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ABSTRACT

Radiomics is now widely used to improve the prediction of
treatment response and patient prognosis in oncology. In this
work, we propose an end-to-end prediction model based on
a 3D convolutional neural network (CNN), called 3D RPET-
NET, that extracts 3D image features through four layers. Our
model was evaluated for its ability to predict the response
to radio-chemotherapy in 97 patients with esophageal can-
cer from positron emission tomography (PET) images. The
accuracy of the model was compared to five other methods
proposed in the literature for PET images, based on 2D CNN
and random forest algorithms. The role of the volume of in-
terest on the accuracy of 3D RPET-NET was also evaluated
using isotropic margins of 1, 2, 3 and 4 cm around the tumor
volume. After segmentation of the lesion using a fixed thresh-
old value of 40% of the maximum standard uptake value, the
best accuracy of 3D RPET-NET reached 72% and outper-
formed the other methods tested. We also showed that using
an isotropic margin of 2 cm around the tumor volume im-
proved the performances of 3D RPET-NET to reach an accu-
racy of 75%.

Index Terms— Positron Emission Tomography, Ma-
chine Learning, Deep learning, Esophageal cancer

1. INTRODUCTION

Predicting patient response to radio-chemotherapy (RCT) is
a very promising field of research in personalized medicine.
PET imaging with 18F-FDG, which is a radioactive glucose
analog, has mainly been used in radiomics analysis, but
other radio-tracers have also been tested [1]. However, the
roles of traditional imaging biomarkers such as SUVmax
and metabolic tumor volume (MTV) have not been well
established in esophageal cancer for therapy response [2].
Other biomarkers such as handcrafted texture features have
been proposed [3] that are associated with standard statistics.
Recently, radiomics biomarkers with complex statistical clas-
sifiers [4] have been proposed in the literature. The concept
of radiomics is defined as the extraction of dozens of quan-
titative features from the image that could be incorporated
in predictive models for patient management [5]. Many re-

ports suggest that radiomic features extracted from baseline
images can contribute to improving patient prognosis and
prediction of treatment response in oncology [6]. Images
can be obtained from computed tomography (CT), magnetic
resonance imaging (MRI) [7] and positron emission tomogra-
phy (PET). The visualization of glucose metabolism of tumor
cells and other radiotracers provides additional information to
that obtained from anatomical imaging (CT or MRI). These
so-called radiomic features are assumed to highlight some
informative tissue characteristics, such as heterogeneity in
glucose metabolic activity, necrosis, etc. Numerous image
features have been proposed in the literature [8] based on
the shape and size of the lesion, 1st order statistics, textural
features, filter and model-based features, potentially leading
to hundreds of image characteristics.

Several authors have used machine learning (ML) meth-
ods to build models for predicting treatment response or pa-
tient survival based on radiomic features, such as random
forests (RFs) and support vector machines (SVMs) with or
without a feature selection strategy [4] [9]. The main draw-
back of these approaches is that they require an initial extrac-
tion of radiomic features using hand crafted methods, which
usually results in a large number of features. However, hand-
crafted features are affected by some parameters [10] such as
noise, reconstruction, etc. and significantly by the contouring
methods used.

CNNs have proven to be very powerful tools in computer
vision for classifying images from different domains. CNN
architectures for medical imaging have been introduced and
usually containing fewer convolutional layers because of the
small datasets[11]. Recently, a new paradigm in PET ra-
diomic analysis has been proposed based on CNNs for pre-
dicting response to therapy [12]. It has been shown that deep
learning architectures can outperform traditional ML methods
in classification tasks.

