm means that, for
each time unit, Kpm percent of A’s current amount is converted into product B. Similarly, product
degradation at a rate Kp∗ indicates that its current amount will diminish by a factor of Kp∗ for
each time unit. In general, if Kpm > 0, the product p will eventually be fully transformed into
another substance m; if Kp∗ > 0, p’s amount will eventually diminish completely, leaving no further
traces. In cases where both Kpm = 0 and Kp∗ = 0, the product has zero transformation rate and
zero degradation rate, representing the problem presented in the Chapter 3.

Moreover, we have developed an extensive benchmark of data, inspired by the work of Görlitz et al.
(2011). The designed instance benchmarks serve two purposes. First, they aim to investigate the
hypothesis of risk escalation over time, which entails the transformation of a less risky product into
a more hazardous one. Second, they delve into the notion of risk reduction over time, where the
transformation of a higher risk product leads to a less risky product. Alongside these hypotheses, we
further examine four distinct scenarios concerning product degradation. These scenarios encompass
instances where:

1. products undergo no degradation;

2. the parent product features a non-zero degradation rate;

3. the resulting product exhibits a non-zero degradation rate; and finally

4. both the parent and the resulting product possess non-zero degradation rates.

The new formulation detailed further below, introduces a set of decision variables that represent
key aspects of the problem. At a glance, continuous variables wt

ip signify the amount of product p
on site i at time t, allowing for a dynamic representation of product amount. Pulse binary variables
xt
ip and yti capture the occurrence and timings of neutralizing and cleaning operations, respectively.

The continuous variables rtip, d
t
ip, and qtipm model the removal, degradation, and transformation of

hazardous substances during on-site operations.
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Let P = {0, 1, ..., N} be the set of products present in the contaminated sites. Each product p ∈ P
is associated with a risk value denoted as Rp ∈ [0, 1], which represents the hazardous nature of
the material. The risk values are categorized based on a scale of low risk (Rp ≤ 0.3), medium risk
(0.3 < Rp ≤ 0.5), high risk (0.5 < Rp < 0.9), or critical risk (Rp ≥ 0.9). Furthermore, let V be
the set comprising the contaminated sites. Each site i ∈ V is characterized by an initial amount of
product p ∈ P , denoted as Wip ≥ 0. In addition, we introduce the transformation rate of product
p into product m, denoted as Kpm ≥ 0, for all (p,m) ∈ P × P . Finally, we define the degradation
rate of each product p ∈ P as K̄p∗ ≥ 0.

The objective is to devise an optimal schedule of on-site operations using a set of heterogeneous
resources or teams to either (i) clean or (ii) neutralize hazardous products at contaminated sites
resulting from industrial disasters.

For each contaminated site, the following decisions must be made:

1. Determine the nature of the operation, either (i) fully cleaning the site, which involves phys-
ically removing all products present on it, or (ii) neutralizing a specific target product p on
the site. The duration of each operation is determined based on the type of operation and its
starting time (see Section 4.2.1 for more details).

• Cleaning a site involves eliminating all hazardous products, resulting in a final concen-
tration of 0 for all products on the target site, as shown in Figure 4.2. This ensures the
site is safe and free from hazardous substances. This operation is analogous to the one
presented in Chapter 3.

• A neutralizing operation relies on applying a reactive substance s to neutralize a specific
target product p. The objective is to fully neutralize the product p into a safe product, as
shown in Figure 4.3, where an example of neutralizing product A is depicted. The result
of this operation is the transformation of product A into a product C, which represents
a generic safe product. It is essential to note that the reactive substance s only reacts
with the target product p. Although the product p is neutralized on the site, there may
still be other hazardous products present, which means the site is not guaranteed to be
entirely safe.

2. Decide the date in time unit at which the operation will start. This decision is constrained
by the availability of resources for each type of on-site operation.

A B C A B C

Clean

Figure 4.2: Cleaning operation scheme. The rectangle represents a site with products A, B and C
before and after a cleaning operation.

The scheduling problem involves determining optimal timings and sequences for conducting on-
site operations, aiming to minimize the risks associated with hazardous products as effectively as
possible. Essential input data, as presented in Table 4.2, plays a crucial role in addressing this
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B C A B C

Neutralize A

A

Figure 4.3: Neutralizing operation scheme. The rectangle represents a site with products A, B and
C before and after a neutralizing operation. The target product A is transformed into C.

challenging task. The data include the contaminated sites, the types and quantities of dangerous
substances involved, the availability of resources, and relevant temporal limitations (see Section 4.3
for details).

The constants Q ≥ 0 and Q̄ ≥ 0 indicate the number of available resources for conducting cleaning
and neutralizing operations, respectively. Each task must be assigned to a single resource, and once
it has commenced, interruption or preemption is not permitted. The task must be carried out by
the designated resource until its completion.

The task duration attributes are computed using the functions D(i, p) and D̄(i, p, t), which provide
estimations of the time required to perform cleaning or neutralizing operations, respectively, based
on their starting times. These functions take into account the cleaning or neutralizing speed (Z
or Z̄p, respectively) and the expected product amount at a specific time t (see Section 4.2.1 for
details).

The constant T ≥ 0 represents an estimation of the total time required to fully mitigate the risk
across all contaminated sites. It is considered as an upper bound since determining its optimal
value is computationally as challenging as solving the problem itself (see Section 4.2.2 for details).

The objective function is defined as the minimization of risk across the entire operation horizon.
Since each contaminated site i ∈ V may contain one or more hazardous products, the risk at site i
during any time t ∈ H is computed as follows, with wt

ip representing the amount of product p at
time t:

∑
p∈P

Rpw
t
ip (4.1)

To encompass all sites i ∈ V and all time units t ∈ H, we expand Equation 4.1 to define the
objective function to minimize the global risk across all contaminated sites and throughout the
entire operation horizon.

Minimize
∑
i∈V

∑
t∈H

∑
p∈P

Rpw
t
ip (4.2)

By optimizing the scheduling of cleaning and neutralizing operations, the goal is to effectively
mitigate the risk of dangerous products and ensure the safety and well-being of the affected areas.
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Input parameter Description
P Set of products, representing the hazardous sub-

stances present in the contaminated sites
Rp Risk attribute of product p, indicating the level of

risk associated with each hazardous substance
V Set of sites, representing the contaminated sites that

require cleaning or neutralizing operations
Wip Initial amount of product p on site i, providing the

starting level of contamination for each site
T Operation horizon upper bound, an estimation of the

maximum time required to complete all on-site op-
erations effectively

H Set of time units t = 0, ..., T , representing the time
periods during the operation horizon

Q Number of available resources to perform on-site
cleaning operations

Q̄ Number of available resources to perform on-site neu-
tralizing operations

D(i, t) Time required to clean site i at time t, accounting
for the dynamics of products and cleaning speed (see
Section 4.2.1)

D̄(i, p, t) Time required to neutralize product p on site i at
time t, accounting for the dynamics of products and
neutralizing speed (see Section 4.2.1)

Kpm Transformation rate of product p into product m, in-
dicating the rate at which one product is transformed
into another

K̄p∗ Degradation rate of product p, indicating the rate at
which the product naturally degrades over time

Z Cleaning speed, representing the pace at which haz-
ardous substances can be removed from a contami-
nated site during cleaning operations

Z̄p Neutralizing speed for product p, representing the
rate at which a hazardous substance can be neutral-
ized during neutralizing operations

Table 4.2: Table of problem input data.

4.2.1 Task duration and operation speed

Task duration is intrinsically linked to the current amount of products at a specific time t due to
degradation dynamics. If the products’ degradation rate is not zero, task durations tend to decrease
with time. For example, D(i, t) ≥ D(i, t + 1), with the rate of decrease determined by the value
of the degradation parameters. Similarly, for neutralizing operations, task durations also tend to
decrease with time, such that D̄(i, p, t) ≥ D̄(i, p, t+1), if product p has a non-zero degradation rate.
In other words, operations take less time at later stages of the time horizon if product degradation is
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positive. This dynamic nature of task durations reflects the impact of degradation on the hazardous
products over time. As the products degrade or are neutralized, the required time for completing
on-site operations diminishes, thereby influencing the scheduling decisions.

In Algorithms 7 and 8, we provide pseudo-codes for computing the task duration for cleaning
(D(i, t)) and neutralizing (D̄(i, p, t)) operations for a given site i and product p at time t. Both
algorithms simulate the natural dynamics of products to calculate their expected amount at time
t, and subsequently determine the time required to fully complete a cleaning or neutralizing task.
The computation proceeds through the following steps:

1. Set the initial amount of products (lines 1 – 2, in both Algorithms 7 and 8).

2. Begin simulating the natural evolution of products based on their transformation and degra-
dation rate parameters, fast-forwarding to time unit t− 1 (lines 3 – 9, in both Algorithms 7
and 8).

