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Abstract—Unconstrained handwritten text recognition remains
an important challenge for deep neural networks. These last
years, recurrent networks and more specifically Long Short-Term
Memory networks have achieved state of the art performance
in this field. Nevertheless, they are made of a large number
of trainable parameters and training recurrent neural networks
does not support parallelism. This has a direct influence on the
training time of such architectures, with also a direct consequence
on the time required to explore various architectures. Recently,
recurrence-free architectures such as Fully Convolutional Net-
works with gated mechanisms have been proposed as one possible
alternative achieving competitive results. In this paper, we explore
convolutional architectures and compare them to a CNN-BLSTM
baseline. We propose an experimental study regarding different
architectures on an offline handwriting recognition task using
the RIMES dataset, and a modified version of it that consists
of augmenting the images with notebook backgrounds that are
printed grids.

Index Terms—Handwritten text recognition, Convolutional
Networks, Recurrence-free models, BLSTM.

I. INTRODUCTION

Unconstrained offline handwriting recognition consists in
transcribing the textual content of an image into character
sequences. Several characteristics can make this task very
complex: each person has his own way of writing with
specific character shapes, slant, alignment and character spacing.
Moreover, models are faced with potentially multiple languages
and different alphabets. The background and the quality of the
input images can also dramatically affect the performance of
the model.

For a long time, handwriting recognition has been handled
by Hidden Markov Model (HMM) based systems [1], with
the help of language models. The main drawback of these
systems is their inability to deal with long term dependencies
in sequences. Hybrid systems combining HMM with Recurrent
Neural Network (RNN) [2] or Convolutional Neural Network
(CNN) [3] have demonstrated their superiority over HMM.

In recent years, neural networks have proven their effec-
tiveness in many applications related to document analysis
[4, 5, 6, 7]. However, even though they have been steadily
enhancing, there is still room for improvement regarding uncon-
strained offline handwriting recognition. Recently, recurrence-
free architectures based on Fully Convolutional Networks with
strong improvements such as gated mechanisms, shared weights,
residual connections and extensive data augmentation have been
proposed [8, 9] and seems to achieve state of the art results
for handwriting recognition tasks.

This paper raises the question whether recurrence is still
necessary for modeling dependencies within signals such as
handwriting. In order to address this question, we propose an
experimental study comparing traditional recurrent architectures
and convolutional models in terms of performance, number of
trainable parameters and training time.

The rest of this paper is organized as follows. Section II
gives an overview of related works in the field. Section III
presents the different architectures used for the experiments.
Section IV is devoted to the experimental study, including a
description of the datasets, the data augmentation techniques
and the results obtained. We conclude this work in Section V.

II. RELATED WORKS

In this section, we briefly present state-of-the-art works based
on recurrent models as well as recent recurrence-free networks.

A. Models based on recurrent layers

Models using recurrent layers have shown great results, due
to their effectiveness in sequence modeling. More specifically,
Long Short-Term Memory (LSTM) cells have been widely
used for that task since they solved vanishing gradient problem
and succeeded to efficiently model long range dependencies
[10, 11].

Multi-Dimensional LSTM (MDLSTM) models have also
been studied so as to account for both vertical and horizontal
dependencies [12]. Nonetheless, those models are quite expen-
sive in term of computational cost, especially during training.
There is a trend in using lighter models focusing only in the
horizontal axis (in both directions) for large datasets for which
training time is an issue. Indeed, Bidirectional LSTM (BLSTM)
can compete with MDLSTM while having less parameters to
train as shown by [13].

Afterward, models combining both feature extraction with
CNN and sequence modeling with LSTM (CNN + BLSTM)
have become the standard architecture [5]. Such models were
proposed in [14] with the use of data augmentation. Recent
advances such as gated mechanisms [15] or LSTM-based
attention mechanism [16] were introduced with success. As
LSTM layers penalize the training time, some approaches
like Quasi-Recurrent Neural Network (QRNN) [17] attempt to
simulate recurrence over space rather than over time, in order
to make parallel training feasible. In this purpose, the authors
propose a layer made up of a convolution over the time-step
dimension followed by different possible pooling mechanisms
which act like a gate for selecting information.
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B. Recurrence-free models

In a more drastic way, Fully Convolutional Networks (FCN)
promise recurrence-free architecture with similar performance
than standard CNN-BLSTM architectures. The idea is to
capture long-range dependencies using convolutions and large
receptive fields rather than using recurrence. One can wonder
whether the extensive use of convolutions can totally dispense
from recurrent layers.