CNNs were not fully studied in radiomics, especially in
PET imaging. Some papers have investigated baseline PET
analysis based on 2 Dimensional (2D) CNN architectures [12]
[13], but to our knowledge, there are no studies using 3D-
CNN. These first two applications dealt with the prediction
of the response to neoadjuvant chemotherapy in esophageal
cancer [12] and the classification of mediastinal lymph node



Fig. 1. Columns from left to right: Fused PET/CT slice,
zoomed on the esophageal tumor seen on FDG-PET only.
MTV (40% SUVmax thresholding) in red and MTV included
in the cuboid. MTV3 (MTV + 3 cm isotropic margin) in white
and MTV3 included in the cuboid.

metastasis of non-small cell lung cancer (NSCLC) [13].
In [12], Ypsilantis et al. proposed to learn a hierarchical

representation directly from PET images in 107 patients with
esophageal cancer using two CNN architectures. The first
one, called 1S-CNN, corresponds to an architecture where the
input is one slice. The process is repeated on each slice where
the tumor is present. The spatial dependency between slices
is not exploited in this architecture. For this reason, a sec-
ond architecture was proposed where the input of the CNN is
composed of 3 adjacent slices, called 3S-CNN. For each exam
containing m slices, each set of three spatially adjacent slices
is taken as input, leading to a total of m-2 possible combi-
nations. This 3S-CNN better exploits the spatial relationship
between slices but is limited to 3 slices. For both architec-
tures, a post processing step is required to predict the response
based on a majority vote process. This study has shown the
superiority of these two deep learning methods compared to
other ML methods, such as RF, SVM, gradient boosting, and
logistic regression.

In [13], Wang et al. used a centered axial slice and two
others that were separated by 4 mm in two image modalities
(PET and CT) to obtain a limited number of six slices for
each tumor to make a prediction. They compared the perfor-
mances of their CNN and four other methods including RF,
SVM, adaptive boosting, and artificial neural network. The
methods were evaluated to discriminate against benign and
malignant lymph nodes (1397) in 168 patients. The study
showed that there were no significant differences between the
CNN and the best classical ML method for classifying medi-
astinal lymph node metastasis of NSCLC from PET/CT im-
ages. Nevertheless, Wang et al. concluded that CNNs are
more convenient to use because the method does not require
an initial feature extraction.

Radiotherapy planning is based on CT by delineating the
gross tumor volume (GTV). This GTV can also be segmented
using other image modalities, such as MR and PET images.

Segmentation of the tumor in PET imaging is usually per-
formed using a fixed threshold value of 40% of the maximum
standard uptake value (SUVmax) [1], leading to the biolog-
ical or metabolic target volume (BTV or MTV). Then, the
radiation oncologist adds several margins that account for the
non-visible tumor infiltration (CTV: clinical tumor volume)
as well as uncertainties in positioning and treatment to obtain
the PTV (planning target volume) [14]. The peritumoral part
of the tumour is therefore a volume that is not neglected in
the treatment. By analogy, taking into account the intratu-
moral and peritumoral regions in radiomics analysis is likely
a strategy that can improve the results. At present, a few stud-
ies have tested this hypothesis in other modalities [15] [16]
but never with PET imaging.

Our goal was to develop a new 3D-CNN architecture,
called 3D RPET-NET, to predict the response to treatment by
learning from FDG-PET images of the tumor. Considering
our small dataset, a four-layer 3D-CNN was proposed. Our
study used a database of baseline FDG PET images of 97
patients treated by radio-chemotherapy (RCT) for esophageal
cancer. The optimal hyperparameters of 3D RPET-NET were
found and the influence of the learning volume (intratumoral
volume with different peritumoral volumes) was investigated.
The performances of the model were compared to 1S-CNN
and 3S-CNN [12], as well as to three RF methods [4] consid-
ered as state-of-the-art radiomics classifiers.

2. METHOD

2.1. Data

In this study, 97 patients with one lesion that was histolog-
ically proven to be locally advanced esophageal cancer and
eligible for RCT were included. All procedures performed
in this study were conducted according to the principles ex-
pressed in the Declaration of Helsinki. The study was ap-
proved as a retrospective study by the Henri Becquerel Cen-
ter Institutional Review Board (number 1506B). All patient
information was de-identified and anonymized prior to analy-
sis.

Patients underwent FDG PET with a CT before treatment
(baseline PET), at the initial stage. They were treated by
RCT, corresponding to an uninterrupted radiation therapy in
the form of external radiation delivered by a 2-field technique
of 2 Gy per fraction per day, 5 sessions per week, for a to-
tal of 50 Gy, as well as chemotherapy including platinum and
5-fluorouracil.