3. Compute the required duration to fully complete a cleaning operation, considering the current
amount (wt

ip) and operation speed (lines 10 – 22, in both Algorithms 7 and 8).

The main differences between D̄(i, p, t) and D(i, t) are the extra parameter p and the loop termina-
tion condition in line 21, which takes in consideration only the target product p. These algorithms
provide a direct answer to the question: “How long does it take to complete this task if it starts
at time t?” The answer is acquired through a comprehensive simulation of the products’ natural
behavior, taking into account their degradation and transformation rate parameters, as well as their
initial amount and operation speed. This dynamic approach enables context-specific task duration
calculations according to products on sites, which are essential for optimizing the scheduling and
planning of on-site operations.

4.2.2 Estimating an upper bound for the time horizon

The MILP model’s optimization framework leverages the proposed decision variables and constraints
to create an effective schedule for on-site operations. However, selecting a suitable value for the
operation horizon upper bound (T ) plays a vital role in the model’s complexity and solvability. To
address this, the chapter introduces a heuristic approach for estimating an appropriate T value,
considering the longest task duration and the available resources for cleaning operations.

Estimating an appropriate value for the operation horizon (T ) significantly impacts the complexity
of the optimization methods. In the MILP formulation (see Section 4.3), the number of decision
variables directly depends on the constant T . Choosing an inadequate value for T may either render
the model unsolvable due to infeasible constraints or an excessively increase the number of decision
variables. To address this, we propose the following equation for estimating a suitable upper bound
for the operation horizon:

T = maxi∈V {D(i, 0)}+
⌈∑

i∈V D(i, 0)

Q

⌉
(4.3)

Equation (4.3) consists of the longest task duration added to the ceiling of the ratio between the total
processing times and the number of available resources (Q). This estimation approach provides an
upper bound for the time horizon, considering the longest task duration and the available resources.
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Algorithm 7: Pseudo-code for D(i, t)

Data: a site i and a time unit t
Result: the time required to clean i, if task starts at time t

1 foreach p ∈ P do
2 w0

ip ←Wip

3 for τ ← 1 to t− 1 do
4 foreach p ∈ P do
5 dτip ← K̄p∗w

τ−1
p

6 foreach (p,m) ∈ P × P do
7 qτipm ← Kpm(wτ−1

ip − dτip)

8 wτ
ip ← wτ−1

ip − qτipm
9 wτ

im ← wτ−1
im + qτipm

10 repeat
11 τ ← t
12 foreach p ∈ P do
13 dτip ← K̄p∗w

τ−1
p

14 foreach (p,m) ∈ P × P do
15 qτipm ← Kpm(wτ−1

ip − dτip)

16 wτ
ip ← wτ−1

ip − qτipm
17 wτ

im ← wτ−1
im + qτipm

18 foreach p ∈ P do
19 wτ

ip ← max{wτ−1
ip − Z, 0}

20 τ ← τ + 1

21 until ∃wτ
ip ≥ 0 for any p ∈ P ;

22 return τ − t

By incorporating this estimated value for T in the MILP formulation, we can manage the model’s
complexity and improve the solvability of the optimization problem.

4.3 Mathematical formulation

We propose a time-indexed MILP formulation for the RCPSP-RTD model, utilizing the problem
data described in Table 4.2 and the following set of decision variables:

• The continuous variables wt
ip ≥ 0, where (i, p, t) ∈ V ×P ×H, indicate the amount of product

p on site i at time t. These variables represent the dynamic evolution of products over the
time horizon.

• The pulse binary variables xt
ip, where (i, p, t) ∈ V × P ×H, are defined such that xt

ip = 1 if
a neutralizing operation targeting product p starts on site i at time t, and xt

ip = 0 otherwise.
These variables enable the modeling of neutralizing operations and their starting times.
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Algorithm 8: Pseudo-code for D̄(i, p, t)

Data: a site i, a target product p and a time unit t
Result: the time required to neutralize product p on site i, if task starts at time t

1 foreach p ∈ P do
2 w0

ip ←Wip

3 for τ ← 1 to t− 1 do
4 foreach p ∈ P do
5 dτip ← K̄p∗w

τ−1
p

6 foreach (p,m) ∈ P × P do
7 qτipm ← Kpm(wτ−1

ip − dτip)

8 wτ
ip ← wτ−1

ip − qτipm
9 wτ

im ← wτ−1
im + qτipm

10 repeat
11 τ ← t
12 foreach p ∈ P do
13 dτip ← K̄p∗w

τ−1
p

14 foreach (p,m) ∈ P × P do
15 qτipm ← Kpm(wt−τ

ip − dτip)

16 wτ
ip ← wτ−1

ip − qτipm
17 wτ

im ← wτ−1
im + qτipm

18 foreach p ∈ P do
19 wτ

ip ← max{wτ−1
ip − Z̄p, 0}

20 τ ← τ + 1

21 until wτ
ip ≥ 0;

22 return τ − t

• The pulse binary variables yti , where (i, t) ∈ V ×H, are such that yti = 1 if a cleaning operation
starts on site i at time t, and yti = 0 otherwise. These variables allow the representation of
cleaning operations and their start times.

• The continuous variables rtip ≥ 0, where (i, p, t) ∈ V × P × H, represent the amount of
product p removed from site i at time t. These variables account for the removal of hazardous
substances during the cleaning operations.

• The continuous variables dtip ≥ 0, where (i, p, t) ∈ V ×P ×H, denote the amount of product p
degraded on site i at time t. These variables model the degradation of hazardous substances
over time, similar to a flow of product p→ sink.

• Continuous variables qtipm ≥ 0, where (i, p,m, t) ∈ V × P × P ×H, represent the amount of
product p transformed into product m at time t. These variables capture the transformation
of products, resembling a flow of product p→ m.

In the subsequent formulation, we designate p = 0 to represent the product associated with neutral-
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izing operations. This implies that product 0 does not initially exist on any sites, and its appears
only upon the execution of a neutralizing operation. Additionally, we assume that product 0 is
entirely safe, devoid of any degradation or transformation processes (R0 = 0, K̄0∗ = 0 and K0m = 0
for all m ∈ P ). Thus, the RCPSP-RTD can be formulated as:

Minimize
∑
i∈V

∑
t∈H

∑
p∈P

Rpw
t
ip s.t. (4.4)

w0
ip = Wip ∀i ∈ V,∀p ∈ P (4.5)

dtip = K̄p∗w
t−1
ip ∀i ∈ V,∀p ∈ P,∀t ∈ H\{0} (4.6)

qtipm = Kpm(wt−1
ip − dtip)

∀i ∈ V,∀p ∈ P,∀m ∈ P\{0},
∀t ∈ H\{0} (4.7)

wt
ip = wt−1

ip − dtip +
∑
m∈P

qtimp −
∑
m∈P

qtipm − rtip ∀i ∈ V,∀p ∈ P,∀t ∈ H\{0} (4.8)

rtip ≤ Z

( t∑
τ=max{t−D(i,t)+1,0}

yτi

)
∀i ∈ V,∀p ∈ P,∀t ∈ H (4.9)

qtip0 = Z̄pw
t−1
ip

( t∑
τ=max{t−D̄(i,p,t)+1,0}

xτ
ip

)
− dtip ∀i ∈ V,∀p ∈ P,∀t ∈ H\{0} (4.10)

t∑
τ=max{t−D(i,t)+1,0}

yτi +
∑
p∈P

t∑
τ=max{t−D̄(i,p,t)+1,0}

xτ
ip ≤ 1 ∀i ∈ V,∀t ∈ H (4.11)

∑
i∈V

t∑
τ=max{t−D(i,t)+1,0}

yτi ≤ Q ∀t ∈ H (4.12)

∑
i∈V

∑
p∈P

t∑
τ=max{t−D̄(i,p,t)+1,0}

xτ
ip ≤ Q̄ ∀t ∈ H (4.13)

∑
t∈H

yti ≤ 1 ∀i ∈ V (4.14)∑
t∈H

∑
p∈P

xt
ip ≤ 1 ∀i ∈ V (4.15)

xt
ip ∈ {0, 1} ∀i ∈ V,∀p ∈ P,∀t ∈ H (4.16)

yti ∈ {0, 1} ∀i ∈ V,∀t ∈ H (4.17)

wt
ip ≥ 0 ∀i ∈ V,∀p ∈ P,∀t ∈ H (4.18)

dtip ≥ 0 ∀i ∈ V,∀p ∈ P,∀t ∈ H (4.19)

rtip ≥ 0 ∀i ∈ V,∀p ∈ P,∀t ∈ H (4.20)

qtipm ≥ 0 ∀i ∈ V,∀p,m ∈ P,∀t ∈ H (4.21)