In this part, we first start by a description of recent works
based on FCN applied to language processing tasks in general.
Then we focus more specifically on handwriting recognition.

1) FCN applied to language processing tasks: Dauphin et
al. introduced for the first time Gated Linear Units (GLU), a
gated mechanism based on a sigmoïd function, and their use in
a FCN for language modeling [18]. That gate allows to learn
the information flow through the network. They show that this
allows to reach state-of-the-art performance in the context of
language modeling through WikiText-103 and Google Billion
Words datasets.

Another GLU-based FCN has been proposed by Gehring et
al. [19]. The model, based both on GLU and on an attention
mechanism, is applied to a sequence to sequence learning task.
This model has shown great results in many public translation
datasets such as WMT’16 English-Romanian and WMT’14
English-French.

2) FCN applied to handwriting recognition: Ptucha et
al. present a FCN used in both lexicon-driven and lexicon
free fashion for handwriting recognition [20]. They show
competitive results compared to HMM and BLSTM based
models mostly on the RIMES and IAM datasets.

More recently, Yousef et al. proposes a FCN architecture
[8] with an heavy use of normalization through Batch Normal-
ization [21], Batch Renormalization [22] and Layer Normal-
ization [23]. Their system also contains a gated mechanism
derived from Highway Networks [24], residual components
and Depthwise Separable Convolutions [25]. It achieves state-
of-the-art results on many datasets including IAM, using data
augmentation.

Ingle et al. propose Gated Recurrent Convolutional Layers
(GRCL) to build a FCN by stacking those layers [9]. Gates
are based on ReLu and sigmoid activation functions, residual
connections and shared-weight layers. The paper also describes
a way to convert online handwritten text data to offline so as
to get a much larger training dataset.

All these works suggest that convolutions used with gated
mechanisms could achieve competitive results compared to
traditional recurrent models for handwritten recognition task.
Indeed, the gates could compensate the selection work achieved
by the LSTM cells. That is why we decided to compare a LSTM
based model with a gated convolutional model (G-CNN).

III. PROPOSED ARCHITECTURES BASED ON GATED-CNN

In order to compare recurrent models with G-CNN, we
defined a baseline CNN-BLSTM model as in [26] and com-
pared it to different G-CNN architectures. As we are primarily
interested in comparing the performance of each architecture

alone, we did not introduced any language model on top of
the networks. We neither introduced any lexicon to constrain
the recognition. Every architectures are fed with normalized
images that are re-sized to get a 32px height, while preserving
their aspect ratio. The models use a sliding window process
as in [26]. A window of shape 32x32px with a stride of 4px
seems to be a good compromise given our attempts. Every
networks are trained with the CTC loss function [27].

A. CNN+LSTM baseline model

This model is made up of 8 convolution layers from 32 to 256
units per layer and 4 max-pooling layers. The first convolution
blocks are followed by a Dropout layer as it is known to
reduce overfitting [10]. This convolution part provides the
feature extraction which then feeds a dense layer followed by
2 BLSTM layers. Those recurrent layers enable modeling long
sequences and the network ends with another dense layer of n+1
units (n being the number of characters in the dataset alphabet
+ 1 for the blank label introduced in the CTC approach). The
softmax function provides normalized scores accounting for
probabilities of each character class to feed the CTC loss.
Figure 1a gives a more detailed representation of this baseline
network.

B. Proposed G-CNN model

The G-CNN model was created from the baseline model by
removing the BLSTM layers. The idea was first to evaluate
the contribution of BLSTM layers in the baseline architecture.
After some tests, we selected the architecture presented in
Figure 1b. Compared to our baseline model, we delayed the
use of max pooling layers. We can analyze this as a need for
the G-CNN to get a better feature extraction process in the first
layers. Moreover, in order to be competitive with our baseline
model, we increased the maximum number of units per layer
up to 512. We used a gating mechanism to compensate the
selection mechanism performed in the LSTM cells. We also
added residual components to keep trace of the successive
representations to finally sum them up through a pointwise
convolution (2D convolution with kernel of shape (1,1)). This
enables us to concatenate a lot of intermediate representations
since the pointwise convolution is a light operation. The
network uses a lot of stacked convolution blocks; therefore, to
reduce the number of parameters, we used Depthwise Separable
Convolutions instead of regular convolutions for the last ones
which are less crucial. Depthwise Separable Convolutions
consists in performing a depthwise spatial convolution (which
acts on each input channel separately) followed by a pointwise
convolution. Combined operations use less trainable parameters
than standard convolutions while providing similar results. In
the same vein, the use of shared weight convolution layers
enable us to reduce computational needs. Shared weight
convolution layers correspond to layers which are used multiple
times in the network. Thus, we can have a deeper network
without increasing the number of parameters. Finally, we have
a network which is bigger and deeper than the baseline model
with far more computational parallelism.
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C. Gating mechanism