The PET/CT data were acquired on a Biograph R© Sen-
sation 16 Hi-Rez device (Siemens Medical Solutions, IL,
USA). This device does not provide point spread function
(PSF) modeling or time-of-flight (TOF) technology. Patients
were required to fast for at least 6 hours before imaging. A
total of 5 MBq/kg of FDG was injected after 20 min of rest.
Sixty minutes later (±10 min), 6 to 8 bed positions per patient



Fig. 2. 3D RPET-NET architecture composed by two 3D convolutional layers followed by 3D pooling layers and two dense
layers.

were acquired using a whole-body protocol (3 min per bed
position). The PET images were reconstructed using Fourier
rebinding (FORE) and attenuation-weighted ordered subset
expectation maximization algorithms (AW-OSEM with 4 iter-
ations and 8 subsets). The images were corrected for random
coincidences, scatter, and attenuation. Finally, the FDG-PET
images were smoothed with a Gaussian filter (full width at
half maximum (FWHM) = 5 mm). The reconstructed image
voxel size was 4.06× 4.06× 2.0 mm3.

For the determination of treatment response, the response
assessment included clinical examination, CT, FDG-PET, and
esophagoscopy with biopsies performed 1 month after the end
of treatment. Patients were classified as showing a clinically
complete response (CR, 56 patients) to RCT if no residual tu-
mor was detected on the endoscopy (negative biopsies) and
if no locoregional or distant disease were identified on CT or
PET evaluation. Patients were classified as showing a non-
complete response (NCR, 41 patients) if a residual tumor or
locoregional or distant disease was detected or if death oc-
curred.

2.2. Image preprocessing

Tumor images were spatially normalized by re-sampling all
the dataset to an isotropic resolution of 2× 2× 2 mm3 using
the k-nearest neighbor interpolation algorithm.

The metabolic tumor volume (MTV) was segmented by a
physician who manually defined a cuboid volume around the
lesion and used a fixed threshold value of 40% of the max-
imum standard uptake value (SUVmax) in the cuboid. To
study the influence of the volume of interest on the perfor-
mances of 3D RPET-NET, several isotropic margins of 1, 2, 3
and 4 cm around MTV were also applied, leading to defining
MTV1 to MTV4. In Fig. 1, an example of a PET/CT slice
with two volumes of interest (MTV and MTV3) is shown.

Tumor gray level intensities were normalized to absolute
SUV level between [0 30] and translated between [0 1] to
be used in CNN architectures. The volumes of interest were
included into a 3D empty cuboid of standard width, length
and height of 1003 voxels to learn tumoral radiomic features

(see Fig. 1 and input part in Fig. 2).

2.3. 3D RPET-NET architecture

We have developed a new CNN architecture based on two 3D
convolutional layers and two fully connected layers, as shown
in Fig. 2. Each convolutional layer, denoted C(m), consists of
F(m) feature maps, where m is the layer number (1 or 2). For
the first layer, C(1), each feature map is obtained by convolv-
ing the volume of interest with a weight matrix Wi

(1) to which
a bias term bi

(1) is added, where i is the feature map number.
Then, the output is processed by a non linear function f(x)
called the activation function, where x is the input to a neu-
ron, such as:

ci
(1) = f(bi

(1) +W i
(1) ∗ x) with i = 1, ....., F (1). (1)

Each element of a feature map, ci
(1), is obtained by con-

volving the input x with a 3D kernel. A large receptive field
tends to better preseve the relationship between slices and the
local 3D tumor information than a small one ((5 x 5 x 5) vs.
(3 x 3 x 3)). The F(1) weight matrices (one matrix per feature
map) are learned by observing different positions of the input,
leading to the extraction of the description of features. Thus,
the weight parameters are shared for all tumor input sites, so
that the layer has an equivariance property and is invariant to
the input tumor transformations (such as translation and rota-
tion). It also results in a sparse weight, which means that the
kernel can detect small, but meaningful features, as shown in
Fig. 3. For instance, it can be seen that some kernels are
learning the tumor shape (e.g, [(1,1),(1,3),(2,4),(2,6)..etc.]),
while others tend to focus on features within the tumor (e.g,
[(1,2),(1,5),(2,2),(2,3)..etc.]).