The objective function (4.4) minimizes the overall risk. Constraints (4.5) quantifies the initial
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amount of each product on each site. Constraints (4.6) and (4.7) compute, respectively, the prod-
uct degradation and transformation. Constraints (4.8) update the products amount based on their
dynamic transformations (degradation or transformation) and on-site operations (cleaning or neu-
tralizing). Constraints (4.9) state the amount of product (based on the cleaning speed) that is
removed from i at time t if a cleaning operation is active (a cleaning operation is active on site i at
time t if one variable yτi = 1 for τ ∈ [max{t−D(i, t)+1, 0}, t]). Constraints (4.10) state the amount
of p on i that is neutralized into product 0 (the neutral product) at time t if a neutralizing operation
targeting p is active (similarly, a neutralizing operation is active on site i at time t if one variable
xτ
ip = 1 for τ ∈ [max{t− D̄(i, p, t)+1, 0}, t] for some p ∈ P ). Constraints (4.11) determine that two

on-site operations cannot overlap on the same site at the same time, while the constraints (4.12)
and (4.13) limit the number of active operations to the number of available resources. Constraints
(4.14) and (4.15) limit the number of operations at each site. The decision variables are defined
from (4.16) to (4.21). This formulation contains O(|V ×P ×H|) binary variables, O(|V ×P 2×H|)
continuous variables and O(|V × P 2 ×H|) constraints.

Note that constraints (4.10) are non-linear and can be linearized, with a large constant M , as
follows:

qtip0 ≥ 0 ∀i ∈ V,∀p ∈ P,∀t ∈ H (4.22)

qtip0 ≤ Z̄pw
t−1
ip − dtip ∀i ∈ V,∀p ∈ P,∀t ∈ H\{0} (4.23)

qtip0 ≤M

( t∑
τ=max{t−D̄(i,p,t)+1,0}

xτ
ip

)
∀i ∈ V,∀p ∈ P,∀t ∈ H (4.24)

qtip0 ≥ Z̄pw
t−1
ip − dtip +M

( t∑
τ=max{t−D̄(i,p,t)+1,0}

xτ
ip

)
−M ∀i ∈ V,∀p ∈ P,∀t ∈ H\{0} (4.25)

4.4 Iterated local search for the RCPSP-RTD

In Chapter 3, we introduced an ILS algorithm that employs a stochastic walk that iteratively moves
from one local optima to another “nearby” local optima within the smaller set S∗ ⊂ S containing
locally optimal solutions.

We recall this stochastic walk a process that begins by generating an initial feasible solution s0 ∈ S
using a problem-specific constructive heuristic. Then, a local search heuristic is applied to s0 to
obtain a local optimal solution s∗ ∈ S∗. Subsequently, the optimization loop starts with s∗ as the
current state of the random walk in S∗, from where consecutive calls to the perturbation procedure
and the local search are sequentially performed on s∗. Given any current state s∗, a perturbation
is applied on s∗ that leads to an intermediate state s′ (which belongs to S). Then, local search is
applied to s′, reaching a local optima solution s∗′ ∈ S∗. If s∗′ passes an acceptance test, it becomes
the next element of the walk in S∗; otherwise, the walk returns to s∗. If the acceptance test solely
depends on the current state of the walk, the walk has no memory. The random walk continues
until the termination condition is met.

In this section, we present an extended version of the ILS developed in Chapter 3, where some of the
original components are adapted to support the novel aspects of the problem, such as: heterogeneous
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resources, different types of task, non overlapping tasks and dynamic product transformations. The
acceptance criterion and the termination condition are the same as the ones presented in Chapter
3.

4.4.1 The solution representation

A solution is represented by a variable-length list s that contains two types of tasks. We use the
notation J = i, where i ∈ V , to identify a task representing a cleaning operation on site i, and
J̄p = i, where (p, i) ∈ P × V , to identify a task representing a neutralizing operation on site i,
targeting product p. Specifically, a task J directly corresponds to a site i, while a task J̄p targets
product p on site i.

In other words, if we define ji as the i-th generic task in s (representing either a J or a J̄p) and |s|
as the length of s, then s = {j1, j2, ..., j|s|}. A solution s is considered feasible if s does not have
duplicated tasks (subject to constraints 4.14 and 4.15).

4.4.2 The constructive heuristic

The construction of the initial solution begins by generating a cleaning task for each site i ∈ V .
These tasks are then sorted based on the expected initial risk of the site at t = 0. To be precise,
we define R(i) as the function that returns the initial risk present at site i:

R(i) =
∑
p∈P

RpWip (4.26)

The sites with the highest initial risk are prioritized and placed ahead of sites with lower initial
risks in the list. This greedy approach ensures always ensures solution feasibility.

The constructive heuristic is described in Algorithm 9 and can be implemented using a sorting
algorithm with a computational complexity of O(|V | log |V |). Despite its simplicity, the construc-
tion phase provides a solid starting solution, which will be further improved iteratively in the
optimization loop.

Algorithm 9: Pseudo-code for the constructive heuristic

Data: V
Result: a solution s

1 create a list s containing a cleaning task for each site i ∈ V
2 return s = [j1, . . . , j|s|], such that R(ji) ≥ R(ji+1), ∀1 ≤ i < |s|

4.4.3 The product degradation and transformation schemes

The products’ degradation and transformation schemes are modeled using the D(t, w) andM(t, w)
functions, respectively. Both functions take a time unit t and the current values w = {wτ

ip | ∀(i, p, τ) ∈
V × P ×H} as parameters and return the updated wt

ip values for all (i, p) ∈ V × P at time unit t.

The function D(t, w) is represented in Algorithm 10, and the function M(t, w) is described in
Algorithm 11. Both functions work by applying the degradation and transformation schemes,
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respectively, in a manner similar to the constraints (4.6) – (4.8) in Section 4.3. These functions are
largely used in the evaluation procedure E(s) (see Section 4.4.5). The computational complexities
of D(t, w) andM(t, w) are O(|V ||P |) and O(|V ||P 2|), respectively.

Algorithm 10: Pseudo-code for the degradation scheme (D)
Data: the current time unit t; the values wτ

ip, ∀(i, p, τ) ∈ V × P ×H
Result: the updated values wτ

ip, ∀(i, p, τ) ∈ V × P ×H

1 foreach i ∈ V do
2 foreach p ∈ P do
3 wt

ip ← wt−1
ip − K̄p∗w

t−1
ip

4 return wτ
ip, ∀(i, p, τ) ∈ V × P ×H

Algorithm 11: Pseudo-code for the transformation scheme (M)

Data: the current time unit t; the values wτ
ip, ∀(i, p, τ) ∈ V × P ×H

Result: the updated values wτ
ip, ∀(i, p, τ) ∈ V × P ×H

1 foreach i ∈ V do
2 foreach (p, q) ∈ P × P do
3 qtipq ← Kpq(w

t−1
ip − K̄p∗w

t−1
ip )

4 wt
ip ← wt−1

ip − qtipq
5 wt

iq ← wt−1
iq + qtipq

6 return wτ
ip, ∀(i, p, τ) ∈ V × P ×H

4.4.4 The cleaning and the neutralizing schemes

The cleaning and the neutralizing schemes are modeled using the Q(i, t, w) and Q̄(i, p, t, w) func-
tions, respectively. The Q(i, t, w) function, described in Algorithm 12, takes a site i, the current
time unit t, and the variables w = {wτ

jm | ∀(j,m, τ) ∈ V × P × H} as parameters. It returns
the updated wt

ip values for all p ∈ P at site i for time unit t. On the other hand, the function

Q̄(i, p, t, w) is represented in Algorithm 13. It considers a site i, a target product p, the current
time unit t, and the variables w = {wτ

jp | ∀(j, p, τ) ∈ V × P × H} as parameters. The function
returns the updated wt

ip value for site i, product p, at time unit t.

Both aforementioned functions operate similarly to the constraints (4.8), (4.9), and (4.10). The
computation complexities of functions Q(i, t, w) and Q̄(i, p, t, w) are O(|P |) and O(1), respectively.
These functions are largely used in the evaluation procedure E(s) (see Section 4.4.5).