The gating mechanism defined in our proposed architecture
is similar to the one presented in [8] but we only used a 2-part
split (one accounting for the gate, the other for the features to
be selected by the gate), whereas the authors have proposed
a 3-part split with a gate composed of two filters bancs with
substraction. The split is carried out over the channel axis.
Then, a tanh activation is applied to the gate and a sigmoid
activation to the features. Both parts are then normalized before
being multiplied together (element-wise). Figure 1c shows a
visual of this gate.

IV. EXPERIMENTAL STUDY

A. Datasets

For our experiments we have used the well-known RIMES
dataset, as well as a modified version of it. We also used data
augmentation techniques to see their impact on different types
of architectures namely CNN+BLSTM and recurrence-free
G-CNN model.

1) RIMES: The RIMES dataset contains a set of 12,723
pages written by almost 1,300 persons in the context of
predefined scenarios for which people have been asked to
write specific texts like opening and closing customer account
or change of personal information letters. It is French writings
digitized as grayscale images which are available at different
segmentation levels. In our case, we focus on text line images.
The dataset is split as follows : 9,947 text line images for
training, 1,333 for validation and 778 for test. The alphabet
contains 100 characters, including accented characters.

2) RIMES + background: From the RIMES dataset, we also
create artificial examples and change the background so as to
make texts look like written on lined paper. It is a particularly
interesting case, as it accounts for more realistic and general
use cases of handwriting on notebooks. Moreover, it will show
how the different architectures behave with more complex input
data. An example of such background is shown on Figure2.

3) Data Augmentation: Moreover, we used data augmenta-
tion to see its impact on the result of both recurrent and non-
recurrent models. To that end, we applied several processings
over the training samples: contrast modification, sign flipping,
long and short scale modifications, and width and height
dilations. Each modification is operated separately of the others.
It leads to an augmented training set 7 times bigger than the
original one. Figure 2 shows one example of each modification
on both the RIMES and the RIMES + background samples.

B. Training details

The well-known CTC loss is used for training via the
CTCModel Keras implementation from [26]. We used Adam
optimizer with an initial learning rate of 10−4 and a momentum
of 0.9.

C. Evaluation

Models are evaluated in terms of performance, training
time and number of parameters. We use the Character Error
Rate (CER) on the validation and test sets to evaluate the

performance of our models. Training time in the following
results corresponds to the necessary time for the CER to
drop below 105% of its minimum value, determined after
convergence. We chose this measurement for time since it is
more robust that the time associated to the best CER since
tiny fluctuations may occur throughout the epochs, and the
minimum value can be obtained after numerous epochs only
with a slight improvement.

D. Results

1) BLSTM layers contribution: In order to see the contri-
bution of the BLSTM layers, we first just removed it. Table
I shows the dramatic improvement due to their use and the
number of parameters at stake. As we can see, BLSTM layers
represent more than half of the total number of trainable
parameters in that model and they lower the CER from 19.03%
down to 6.88% on the test set. This first result demonstrates
that CNN networks are not good candidate for recognition.
In comparison, our recurrence-free architecture shows more
competitive results, requiring less training time. Its larger
number of parameters has no real impact on the training
time due to the parallelization of computations on such an
architecture. As one can see, the training time is less than half
that of the baseline model.

Architecture CER(%) CER (%) Training Parameters (M)validation test time
CNN+BLSTM 6.98 6.88 1d22h59 4.1

CNN+Dense only 17.73 19.03 1h10 1.5
G-CNN 9.92 10.03 10h00 6.9

Table I: Contribution and impact of the BLSTM layers in the
baseline model and comparison with our G-CNN model on
the RIMES dataset.

2) Ablation Study: In this section, we propose an ablation
study focusing on the main features of our G-CNN model to
see their impact independently of one another. The different
experiments are the following :

• (1) The Depthwise Separable Convolutions are replaced
by standard Convolutions.

• (2) The Max Pooling layers are placed back after the 4
first 2-convolution blocks (as in the baseline model).

• (3) The shared weight convolutions are replaced by new
convolution layer each time they are used.

• (4) In the GateBlock, each Gate is separated by 2 Depth-
wise Separable Convolution sharing the same weights
(instead of only one).