Then, the output of this first convolutional layer is fol-
lowed by a 3D pooling layer, to reduce the dimensionality of
feature maps. The max-pooling operator is used as a stage
detector to report the maximum value within each cuboid of
size (2 x 2 x 2) for all feature maps. The purpose of this opera-
tion is to down sample the feature maps by a factor of 2 along
each direction (width, high, length) and to better generalize
learning by selecting approximately invariant features. This



Fig. 3. Visualization of a 2D slice of a segmented tumor and the resulting 32 feature maps in the second convolutional layer of
the 1S-CNN architecture.

invariance to local translation is very important in radiomics
because tumors do not have a particular direction. The result-
ing feature maps are denoted P(m).

To extract high-level features from the low-level ones
obtained in the initial layer, a second convolutional layer is
added, followed by a pooling layer. This convolutional layer
learns from the pooled feature maps of the first layer (see Fig.
2).

The parameters of the CNN consist of all the convolu-
tional weights W, and the weight matrix Wh, denoted by
θ. They are learned by minimizing the binary cross-entropy
function:

L(θ) = − 1

n

n∑
i=1

[yilog(ŷi) + (1− yi)log(1− ŷi)] (2)

which is a special case of the multinomial cross-entropy loss
function for m = 2 :

L(θ) = − 1

n

n∑
i=1

m∑
j=1

yijlog(ŷij) (3)

where n is the number of patients, y is the tumor label (bi-
nary, 1 if the patient responded to treatment, 0 otherwise) and
ŷij∈(0,1):

∑
j ŷij=1 ∀i,j is the prediction response of a patient.

In our experiments, the adaptive gradient algorithm opti-
mizer (AdaDelta) was used with mini batches. At each update
of weights using the AdaDelta algorithm, only one mini batch
of training data was used, which is changed for each gradient
calculation. Our CNN also incorporated L2 normalization of
the weights and a dropout regularization of 50% to prevent
the model from overfitting.

To find the best 3D RPET-NET, called 3D RPET-NETBest,
the best hyperparameters were found. The hyperparameters
optimized include the number of 3D feature maps (we tested
from 8 to 64 feature maps), the number of neurons (128, 256,

512, 1024, 2048 and 4096), as well as different receptive field
sizes (3×3×3, 5×5×5) and different sizes of mini-batches
(2, 4, 8 and 16). Several (4) expressions of f(x), the activa-
tion function, were also evaluated (relu, elu, selu and tanh).
Several numbers of 3D convolutional layers and 3D pooling
layers (2 to 5) and fully connected layers (2, 3, 4 and 5) were
evaluated.

2.4. Implementation

The implementation of 3D RPET-NET was conducted using
the Keras library which is built on top of Theano and Ten-
sorflow. We took advantage of graphical processing units
(GPUs) to accelerate the algorithm. The CNNs training was
performed on an NVIDIA Tesla 80 with 12 GB of memory.

3. EXPERIMENTATION

Three experiments were performed to evaluate 3D RPET-
NET.

Experiment 1: The first experiment consisted of tun-
ing the optimal hyperparameters to find 3D RPET-NETBest
based on MTV. Optimizing the hyperparameters was per-
formed entirely on the training dataset.

Experiment 2: The second experiment consisted of com-
paring our architecture with 2 other CNN methods proposed
in the literature : 1S-CNN and 3S-CNN [12]. The same tun-
ing process of 3D RPET-NET was performed to find the best
1S-CNN and 3S-CNN hyperparameters. This experiment was
performed on test data.

The results were also compared to 3 RF-based methods:
one without any feature selection strategy, called RF, and 2
other RF methods proposed in the literature based on a feature
selection strategy, called GARF (genetic algorithm based on



Method VOI Acc Sens Spec AUC
Experiment 1

3D RPET-NETBest MTV 0.83±0.04 0.91±0.06 0.73±0.16 0.81±0.06
3D RPET-NET1 MTV 0.80±0.06 0.93±0.05 0.61±0.15 0.77 ±0.06
3D RPET-NET2 MTV 0.76±0.04 0.87±0.12 0.62±0.19 0.75±0.05