4.4.5 The evaluation procedure

The evaluation procedure is a deterministic function E(s) that evaluates a feasible solution s and
calculates it corresponding overall risk. It works by scanning the solution, from head to tail, and
assigning resources to tasks in the order the tasks appear in s.
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Algorithm 12: Pseudo-code for the cleaning scheme (Q)
Data: a site i; the current time unit t; the variables wτ

jp, ∀(j, p, τ) ∈ V × P ×H
Result: the updated variables wτ

jp, ∀(j, p, τ) ∈ V × P ×H

1 foreach p ∈ P do
2 wt

ip ← max{0, wt
ip − Zp}

3 return wτ
jp, ∀(j, p, τ) ∈ V × P ×H

Algorithm 13: Pseudo-code for the neutralizing scheme (Q̄)
Data: a site i; a product p; the current time unit t; the variables wτ

jm, ∀(j,m, τ) ∈ V ×P ×H
Result: the updated variables wτ

jm, ∀(j,m, τ) ∈ V × P ×H

1 qtip0 ← Z̄pw
t−1
ip − K̄p∗w

t−1
ip

2 wt
ip ← wt

ip − qtip0
3 wt

i0 ← wt
i0 + qtip0

4 return wτ
jm, ∀(j,m, τ) ∈ V × P ×H

Algorithm 14 presents a pseudo-code for E(s) that works as following. Initially, a vector of size |Vd|
is allocated to store tasks’ completion times. It then starts scheduling tasks to available resources.
Neutralizing operations after cleaning operations are ignored. The computational complexity of
E(s) is O(|H||V 2||P 2|).

4.4.6 The local search and the N solution neighborhood

The local search, presented in Algorithm 16, is a first-improving heuristic (see, e. g., Anderson
(1996)) that searches for local optima in a solution neighborhood N (s) defined by the swap move:

N (s) = {swap(s, ju, jv) | ∀(ju, jv) ∈ V 2} (4.27)

The swap move, presented in Algorithm 15, is a procedure that changes the scheduling order of two
tasks in a solution s. Thus, the neighborhood N (s) may contain up to O(|V |2) solutions.

The local search begins with a given solution s and iteratively searches for a solution s∗ ∈ N (s)
that has a better objective function than s. If s∗ exists, the local search will continue by assigning
s ← s∗ and repeating the process until no neighbor s∗ outperforms s, which means that a local
optimum has been found.

4.4.7 The perturbation phases

As mentioned before in Chapter 3, the perturbation phase is the process of performing a random
step from a local optima solution in S∗ to another solution in S, which will be the new starting
point for the local search. The perturbation, together with the acceptance test will define the next
state of the walk in S∗. If the perturbation is too strong, ILS may behave like a random restart,
since all or most of the characteristics of the current solution will be lost. On the other hand, if the



90 Chapter 4. The RCPSP-RTD

Algorithm 14: Pseudo-code for the evaluation procedure (E)
Data: a solution s
Result: the solution’s overall risk

1 w ← {wt
ip | (i, p, t) ∈ V × P ×H}

2 foreach (i, p) ∈ V × P do
3 w0

ip ←Wip

4 for t← 0 to T do
5 apply degradation scheme D(t, w)
6 apply transformation schemeM(t, w)
7 j ← next pending task
8 if j is a neutralizing task then
9 for q̄ ← 1 to Q̄ do

10 if resource q̄ is allocated then
11 apply neutralizing scheme Q̄(i, p, t, wτ

ip), with (i, p) being the current task of q̄

12 else if j is still pending and j is a neutralizing task and no active operation on site
i then

13 allocate resource to task j
14 apply neutralizing scheme Q̄(j, t, wτ

ip)

15 else
16 for q ← 1 to Q do
17 if resource q is allocated then
18 apply cleaning scheme Q(i, t, wτ

ip), with i being the current task of q

19 else if j is still pending and j is a cleaning task and no active operation on site i
then

20 allocate resource to task j
21 apply neutralizing scheme Q(j, t, wτ

ip)

22 return
∑

t∈H

∑
i∈V

∑
p∈P Rpw

t
ip

perturbation is too weak, the search space will be very limited, since the local search will often fall
back to a local optimum previously visited in the walk.

In this section, we define the P1(s) and P2(s) perturbation phases as follows:

• P1(s), described in Algorithm 17, is a procedure that receives a local optimal solution s and
applies multiple swap moves between random indices drawn over the uniform distribution
U [1, |s|]. The number of randomized swaps is controlled by the strength parameter (ρ1 ∈ [0, 1])
by the formula ⌊|s| × ρ1 ÷ 2⌋.

• P2(s), described in Algorithm 18, is a procedure that receives a local optimal solution s and
inserts neutralizing tasks at the head of s. The number of new inserted tasks is controlled by
the parameter (ρ2 ∈ [0, 3]) by the formula ⌊Q̄ × ρ2⌋. This is the only way that neutralizing
operations are inserted in the solution.
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Algorithm 15: Pseudo-code for the swap procedure

Data: a solution s and two candidate tasks ju, jv
Result: a solution s′

1 return s, but swap indices of tasks ju and jv

Algorithm 16: Pseudo-code for the local search heuristic (L)
Data: a solution s′

Result: a solution s∗, such that E(s∗) ≤ mins∈N (s∗){E(s)}
1 foreach s∗ ∈ N (s′) do
2 if E(s∗) < E(s′) then
3 return L(s∗)

4 return s′

In both perturbation phases, the higher the value of the ρ1 and ρ2 parameters, the more diversified
the resulting solutions are. Those perturbation phases result in intermediate solutions that usually
are not locally optima.

Algorithm 17: Pseudo-code for the perturbation procedure (P1)

Data: a solution s∗

Result: a solution s′

1 s′ ← s∗

2 repeat
3 u← a random integer in U [1, |s|]
4 v ← a random integer in U [1, |s|]
5 s′ ← swap(s′, ju, jv)

6 until ⌊|s∗| × ρ1 ÷ 2⌋ swaps are performed ;
7 return s′

4.5 Computational experiments

We conducted computational experiments for the RCPSP-RTD in order to measure how differ-
ent experimental settings affect the solution quality and algorithmic performance using a diverse
benchmark of instances based on Görlitz et al. (2011) composed of a two chemical species model
generically named p1 and p2.

This section is organized as follows: Section 4.5.1 outlines the specifics of the experimental setup for
the benchmark tests, encompassing details about the virtual environment utilized for conducting
tests, data generation methods, implementation specifics, and parameter fine-tuning. Section 4.5.2
focuses on the analysis of results, providing a comparison between the outcomes obtained using
CPLEX and ILS for the two distinct problem scenarios, alongside an evaluation of various priority
schemes under consideration
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Algorithm 18: Pseudo-code for the perturbation procedure (P2)

Data: a solution s∗

Result: a solution s′

1 s′ ← s∗

2 repeat
3 create a task J̄p = i, where i and p are randomly chosen
4 if J̄p not in s then
5 insert J̄p at the beginning of s

6 until ⌊Q̄× ρ2⌋ neutralizing tasks are inserted ;
7 return s′

4.5.1 Experimental setup

All the benchmark tests were conducted on a machine running Ubuntu (version 18.04.1), equipped
with a 26-core Intel Xeon Processor (Skylake) CPU @ 2.1Ghz and 288GB of available RAM. The
computations were carried out at the computing facilities of the LITIS.

Below, we provide a detailed explanation of the procedure used to generate the benchmark instances,
the implementation specifics of the algorithm, and the parameter tuning process.

The source code for all implementations has been made publicly available under the MIT license
at Barbalho (2022). This repository contains instructions on how to set up the environment and
reproduce the results obtained during the benchmark tests.

Data generation

We adopt a similar approach to the one presented in Görlitz et al. (2011) to introduce a diverse
benchmark of instances. This benchmark consists of two problem scenarios involving two species
models p1 and p2, as illustrated in Figure 4.1. Initially, Görlitz et al. (2011) presented two datasets
with the following characteristics:

1. Two-species model with nonzero degradation rate: In this model, there is a product
parent p1 that undergoes transformation into product p2 at a rate K12 > 0. Both products
have nonzero degradation rates (K1∗ > 0 and K2∗ > 0).

2. Two-species model with zero degradation rate: This model involves a product parent
p1 that undergoes transformation into product p2 at a rate K12 > 0. The parent has a nonzero
degradation rate (K1∗ > 0), while the resulting product does not degrade (K2∗ = 0).

We extend the existing dataset presented in Görlitz et al. (2011) by incorporating a range of
transformation and degradation rate combinations. To this end, we introduce two generic products,
denoted as p1 and p2, each with specified risk and degradation rates. It is noteworthy that the
inherent risk associated with p1 is greater than that of p2. Subsequently, two distinct scenarios
are investigated: (1) the transformation of product p2 into product p1 (p2 → p1) , and (2) the
transformation of product p1 into product p2 (p1 → p2). Clearly, these scenarios correspond to
situations where the risk naturally increases or decreases over time. In addition to investigating
two distinct product transformation pathways, we also examine four different product degradation
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schemes, specifically:

1. No degradation: the degradation rates of both products are 0.

2. Degradation of the parent product: only the parent product has a nonzero degradation rate.

3. Degradation of the resulting product: only the resulting product has a nonzero degradation
rate.

4. Degradation of the parent and resulting products: both products have a nonzero degradation
rate.

An elaboration of these testing scenarios follows below.