• (5) The 2 GateBlocks are totally removed.
Table II sums up the results of all these experiments. (1)

shows that the use of Depthwise Separable Convolutions
enables to remove 2.1 M of parameters while preserving the
performance (even increasing it by 0.06% on the test set).
(2) shows the need for preserving the size of the image and
thus its details in the first layers. Indeed, it enables increasing
the CER by 3.32% in test without altering the number of
parameters. However, it leads to more computations since the
tensors remains big longer which results in longer training
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2D convolution layer with u kernels of size k ((3,3) by default), 
padding=same, activation=ReLu
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Dense(u) Densely connected layer with u units
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Figure 1: Detailed studied architectures: a recurrent model (CNN+BLSTM) and a non-recurrent one (G-CNN). Figure 1a details
our recurrent baseline model. Figure 1b presents our gated convolutional network. Figure 1c gives a description of the blocks
used in the models.
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RIMES RIMES + background

1. Raw

2. Contrast

3. Sign flipping

4. Long scaling

5. Short scaling

6. Width dilation

7. Height dilation

Figure 2: Example of data augmentation techniques applied to one sample of the RIMES dataset, with and without printed grid
background.

Architecture CER(%) CER (%) Training Parameters (M)validation test time
G-CNN 9.92 10.03 10h00 6.9

(1) 10.02 9.97 6h41 9.0
(2) 13.31 13.35 2h57 6.9
(3) 9.78 9.85 8h54 7.7
(4) 9.96 10.15 4h10 7.4
(5) 10.09 10.33 6h37 6.1

Table II: Results of the ablation study carried out on the G-CNN
model with the RIMES dataset.

times. (3) shows that the shared weight layers enables saving
0.8 M of parameters while conserving a similar CER (it only
conduces to a loss of 0.18% of the CER). (4) shows that it
is not necessary to increase the number of convolution layers
in the GateBlocks since it does not bring improvements. With
(5), we see that the majority of the work is done in the first
layers. We can assume that the gates are powerful when they
are used rather early in the features generation process.

However, we can see that for each experiment, the training
time is lower. That means that the use of each of these
components taken separately leads to a slower convergence.

3) Robustness against background addition: We now evalu-
ate the robustness capacity of both architectures through the
use of the RIMES + background dataset. Table III presents
the results obtained with and without lined paper background.
As we can see, both architectures are rather equivalent in term
of robustness in that case since they both loose roughly 2.5%
of CER in test (2.39% for the CNN+BLSTM and 2.52% for
the G-CNN). In spite of good capacities of G-CNN to extract
spatial information from input images, the G-CNN is as much
impacted by the background as the traditional CNN+BLSTM
approach.

Architecture Background CER(%) CER (%) Training
validation test time

CNN+BLSTM Without 6.98 6.88 1d22h59
With 8.81 9.27 1d1h29

G-CNN Without 9.92 10.03 10h00
With 11,70 12.55 8h27

Table III: Comparison of robustness against lined paper
background addition of CNN+BLSTM and G-CNN on the
modified RIMES dataset (with added backgrounds).

4) Contribution of data augmentation: This experiment aims
to determine the impact of data augmentation on both archi-
tectures. Table IV presents the obtained results on the baseline
and the G-CNN model with and without data augmentation. As
we can see, the contribution of data augmentation is beneficial
for both architectures. We can notice the higher impact for the
G-CNN. Indeed, the data augmentation decreased by 1.30%
the CER for the G-CNN and by 0.94% for the baseline model.
We can assume that the G-CNN needs to learn with more
examples that the CNN+BLSTM which compensates with its
better ability to use the context.

Architecture Data CER(%) CER (%)
augmentation validation test

CNN+BLSTM Without 6.98 6.88
With 6.59 5.94

G-CNN Without 9.92 10.03
With 8.93 8.73

Table IV: Comparison of the impact of data augmentation on
CNN+BLSTM and G-CNN through 7-time augmented RIMES
dataset.
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V. CONCLUSION

In this paper, we have shown that CNN+BLSTM models
are still current. In one hand, despite their heaviness and long
training times, they turned out to be far more easy to tune and
still more efficient. In the other hand, the recurrent-less network
proposes shorter training with rather competitive results but
they require deeper and more complex models. We have seen
that both architectures have quite the same robustness when
adding lined paper background and that the data augmentation
is beneficial in both cases, and in a more efficient way for
the convolutional architecture. Up to now, our experiments
have shown that G-CNN are not easy to use, there is no self-
sufficient stackable block as with LSTM layers. The saved
time in training is then widely balanced with the loss of time
due to tuning.
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