Experiment 2
3D RPET-NET MTV 0.72±0.08 0.79±0.17 0.62±0.21 0.70±0.04
1S-CNN MTV 0.69±0.06 0.79±0.15 0.57±0.24 0.65±0.08
3S-CNN MTV 0.67±0.08 0.73±0.19 0.60±0.20 0.67±0.08
GARF MTV 0.68±0.08 0.80±0.11 0.46±0.09 0.62±0.04
FIC MTV 0.65±0.07 0.78±0.21 0.46±0.38 0.61 ±0.16
RF MTV 0.65±0.04 0.65±0.18 0.53 ±0.18 0.59±0.04

Experiment 3
3D RPET-NET MTV1 0.73±0.04 0.76±0.07 0.69±0.1 0.72±0.04
GARF MTV1 0.70±0.08 0.74±0.07 0.54±0.07 0.62±0.02
FIC MT1V 0.62±0.10 0.58±0.18 0.64±0.12 0.59 ±0.04
RF MTV1 0.62±0.09 0.62±0.08 0.61 ±0.07 0.59±0.03
3D RPET-NET MTV2 0.75±0.03 0.76±0.45 0.74±0.15 0.74±0.02
GARF MTV2 0.71±0.09 0.73±0.11 0.54±0.09 0.63±0.04
FIC MTV2 0.58±0.01 0.58±0.25 0.57±0.18 0.54 ±0.07
RF MTV2 0.62±0.11 0.56±0.20 0.65 ±0.12 0.59±0.05
3D RPET-NET MTV3 0.72±0.09 0.71±0.09 0.74±0.14 0.72±0.09
GARF MTV3 0.66±0.07 0.68±0.19 0.57±0.12 0.63±0.04
FIC MTV3 0.61±0.11 0.63±0.17 0.58±0.16 0.59 ±0.04
RF MTV3 0.62±0.14 0.66±0.17 0.55 ±0.20 0.59±0.04
3D RPET-NET MTV4 0.63±0.09 0.77±0.10 0.46±0.21 0.61±0.11
GARF MTV4 0.65±0.09 0.73±0.14 0.52±0.16 0.62±0.02
FIC MTV4 0.59±0.08 0.54±0.14 0.63±0.08 0.56 ±0.04
RF MTV4 0.60±0.13 0.66±0.12 0.56±0.05 0.58±0.04

Table 1. Classification results: Each result corresponds to the average of five independent experiments and the standard
deviation, using the training dataset (Experiment 1) or the test dataset (Experiment 2 and 3).

Fig. 4. a. On the left: ROC curve comparing the 6 classifiers (RF, GARF, FIC, 1S-CNN, 3S-CNN and 3D RPET-NET) with
the best parameters on MTV. b. Right: Comparison of the four classifiers on different VOIs (MTVs). Error bars correspond to
standard deviation.



random forest) and FIC (features important coefficient) meth-
ods. For the details of the methods refer to [4]. Briefly, 45
image features were extracted from PET images correspond-
ing to first-order statistics (18), one feature of the lesion form,
and textural features (26). Five hundred decision trees were
built leading to the creation of the random forest classifiers.

Experiment 3: The third experiment consisted of as-
sessing the influence of the volume of interest on the per-
formances of 3D RPET-NETBest, RF, GARF and FIC using
MTV, MTV1, MTV2, MTV3 and MTV4.

4. VALIDATION METHODOLOGY

For method validation, cross-validation (CV) was performed.
We split the data into 2 groups to train and test the machine
learning methods for each fold. One group was used for train-
ing the models (77 patients) and one group for testing (20 pa-
tients). Furthermore, for the CNN, the training samples were
split into a dataset of 2 groups, a train set (55 patients) and a
validation set (20 patients), and a grid search was conducted
to derive the optimal hyperparameters based on the validation
set. For a fair comparison, different machine learning meth-
ods were trained and tested with the same fold, i.e, trained
with the same training sets and tested with the same test sets.
To keep the same ratio between the two classes CR and NCR,
for each fold, the training set contained 44 CR patients and
33 NCR patients, and the testing set contained 12 CR and 8
NCR.

The performances of the methods were evaluated for
each cross-validation, including sensitivity (Sens), specificity
(Spec), accuracy (Acc), and area under the receiver operat-
ing characteristic (ROC) curve (AUC). For each curve, the
definition of the thresholds was determined using the method
proposed by Fawcett [17], and the optimal cut-off point was
defined using Youden’s index.