1. Problem scenario 1 – two-species model with natural increase of risk: This scenario
demonstrates a natural increase in overall risk over time since parent p2 is inherently less risky
than product p1. The test set consists of a four distinct sub-scenarios, illustrated in Figure
4.4. For illustrative purposes, the natural progressions of the overall risk for each degradation
scheme are shown in Figure 4.5. These progressions are generated through simulation in the
absence of any on-site operations. Notably, the observed trend showcases a tendency for risk
to escalate over time due to the dynamics of product p2 into p1. Furthermore, the influence
of each degradation scheme is evident, as they tend to mitigate the risk through the process
of product degradation, thereby contributing to a natural reduction in overall risk.

2. Problem scenario 2 – two-species model with natural decrease of risk: This scenario
shows a natural decrease in the overall risk over time because parent p1 is inherently riskier
than resulting product p2. The test set comprises a two-species model with four distinct
sub-scenarios, illustrated in Figure 4.6, for each degradation scheme. We present the natural
progressions of the overall risk for each degradation scheme in Figure 4.7. These progressions
are generated through simulation in the absence of any on-site operations. It is important to
highlight that the observed trend prominently illustrates a pattern in which the risk diminishes
over time due to the dynamics of product p1 into p2. Furthermore, the influence of the
different degradation schemes becomes evident as they consistently mitigate risk through the
degradation process, resulting in a more pronounced reduction in overall risk levels.

In addition, for each problem scenario, we consider the parameters in Tables 4.3 and 4.4 to be
applicable. The number of sites and the number of resources align with the strategic approach
employed in Chapter 3. The transformation and degrading rates closely resemble the data sets
presented in Görlitz et al. (2011). To create two problem scenarios, we assigned the risk attributes
to each product. It is important to note that p1 and p2 represent generic products, and their specific
risk values may not significantly alter the shape of the risk evolution depicted in Figures 4.5 and
4.7 for each benchmark test case.

Finally, the procedure to generate the instance benchmarks is described as follows.

1. Begin by generating an instance in the form of a hexagonal grid graph with n = |V |+1 nodes.
The top-left node is designated as the depot.

2. Subsequently, independently draw attributes Wip,∀p ∈ P , from the discrete uniform distri-
bution U [0, 1], for each node i that is not the depot.
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Figure 4.4: Product degradation schemes for the problem scenario 1.

3. To conclude, create a copy of this instance for every value ofQ within the set {20, 21, 22, ..., 2log2 |V |−
1}. Assign Q̄ = Q for each copy and allocate the resources Q and Q̄ at the depot node.

Parameter Value

Number of sites (|V |) 8, 16, 32
Number of resources (Q and Q̄) from 1 to |V | − 1, in powers of 2
Distribution of product initial amount (Wip) N [0, 1]
Product risk (Rp) R1 = 1, R2 = 0.5
Transformation rates (Kpm) K21 = 0.05, K12 = 0
Degradation rates (K̄p∗) K̄1∗ = 0.05 (when applied) and K̄2∗ = 0.05

(when applied)

Table 4.3: Summary of the parameter values for the problem scenario 1.

Implementation details and tuning of parameters

The MILP model [(4.4) – (4.21)] was implemented using Python (version 3.8.10) and leveraged
the PulP package (version 2.4). In addition, the model was integrated with IBM ILOG CPLEX
(version 22.1.0.0) via CPLEX’s Python bindings. For the CPLEX experiments, default parameters
were employed, with a time limit of 2 hours assigned for each individual instance.

The ILS was implemented in Python (version 3.8.10), except for the local search and evaluation
procedures which were written in C to attain enhanced computational speed. The C components
were compiled using GCC (version 9.4.0). For the ILS experiments, a specific parameter configu-
ration was adopted: the solution budget was determined using the formula |V | × 10, 000, ensuring
a substantial evaluation of solutions. A total of 35 repetitions with distinct random seeds were



4.5. Computational experiments 95

0 200 400
0

2

4

time

ri
sk

(a) No degradation.

0 200 400
0

2

4

time

ri
sk

(b) p2 degradation.

0 200 400
0

2

4

time

ri
sk

(c) p1 degradation.

0 200 400
0

2

4

time

ri
sk

(d) p1 and p2 degradation.

Figure 4.5: Evolution of the overall risk for each product degradation scheme (problem scenario 1).

performed for each instance. Furthermore, the perturbation strength parameters (ρ1 and ρ2) un-
derwent fine-tuning through the utilization of the IRACE package, as elaborated below.

To fine-tune the perturbation parameters of the ILS method, each problem scenario was partitioned
into nine distinct training scenarios. The outcomes of this process, along with the elite configura-
tions yielded by IRACE, are detailed in Table 4.5. Subsequently, the derived values of ρ1 and ρ2
were applied to address the instance benchmark.

4.5.2 Analysis of results

In this section, we analyze the numerical results obtained by CPLEX and ILS for the two scenarios
under study. Initially, we present the results achieved for the scenario 1 – increasing risk bench-
mark in Section 4.5.2, followed by the results for the scenario 2 – decreasing risk benchmark in
Section 4.5.2. The complete experimental results are compiled in Tables (4.6) – (4.7) and will be
analyzed in dedicated sections further below. These tables can be read as follows.

In the case of CPLEX, results show both the Upper Bound (UB) and the gap to the best Lower
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Figure 4.6: Product degradation schemes for the problem scenario 2.

Parameter Value

Number of sites (|V |) 8, 16, 32
Number of resources (Q and Q̄) from 1 to |V | − 1, in powers of 2
Distribution of product initial amount (Wip) N [0, 1]
Product risk (Rp) R1 = 1, R2 = 0.5
Transformation rates (Kpm) K12 = 0.05, K21 = 0
Degradation rates (K̄p∗) K̄1∗ = 0.05 (when applied) and K̄2∗ = 0.05

(when applied)

Table 4.4: Summary of the parameter values for the problem scenario 2.

Bound (LB). As for ILS, the best solution found out of all independent runs is given as well as the
mean solution values in all the runs. Solutions known to be optimal are shown in bold font in
both cases, CPLEX and ILS. We consider solutions with a gap of less than 1% relative to their best
lower bounds as near-optimal. A preliminary analysis of these results suggests that:

• In a broad sense, and in line with expectations, larger instance sizes invariably demand
more computational time from both methods for their resolution. For CPLEX, the in-
stance difficulty is reflected in the observed gaps in relation to the best lower bounds. In-
stances of smaller dimensions tend to be solved with minimal gaps, whereas larger instances
might exhibit gaps reaching as high as 95% when measured against their best lower bounds.
CPLEX’s capacity to consistently provide solutions stems from the fact that any solution
where yti = 0 ∀(i, t) ∈ V × P and xt

ip = 0 ∀(i, p, t) ∈ V × P × T remains a valid one.
However, this trivial solution is expected to deviate substantially from the optimal value. In
contrast, ILS demonstrates a polynomial increase in complexity across all instance sizes, while
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Figure 4.7: Evolution of the overall risk for each product degradation scheme (problem scenario 2).

consistently delivering good results.

• The computational complexity of the optimization models does not appear to be significantly
influenced by the type of instance or the problem scenario.

• It is evident that as the number of resources (K) increases, the problem instances become
relatively easier to solve. This alignment with the observation made in Chapter 3.

• The benchmarks of instances are designed to investigate two primary aspects. First, they
seek to examine the hypothesis of risk increasing over time. Second, they intend to explore
the hypothesis of risk decreasing with time. In addition to these hypotheses, we also explore
four distinct scenarios involving product degradation: instances where (i) products have no
degradation, (ii) the parent product possesses a non-zero degradation rate; (ii) the resulting
product demonstrates a non-zero degradation rate; and finally, (iii) both the parent and the
resulting product have non-zero degradation rate.

• In all the instances under investigation in which CPLEX is able to compute the optimal



98 Chapter 4. The RCPSP-RTD

Instance size
Problem scenario 1

No degradation
p2 degrada-
tion

p1 degrada-
tion

p1 and p2
degradation

Small and medium (8 – 16
sites)

(0.48, 0.46) (0.41, 2.70) (0.36, 1.07) (0.82, 1.71)

Large (32 sites) (0.34, 2.64) (0.32, 1.63) (0.82, 2.66) (0.28, 2.22)

Instance size
Problem scenario 2

No degradation
p1 degrada-
tion

p2 degrada-
tion

p1 and p2
degradation

Small and medium (8 – 16
sites)

(0.25, 2.26) (0.70, 1.31) (0.90, 0.58) (0.38, 2.75)

Large (32 sites) (0.69, 2.01) (0.39, 1.96) (0.71, 2.03) (0.54, 1.86)

Table 4.5: Best configuration returned by IRACE for ILS’ perturbation strength parameters for
the two problem scenarios. Tuples correspond to the values of (ρ1, ρ2).

solution, ILS produces either the optimal or a closely approximate value, with a minimal
percentage deviation. This highlights the effectiveness of the proposed ILS implementation
as a viable alternative for efficiently solving the RCPSP-RTD.