A comparison between different methods was mainly
performed based on the AUC values. Due to the 5-fold CV,
5 groups of performance values were calculated for each
method; therefore, paired hypothesis tests of 5 samples were
performed. The p values were calculated using Student t-test.
To correct for multiple comparisons, we additionally adjusted
p-values by the false-discovery-rate (FDR) procedure accord-
ing to Benjamini-Hochberg [18]. The null hypotheses were
rejected at the level of p < 0.05 after correction.

5. RESULTS

The main results from the 3 experiments (accuracy, sensitiv-
ity, specificity, AUC of ROC curves) are shown in table 1.

Experiment 1: As shown in Fig.2, the best accuracy
Acc=0.72 and AUC=0.70 were achieved by two 3D convolu-
tions layers and two 3D pooling layers, followed by two fully
connected layers with the following hyperparameters for the
first 3D convolutional layer: 8 3D feature maps with a filter

size of 5×5×5 and a relu activation function. This operation
is followed by 3D Max-pooling of size 2× 2× 2. The second
3D convolutional layer corresponds to 16 3D feature maps
of 5 × 5 × 5 convolutions, followed again by a 2 × 2 × 2
3D pooling layer. Then, the last two layers are composed of
fully connected layers of 1024 hidden neurons and finally 2
neurons for both classes.

In Experiment 1, the results of two other models show
interesting performances, with no significant difference from
3D RPET-NETBest. 3D RPET-NETBest and 3D RPET-
NET1 differ by the activation function (relu vs. elu). 3D
RPET-NETBest and 3D RPET-NET2 differ by the activation
function (relu vs. elu) and the kernel size ((5 x 5 x 5) vs. (3 x
3 x 3)).

Experiment 2: In Table 1, the best results found with
1S-CNN, 3S-CNN, RF, GARF and FIC are shown. TheROC
curves of Experiment 2 are presented in Fig. 4.a.

The best results were found with 3D PET-NETBest. 1S-
CNN, seems to have lower performances (Acc=0.67±0.06,
AUC=0.67±0.06), but the 1S-CNN ROC curve was not sta-
tistically significantly different from 3D RPET-NETBest
(p=0.53) and 3S-CNN (p=0.48) ROC curves. For the RF clas-
sifiers, the best results were found with the GARF algorithm.
The GARF ROC curve was not statistically significantly dif-
ferent from 1S-CNN (p=0.10) and 3S-CNN (p=0.058) ROC
curves, while the 3D RPET-NETBest ROC curve had better
results than the GARF ROC curve (p=0.028).

Experiment 3: The results of Experiment 3 are given
in Table 1 and the comparisons of different AUC in Fig.
4.b. When studying the influence of the volume of interest,
the best performances of 3D RPET-NETBest were obtained
with MTV2 (Acc=0.75 and AUC=0.74). The performances
of the 3D RPET-NETBest tend to increase from no margin
to a magin of 2 cm, and then decrease with higher margins
(MTV3 and MTV4). Only 3D RPET-NETBest performances
on MTV2 were statistically significantly better than those
on MTV4 (p=0.04). The same trend is observed with RF
classifiers.

6. DISCUSSION

We have developed an end-to-end 3D convolutional neural
network (3D PET-NET) based on PET images. We have also
evaluated 5 other methods from the literature [12] [4]. For
each CNN, the search for the best architecture was achieved
using a validation procedure to tune hyperparameters, such as
the number of feature maps and the size of filters. For com-
parison, a standard radiomic analysis was conducted using 3
random forest classifiers: without feature selection (RF), with
a selection strategy based on a genetic algorithm (GARF) and
based on the features importance coefficients (FIC).

Apart from the numerous advantages of CNNs (avoiding
handcrafted feature design and feature selection, state-of-the-
art performance on almost any computer vision task, end-to-



end trainable models), it is now well known that convolutional
architectures build high level representations of the input sig-
nals. They typically extract low level features such as tex-
tures of edge detectors in the low layers and accumulate these
informations to form higher level features in the last layers.
Low level features are generally rather generic and can be ex-
ploited through transfer learning [19]. Higher level features
are more domain-specific and depend upon the application. A
neural network is often considered as a black box, but CNN
layers provide interpretability through the feature maps that
highlight the activation of each kernel within the input signal.
Therefore, we think that CNN features are likely to be related
to classical hancrafted radiomic features (see Fig. 3).

PET imaging suffers from low resolution and high noise,
leading to challenges in PET radiomics [10]. However, neural
networks provide a robust mechanism to avoid encoding the
noise in the data such as ’early-Stopping’ and ’dropout’ which
provide better generalization [20].

Unlike Ypsilantis et al. in [12] who claimed that the use
of a 3D ROI as direct input of the CNN is infeasible because
every tumor has a different shape and size, we show that en-
globing the tumor into a 3D cuboid of standard width, length
and height allows the benefit of the spatial relationship be-
tween slices using a large 3D receptive field to be realized.
Our assumption is that a neural network architecture able to
capture patterns of FDG uptake that occur within the whole
lesion may detect imaging features that are more relevant to
predict treatment response than each slice individually or 3
adjacent slices. Under this assumption, we propose an archi-
tecture that initially fuses the spatial information across intra-
slices images. 3D RPET-NETBest is composed of only 2 con-
volutional layers. A higher number of convolutional layers
were tested, without conclusive results. The small number of
patients in our database (without artificial data augmentation)
is a limiting factor not only for the development of a deeper
network but also for radiomic analysis in general. Indeed,
the current trend is in favour of the use of a network with an
increasing number of convolutional layers (very deep neural
network). This is only possible on large image databases (e.g.,
ImageNet [21], containing now more than 14 million images,
30 high level categories and 20K subcategories) that are not
currently available in medical imaging. It is possible to arti-
ficially increase the number of data. However since, learning
takes place on a tumor inside a black box, this solution leads
to overfitting.

To ensure a fair comparison between the different meth-
ods, the database was divided into 3 groups of 57 patients for
the training, 20 for the validation and 20 for the test before
any operation. Every CNN and RF classifier used the same
folds to obtain an exact comparison between methodologies.

There are several segmentation methods available for PET
imaging. Many automatic frameworks have been proposed
during the last decade [22], but few of them are used/available
in clinical routine. The simple threshold is still mainly used

but with different values depending on pathologies [23]. A
segmentation of the MTV can be accurately performed with a
40% threshold value because esophageal cancer can be con-
sidered as a massive non moving tumor [24] and it has been
proven that this segmentation is highly correlated with a man-
ual segmentation [5].

We have shown that isotropic dilation of MTV tends to in-
crease the performances of RPET-NET 3D. When the margin
around the MTV is too large (>2 cm) the network perfor-
mances decrease. When the MTV is increased by a margin
which is too large, the volume of interest can include parts
of metabolically active organs that are likely to interfere with
the CNN analysis. Our results suggest that between 3 cm and
4 cm of the peritumoral volume, the relevent information to
predict treatment response decreases, is responsible for a drop
in the model’s performance. Adding a peritumoral volume to
the radiomic analysis has already been tested in MRI [25] but
never in PET imaging. These initial results must be confirmed
on other types of cancer. Moreover, the influences of the ini-
tial volume of interest and the segmentation methods require
further study.

7. CONCLUSION

The analysis of PET tumor images with a3D CNN architec-
ture (3D-RPET-NET) shows very promising results in the
prediction of treatment response in esophageal cancer. 3D-
RPET-NET outperformed 2D CNN architectures, as well as
the traditional radiomics approach (handcrafted feature ex-
traction with RF classifiers) . Moreover, since the CNN does
not take hand-crafted features as input, it eliminated the need
for feature selection, making the entire process much more
convenient and less prone to user bias. In addition, we have
shown that the best volume to be used for PET radiomic
prediction is the metabolic tumor volume with an isotopic
margin of 2 cm. This peritumoral region seems to contain
information that is potentially relevant to building better pre-
diction algorithms since currently approaches are based only
on the quantification of the intratumoral region alone.

These results need to be confirmed on a larger database.
The integration of clinical data in the model is an interesting
and challenging perspective for such architectures that could
improved the performances of the classifier.
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