• To conduct a comparative analysis of the computational performance of CPLEX and ILS,
the Figure 4.8 and 4.9 illustrate the running times of both algorithms across the problem
scenarios and degradation schemes. The plots were built by collecting the time to solution for
CPLEX and the average execution time of the 35 independent runs for ILS, for each respective
instance. The presentation of running times is shown on a logarithmic scale to enhance visual
clarity. In a general context, instances positioned in the lower right corner of the plots are
the most challenging to solve. These instances exhibit a higher ratio of the number of sites
divided by the number of resources, meaning a larger number of sites relative to the available
teams.

In the following sections, for the sake of simplicity, each individual instance is identified by a tuple
(|V |, Q) representing the number of sites and the number of resources, respectively. It is essential
to recall that Q = Q̄.

To compute the percentage differences between solutions found by CPLEX and ILS, the following
formula is used, where S1 represents the UB found by CPLEX and S2 represents the best solution
found by ILS. Negative percentage gaps indicate cases where ILS provided a better solution than
CPLEX.

(S2 − S1)

S1
× 100 (4.28)
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Results for the Scenario 1 – natural increase of risk

The initial experimental benchmark is formulated to examine the hypothesis of risk escalating as
time progresses. This situation can occur in practical scenarios where the resulting product is
more hazardous than the parent product. In such cases, the chemical transformations alone can
lead to an elevation in risk if timely operations are not executed following an incident. We aim to
investigate the influence of various degradation schemes on solution quality, organizing them from
the least favorable to the most favorable scenario. In addition, we intend to evaluate whether the
degradation scheme can potentially stop the increase in the overall risk. We provide the complete
numerical results in Table 4.6.

The examination of the numerical experiments yields the following conclusions, regarding the impact
of the degradation schemes. When considering only the solutions with 20% or less gap to the best
lower bound, the results indicate that the four degradation schemes play an import role in overall
risk. Looking further into the numerical results, one can see that the “no degradation” scheme
is the one that generated the higher overall risk, followed by, in descending order, by the “p2
degradation”, “p1 degradation” and “p1 and p2 degradation.” This trend becomes particularly
evident when observing the area, as depicted in Figures 4.4. The visual analysis of these graphics
allows for a direct assessment of the relative risk levels associated with each degradation scheme.
In a broad sense, the “no degradation” scheme is the most unfavorable scenario, resulting in an
anticipated increase in risk of up to 5% compared to the “p2 degradation” scheme—the second
least favorable scenario. Moreover, this “no degradation” scenario is expected to yield risk levels
as much as 15% higher than the best possible scenario represented by the “p2 and p1 degradation”
scheme.

In the experiments carried out using CPLEX, out of the 12 instances, the number of obtained
optimal solutions was 7, 7, 6 and 6 for the “no degradation,” “p2 degradation,” “p1 degradation”
and “p2 and p1 degradation,” respectively.

The number of optimal solutions obtained by ILS was 6, 5, 5 and 5 out of the 12 under the “no
degradation,” “p2 degradation,” “p1 degradation” and “p2 and p1 degradation,” respectively. Under
the “no degradation” benchmark, ILS outperformed CPLEX for the instances (16, 1), (32, 1), and
(32, 2), yielding deviations of −0.62%, −21.45%, and −8.87%, respectively. It is important to
note that the optimality of these solutions remains uncertain. A similar trend is observed in these
instances across the other degradation schemes. This phenomenon is consistent with observations
made in Chapter 3, where ILS demonstrated its ability to provide better solutions for instances
that are particularly challenging for exact methods.

• For the “p2 degradation” scheme, the deviations for the mentioned instances are of −0.17%,
−36.35% and −8.60%, respectively.

• For the “p1 degradation” scheme, the deviations for the mentioned instances are of 1.29%,
−25.41% and −7.72%, respectively.

• For the “p2 and p1 degradation” scheme, the deviations for the mentioned instances are of
−0.76%, −17.13% and −14.42%, respectively.

When comparing the various degradation schemes with respect to their computational running
times, we observed no discernible impact of the degradation scheme on the overall instance com-
plexity. No particular scheme proved to be more challenging to solve than the others. Instead, the
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Instance Benchmark

|V | Q, Q̄
No degradation p2 degradation

CPLEX ILS CPLEX ILS
UB %gap best UB avg UB UB %gap best UB avg UB

8

1, 1 90.06 - 90.06 96.41 83.86 - 83.86 86.27
2, 2 39.68 - 39.68 41.80 38.25 - 38.25 38.96
4, 4 19.77 - 19.77 20.68 19.40 - 19.40 20.26

16

1, 1 479.86 19.21% 476.89 481.89 431.00 13.91% 430.25 474.70
2, 2 217.86 5.86% 227.37 239.50 204.75 4.05% 211.71 227.96
4, 4 98.96 - 98.96 112.24 96.57 - 96.89 108.52
8, 8 59.08 - 59.08 63.46 57.50 - 57.50 61.63

32

1, 1 3,479.82 66.25% 2,733.37 3,082.93 3,198.99 66.65% 2,030.26 2,399.40
2, 2 1,395.55 50.98% 1,271.70 1,478.39 1,269.45 49.71% 1,160.25 1,288.03
4, 4 572.73 6.87% 588.01 657.35 537.63 5.85% 575.50 667.34
8, 8 249.49 0.98% 259.22 304.37 241.66 0.51% 248.09 258.54

16, 16 136.18 - 136.18 166.09 133.48 - 133.48 144.77

Instance Benchmark

|V | Q, Q̄
p1 degradation p2 and p1 degradation

CPLEX ILS CPLEX ILS
UB %gap best UB avg UB UB %gap best UB avg UB

8

1, 1 85.08 - 85.08 87.40 79.63 - 79.63 81.30
2, 2 38.65 - 38.65 39.33 37.24 - 37.24 37.87
4, 4 19.43 - 19.43 20.19 19.06 - 19.06 19.72

16

1, 1 409.66 13.58% 414.94 431.76 374.33 8.71% 371.49 394.09
2, 2 202.97 4.40% 208.77 221.74 191.75 3.29% 199.51 210.57
4, 4 96.30 - 96.95 108.38 93.49 - 93.52 104.61
8, 8 57.59 - 57.59 62.87 56.52 - 56.52 60.65

32

1, 1 2,187.91 53.58% 1,635.64 1,720.44 1,732.08 46.59% 1,435.35 1,507.81
2, 2 1,131.75 35.60% 1,043.49 1,124.92 1,016.26 25.92% 869.65 984.69
4, 4 531.25 6.84% 565.74 633.96 503.42 6.09% 507.16 556.10
8, 8 242.40 1.51% 272.60 321.56 234.06 1.19% 245.20 275.40

16, 16 134.00 - 134.00 151.25 131.32 - 131.32 152.56

Table 4.6: Results for the problem scenario 1 (no degradation, p2 degradation, p1 degradation, p2
and p1 degradation benchmarks).

complexity of the problem appears to be primarily contingent upon the instance’s size, specifically
the number of sites and the number of available teams. In this context, it becomes evident that as
the number of sites increases, the problem instance becomes more intricate to solve. Conversely, as
the number of available teams increases, the instance’s complexity diminishes. These findings align
with the outcomes of the experiments conducted in Chapter 3.



4.5. Computational experiments 101

8 16 32
1

2

4

8

16

|V |

Q
,Q̄

No degradation

8 16 32
1

2

4

8

16

|V |

p2 degrada-
tion

8 16 32
1

2

4

8

16

|V |

p1 degrada-
tion

8 16 32
1

2

4

8

16

|V |

p2 and p1
degradation

0

2

4

(a) CPLEX’s running times.

8 16 32
1

2

4

8

16

|V |

Q
,Q̄

No degradation

8 16 32
1

2

4

8

16

|V |

p2 degrada-
tion

8 16 32
1

2

4

8

16

|V |

p1 degrada-
tion

8 16 32
1

2

4

8

16

|V |

p2 and p1
degradation

0

2

4

(b) ILS’ running times.

Figure 4.8: Color maps representing CPLEX and ILS running times for the problem scenario 1.
The gray scale, from light to dark, stands for the number of seconds (in log scale) employed to find
the best solution. Each gray box represents an instance.

Results for the Scenario 2 - natural decrease of risk

The second experimental benchmark is formulated to examine the hypothesis of risk deescalating
as time progresses. This situation can occur in practical scenarios where the resulting product is
less hazardous than the parent product. In such cases, the chemical transformations alone can lead
to a natural decrease in the overall risk even when on-site operations are not executed following an
incident. We aim to investigate the influence of various degradation schemes on solution quality,
organizing them from the least favorable to the most favorable scenario. In addition, we intend to
evaluate whether the degradation scheme can potentially accelerate the decrease in the overall risk.
We provide the complete numerical results in Table 4.7.

The numerical experiments suggest the following conclusions, regarding the impact of the degrada-
tion schemes. When considering only the solutions with 20% gap or less to the best lower bound,
the degradation schemes seem to play an important role in the overall risk of solutions. As a clear
also observed in the first problem scenario, the “no degradation” scheme is the one that generates
the largest overall risk, followed by, in descending order, the “p1 degradation”, “p2 degradation”
and “p1 and p2 degradation.” This trend becomes particularly evident when observing the area un-
der the generated graphics, as depicted in Figures 4.6. The visual analysis of these graphics allows
for an assessment of the risk levels associated with each degradation scheme. In a broad sense, the
“no degradation” scheme is consistently regarded as the most unfavorable scenario, resulting in an
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Instance Benchmark

|V | Q, Q̄
No degradation p1 degradation

CPLEX ILS CPLEX ILS
UB %gap best UB avg UB UB %gap best UB avg UB

8

1, 1 103.22 - 103.22 105.43 96.00 - 96.00 98.20
2, 2 47.72 - 47.72 49.09 45.93 - 45.93 47.36
4, 4 23.53 - 23.53 23.89 23.20 - 23.20 23.68

16

1, 1 381.53 10.77% 381.07 408.82 344.84 8.40% 353.41 375.25
2, 2 184.69 3.05% 187.69 202.08 175.39 0.84% 184.75 195.68
4, 4 87.41 - 89.92 98.67 85.81 - 88.77 96.98
8, 8 55.35 - 56.81 59.39 54.31 - 54.31 58.01

32

1, 1 3,762.53 73.99% 2606.92 2,707.67 1,977.77 56.22% 1,939.78 2275.12
2, 2 1,064.28 35.29% 989.56 1,139.99 974.00 29.74% 922.99 1043.87
4, 4 511.38 10.64% 514.98 521.01 475.92 7.81% 484.80 587.02
8, 8 229.74 0.79% 233.17 246.68 223.95 0.68% 229.43 241.01

16, 16 127.15 - 129.63 131.20 124.79 - 128.62 130.99

Instance Benchmark

|V | Q, Q̄
p2 degradation p1 and p2 degradation

CPLEX ILS CPLEX ILS
UB %gap best UB avg UB UB %gap best UB avg UB

8

1, 1 98.84 - 98.84 102.22 92.28 - 92.28 93.85
2, 2 47.36 - 47.36 47.44 45.10 - 45.10 46.23
4, 4 23.21 - 23.21 23.64 22.93 - 22.93 23.49

16

1, 1 330.97 8.48% 329.38 355.79 301.52 7.83% 302.67 325.11
2, 2 171.96 1.16% 172.68 189.12 164.50 1.46% 164.93 175.00
4, 4 84.06 - 84.06 96.34 82.55 - 84.43 91.47
8, 8 54.04 - 54.04 58.43 53.01 - 54.45 56.28

32

1, 1 1,563.63 45.82% 1,294.96 1428.62 1,316.12 42.26% 1,195.77 1377.45
2, 2 898.45 24.25% 816.42 1056.75 835.45 21.19% 764.37 829.65
4, 4 459.86 7.49% 475.87 525.19 434.64 6.39% 461.49 511.23
8, 8 220.17 0.73% 225.80 237.51 215.14 0.53% 225.35 233.98

16, 16 123.74 - 139.01 129.32 121.74 - 126.03 129.37

Table 4.7: Results for the problem scenario 2 (no degradation, p1 degradation, p2 degradation, p1
and p2 degradation benchmarks).

anticipated increase in risk of up to 10% compared to the “p1 degradation” scheme – the second
least favorable scenario. Moreover, this “no degradation” scenario is expected to yield risk levels
as much as 14% higher than the best possible scenario represented by the “p1 and p2 degradation”
scheme.

In the experiments carried out using CPLEX, out of the 12 instances, the number of obtained
optimal solutions was 7, 8, 7 and 7 for the “no degradation,” “p1 degradation,” “p2 degradation”
and “p1 and p2 degradation,” respectively. This suggests that the “decreasing risk” scenario is
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comparatively more tractable to solve than the initial problem scenario. This conclusion is drawn
from the fact that the solution gaps are narrower and the count of attained optimal solutions is
higher than in the former scenario.

The number of optimal solutions obtained by ILS was 6, 5, 5 and 5 out of the 12 under the
“no degradation,” “p1 degradation,” “p2 degradation” and “p1 and p2 degradation,” respectively.
Under the “no degradation” benchmark of instances, ILS outperformed CPLEX for the instances
(16, 1), (32, 1), and (32, 2), yielding deviations of −0.09%, −30.71% and −7.30%, respectively. It
is important to note that the optimality of these solutions remains uncertain. A similar trend is
observed in these instances across the other degradation schemes. This phenomenon is consistent
with observations made in Chapter 3, where ILS demonstrated its ability to provide better solutions
for instances that are particularly challenging for exact methods.

• For the “p1 degradation” scheme, the deviations for the mentioned instances are of 2.48%,
−7.05% and −5.24%, respectively.

• For the “p2 degradation” scheme, the deviations for the mentioned instances are of −0.48%,
−17.18% and −9.13%, respectively.

• For the “p1 and p2 degradation” scheme, the deviations for the mentioned instances are of
0.38%, −9.14% and −8.50%, respectively.

When comparing the various degradation schemes with respect to their computational running
times, we observed no discernible impact of the degradation scheme on the overall problem com-
plexity. No particular scheme proved to be more challenging to solve than the others. Instead, the
complexity of the problem appears to be primarily contingent upon the instance’s size, specifically
the number of sites and the number of available teams. In this context, it becomes evident that as
the number of sites increases, the problem instance becomes more intricate to solve. Conversely, as
the number of available teams increases, the instance’s complexity diminishes. These findings align
with the outcomes of the experiments conducted in Chapter 3.

4.6 Concluding remarks

In this chapter, the new RCPSP-RTD is proposed as novel contribution at the intersection of
Operations Research and Chemical Kinetics, serving as a framework for optimizing risk mitigation
strategies while considering resource allocation and product transformation dynamics.

Through an extensive numerical analysis, we investigated the impact of various degradation schemes
on the overall risk levels in two scenarios: one where the risk increases with time and the other
where the risk decreases naturally with time. The results show a significant influence of degradation
schemes on risk levels. Notably, the no degradation scheme resulted in the highest overall risk,
followed by the degradation of the parent product, the degradation of the resulting product and,
finally, by the degradation of the parent and resulting products. The visualization of the risk
graphics further confirmed these trends, demonstrating that the “no degradation” scenario can
lead to risk levels up to 10% higher than the degradation of the parent product and as much as
14% higher than the optimal parent and resulting products degradation schemes.

The findings of this study also suggest that the type of degradation scheme does not significantly
contribute to the computational complexity of the instances. Instead, the complexity of the in-
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(b) ILS’ running times.

Figure 4.9: Color maps representing CPLEX and ILS running times for the problem scenario 2.
The gray scale, from light to dark, stands for the number of seconds (in log scale) employed to find
the best solution. Each gray box represents an instance.

stances seems to be predominantly influenced by the instance’s size, specifically the number of sites
and the available teams. In particular, when employing CPLEX, instances with 16 sites or more
tend to exhibit substantial gaps to the best lower bounds within the 4-hour time limit, rendering
the determination of optimal solutions challenging.

In contrast, ILS demonstrates a polynomial scalability of running times, successfully providing
solutions for all instances in the benchmark. ILS often achieves optimal or near-optimal solutions.
In some specific cases, ILS even surpasses the solutions obtained by CPLEX. This happens since
the heuristics embedded into CPLEX are not dedicated and cannot use specific information of the
problem, particularly when dealing with larger or more complex instances. In light of these findings,
it is recommended to consider the use of ILS or similar metaheuristic for instances that pose greater
computational demands.

In summary, this study contributes a novel approach to optimizing risk mitigation strategies in
the context of industrial accidents involving hazardous substances. While the model and the ex-
periments were centered around simulated data, it offers an efficient and generic computational
framework for addressing complex risk factors in resource-constrained scheduling problems. The
study of various degradation schemes highlights the importance of considering product transfor-
mations when assessing risk levels. Further research avenues include investigating more detailed
kinetic models and refining the algorithmics to enhance the accuracy and efficiency of risk mitigation
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solutions.
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Chapter 5

Conclusions and future research
directions

In this thesis, we have explored complex scheduling problems involved with risk factors arising from
the release of hazardous substances. The primary goal of this research has been to provide effective
algorithms and solutions that address the intricate challenges faced in various industries and logis-
tical operations after disasters involving the release of dangerous substances into the environment.

The RCPSP-RP, presented in Chapter 3, stands as a significant step forward in scheduling op-
timization for risk reduction after disasters involving dangerous substances. The proposed model
integrates risk assessment and different levels of task prioritization, offering an approach to schedul-
ing cleaning tasks in the presence of risk hazards.

In order to conduct a study on the model and method performances, computational experiments on
a benchmark of instances were conducted. The instances were designed on the context of the post-
catastrophe operations in the event of industrial disasters application, where a group of specialized
teams are deployed to clean up areas contaminated by dangerous substances after an industrial
disaster. The contaminated area is mapped as a hexagonal grid graph, where each contaminated
node is treated as a task with a associated risk that depends on the hazardous nature of pollutants
present on it. We developed two integer models and an ILS metaheuristic as the optimization
methods. These methods were tested on the benchmark of instances, where two scenarios were
considered: with or without travel times, which implies the usage or not of sequence-dependent
setup times.

This study yields several conclusions. First, travel times significantly increase the computational
complexity of the integer models, particularly noticeable in CPLEX. Instances containing 16 tasks
or more start to become computationally infeasible within the 4-hour time limit set for CPLEX. On
the other hand, the ILS approach demonstrates polynomial scalability in running times, providing
solutions within seconds for every instance. Moreover, ILS was able to find either optimal or
near-optimal solutions, occasionally outperforming the upper bound produced by CPLEX in some
specific instances. Thus, for handling extensive or demanding instances, the use of a metaheuristic
approach like ILS is a good option.
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Second, with respect to the RCPSP-RP, it is apparent that relaxing priority constraints, by in-
creasing the relaxation threshold, leads to a substantial reduction in the overall risk. The use of
strict priority constraints significantly hinders the quality of results, as more constraints result in a
diminished search space and inferior optimal values. Results indicate that partially or completely
disabling these constraints is an effective strategy for improving the attainable optimal values, albeit
with the trade-off of longer computational times.

In Chapter 4, we extended the RCPSP-RP to integrate the dynamics of products over time. The
RCPSP-RTD is a specialization of the RCPSP-RP that focuses on incorporating the dynamic nature
of product transformations over time. By considering the time-dependent evolution of substances
released into the environment, the RCPSP-RTD model aims to offer a more realistic approach to
risk mitigation optimization.

In order to conduct a study on the model and method performances, we performed computational
experiments on a benchmark of instances containing generic product data, where a MILP model and
an ILS metaheuristic as the optimization methods. These methods were tested on two benchmark
of instances, (i) where the risk increases over time and the (ii) where the risk naturally decreases
with time. We explored the impact of various degradation schemes on overall risk levels in these
two scenarios. The results reveal a significant influence of degradation schemes on risk levels.
Notably, the no degradation scheme resulted in the highest overall risk, followed by the degradation
of the parent product, the degradation of the resulting product and the degradation of the parent
and resulting products. The visualization of the risk graphics further confirmed these trends,
demonstrating that the “no degradation” scenario can lead to risk levels up to 10% higher than the
“parent degradation” scheme and as much as 14% higher than the optimal “parent and resulting
product degradation” scenario.

Specifically, when utilizing CPLEX, instances containing 16 sites or more often display significant
gaps to the best lower bounds within the 4-hour time limit, making the determination of optimal
solutions challenging. In contrast, ILS demonstrates a polynomial scalability of running times,
providing solutions for all instances in the benchmark. ILS often achieves optimal or near-optimal
solutions.

This thesis opens several avenues of research. First, further exploration into refined and realistic
models that encompass the complete dynamics of chemical transformations is warranted. This in-
volves developing more accurate ways to account for the transformation processes of substances and
their subsequent impact on risk levels. Additionally, the interaction between scheduling decisions
and these dynamic processes presents a rich area for investigation. Optimizing scheduling strategies
while considering the time-dependent transformations of substances can lead to more robust and
effective risk mitigation plans.

Furthermore, extending these models to consider multi-objective optimization could provide a
broader perspective. Integrating objectives such as cost, time efficiency, and environmental im-
pact into the scheduling framework would make it more versatile and applicable to a wider range
of real-world scenarios. Finally, as computational techniques advance, leveraging machine learning
and simulation approaches could enhance the accuracy of predicting the outcomes of various risk
mitigation strategies, leading to more informed decision-making. Last but not least, the models
and methods could be applied using specific products parameters.

In conclusion, this thesis addressed the complexities of scheduling in the presence of risk factors,
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particularly those arising from the release of hazardous substances. The proposed models, the
RCPSP-RP and the RCPSP-RTD, offer innovative approaches that pave the way for more effective
solutions in industries and logistics.
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Appendix A

Source data and plots

This appendix provides the source data and complementary plots for the results presented in Chap-
ter 3.
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Instance Priority policy

|Vd| K
strict moderate none

CPLEX ILS CPLEX ILS CPLEX ILS
time avg. time time avg. time time avg. time

8

1 0.99 0.01 0.05 0.01 0.05 0.01
2 0.31 0.02 0.03 0.01 0.03 0.01
4 0.02 0.02 0.02 0.01 0.02 0.01
8 0.10 0.02 0.01 0.01 0.01 0.01

16

1 0.62 0.02 0.25 0.01 0.13 0.01
2 0.29 0.02 0.10 0.02 0.07 0.02
4 0.22 0.02 0.07 0.02 0.05 0.02
8 0.04 0.02 0.03 0.01 0.03 0.01
16 0.07 0.02 0.01 0.01 0.01 0.01

32

1 47.74 0.05 1.09 0.11 0.63 0.16
2 16.94 0.05 0.53 0.13 0.41 0.24
4 5.39 0.04 0.28 0.19 0.16 0.32
8 0.31 0.05 0.14 0.23 0.08 0.40
16 0.41 0.04 0.04 0.14 0.05 0.24
32 0.02 0.04 0.01 0.04 0.01 0.05

64

1 14400 0.20 12.45 1.11 3.36 0.81
2 14400 0.35 2.46 1.44 2.10 1.14
4 234.69 0.43 1.34 2.07 0.61 1.78
8 27.37 0.43 0.69 2.93 0.43 3.03
16 2.21 0.32 0.20 4.34 0.14 5.38
32 0.28 0.24 0.14 4.97 0.10 9.45
64 0.02 0.14 0.02 0.37 0.02 0.64

Table A.1: Running times (in seconds) for CPLEX and ILS for the RCPSP-RP without sequence-
dependent setup times.
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Instance Priority policy

|Vd| K
strict moderate none

CPLEX ILS CPLEX ILS CPLEX ILS
time avg. time time avg. time time avg. time

8

1 0.92 0.01 5.00 0.01 5.48 0.01
2 0.35 0.02 0.65 0.01 0.75 0.01
4 0.35 0.01 0.34 0.01 0.29 0.01
8 0.12 0.01 0.05 0.01 0.05 0.01

16

1 114.20 0.02 14400 0.01 14400 0.02
2 144.93 0.02 180.00 0.02 511.28 0.03
4 6.29 0.02 4.85 0.02 7.26 0.03
8 0.64 0.02 0.52 0.01 0.46 0.02
16 0.21 0.02 0.20 0.01 0.18 0.01

32

1 14400 0.06 14400 0.11 14400 0.22
2 14400 0.07 14400 0.13 14400 0.28
4 14400 0.08 14400 0.19 14400 0.47
8 297.80 0.08 101.42 0.23 85.28 0.67
16 3.86 0.05 2.03 0.14 4.43 0.64
32 2.03 0.04 1.16 0.04 2.00 0.06

64

1 14400 0.42 14400 1.11 14400 0.81
2 14400 0.45 14400 1.44 14400 1.16
4 14400 0.55 14400 2.07 14400 2.09
8 14400 0.64 14400 2.93 14400 3.81
16 14400 0.88 14400 4.34 14400 6.36
32 42.51 0.73 21.38 4.97 25.19 10.27
64 28.38 0.15 14.22 0.37 14.66 0.65

Table A.2: Running times (in seconds) for CPLEX and ILS for the RCPSP-RP with sequence-
dependent setup times.
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A.1 List of optimal solution plots for the scenario without
sequence-dependent setup times
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A.2 List of optimal solution plots for the scenario with sequence-
dependent setup times
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