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Abstract. In this paper, we investigate the problem of multi-domain
translation : given an element a of domain A, we would like to gen-
erate a corresponding b sample in another domain B, and vice versa.
Acquiring supervision in multiple domains can be a tedious task, also
we propose to learn this translation from one domain to another when
supervision is available as a pair (a,b) ~ A x B and leveraging possible
unpaired data when only a ~ A or only b ~ B is available. We intro-
duce a new unified framework called Latent Space Mapping (LSM) that
exploits the manifold assumption in order to learn, from each domain, a
latent space. Unlike existing approaches, we propose to further regularize
each latent space using available domains by learning each dependency
between pairs of domains. We evaluate our approach in three tasks per-
forming i) synthetic dataset with image translation, ii) real-world task
of semantic segmentation for medical images, and iii) real-world task of
facial landmark detection. Source code is publicly available!.

Keywords: Domain translation - Semi-supervised learning - Unsuper-
vised learning - Weakly-supervised learning.

1 Introduction

In many machine learning tasks, different modalities can be modeled as different
domains and different data as different views of the same reality. For example
considering an autonomous vehicle context, the RGB camera, the depth map,
and the segmentation map can be considered as three views of the same reality.
Often one domain can be considered as an input domain, e.g. a CT (computed
tomography) scan of a patient, and other domains as output domain, e.g. organ
segmentation of the scan. Here we do not consider an input nor output domain,
but rather we would like to learn to translate from any domain to another one.
This definition masks the classical definition of an input and output domain,
as every domain can be a possible input or output. While the rising amount of
available data has brought great results in domain translation tasks in a fully
supervised fashion, in some fields the quantity of available supervision is limited
and hard to obtain, as in the medical field where a domain expert is required to
create a hand-made segmentation [21,29], and this low supervision setting often
reduces the performance of classical deep learning model.

! Links to code will be inserted in the final version.
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Acquiring complete supervision to learn this translation across the different
domains can be a tedious task, since for one view all the other corresponding
views in the other domains are required. We now consider the setting of incom-
plete supervision, where for one view, the other view might or might not be
available.
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Fig. 1: Set of three domains Dy, Dy and D3, each views can have or not have a
corresponding view in the other domain, creating a situation of semi-supervised
learning

We investigate the task of multi-domain translation, i.e., given a set of n
domains {D;,..., Dy}, we would like to learn a mapping function Vi, j f;—; :
D; — D; allowing to translate a view from the domain D; into its view in D;. An
illustration with n = 3 is given in Figure 1 where multiple possible configurations
of the triple (dy,ds,ds) are possible, and each point does not necessarily have
associated view in the other two domains available (e.g. example of available
data: (d1,d2), (dz,ds), or only (d7)).

Many classical machine learning tasks fall into this domain translation frame-
work, provided that one can reconstruct a view d; given another view d;. For
example, image captioning and machine translation can be viewed as domain
translation problems. In Image captioning, one domain is the image and the
other is its description, and for machine translation both domains are textual.
Previous approaches leverage useful assumptions and inductive bias, a common
one in domain translation is the shared latent space assumption [4,9,11,15,28]
- associated views of different domains can be embedded as the same code in a
latent space.

In this paper, we propose LSM unified framework, which allows learning to
translate one view from a domain to another domain in a semi-supervised setting
when either all the views in each domain are available, or when an arbitrary
number of views are available. We do so by learning a latent space for each of
the domains where each view can be embedded in a manifold.

Each manifold is further constrained by the mean of distance and adversarial
losses allowing LSM to learn a better representation by leveraging the intra-
domain dependencies (dependencies within one domain, e.g. the value of one
image pixel or segmentation mask regarding its surrounding pixel values) and
inter-domain dependencies (the dependencies between multiple domains, e.g. the
pixel of an image with regard to the associated pixel of the segmentation mask).



Domain Translation via Latent Space Mapping 3

The rest of this paper is organized as follows, Section 2 review related work
to domain translation, Section 3 present how LSM framework is structured and
trained, in Section 4 we describe how domain translation can be applied to three
tasks (semantic segmentation, image to image translation, and facial landmark
detection). The detailed settings of the training are provided in the Appendix.

2 Related Works

Domain translation is related to other tasks like semi-supervised learning (SSL),
and domain adaptation (DA). While SSL and DA differ from domain translation,
these three tasks leverage common assumptions and often use similar methods.
The goal of SSL is to learn from labeled and unlabeled samples, but in SSL an
input domain and output domain are clearly identified. In domain translation,
a sample can be instantiated in A but not in B, in B but not in A, or in A and
B. None of the domains can be considered either as 'input’ nor ’output’. In DA,
an input domain and an output domain are also often considered, but the input
domain contains two sub-domains: a source domain and a target domain, in this
setting close to SSL, the source domain contains labeled examples and the target
domain is often left without supervision. The discrepancy between the two inputs
domains prevents from just merging them together. In this work, we leverage
two useful SSL assumptions that we will present: the Manifold Assumption that
we use to learn the intra-domain dependencies, and the Shared Latent Space
Assumption that we relax in order to learn inter-domain dependencies. We will
then present methods that exploit the same type of assumptions, and how we
take a different interpretation of these assumptions.

2.1 Manifold Assumption

According to the manifold assumption, high-dimensional data can be embedded
in a lower-dimensional space [5], a latent space, with a lower degree of freedom
considered. For the algorithm, working with this latent code representation of
the data is easier than working with the original high-dimensional data, and
learning this latent space helps to capture the underlying data structure - the
intra-domain dependencies. Several architectures such as the auto-encoder and
variational auto-encoder have been used to learn this latent space [3,12,13,18].
While learning intra-domain dependencies has shown effectiveness, allowing to
use additional data without associated views in the other domains [21], this
approach alone does not leverage inter-domain dependencies when there is no
supervision. The next assumption help to alleviate this issue.

2.2 Shared Latent Space Assumption

Deriving from the Manifold Assumption and mainly used in DA, the Shared
Latent Space Assumption state that associated views of different domains can
be mapped to a common latent code. If a view d; ~ D, is associated with
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view d; ~ D;, then d; = ch. Learning to align each manifold in the same shared
structure allows learning the inter-domain dependency between views of different
domains. But this every-to-one mapping can be seen as an over-simplification, as
multiple modalities can have very dissimilar features (e.g. consider an image and
its pixel-wise semantic segmentation mask, the mask does not contain in itself
information about the texture), this inter-domain discrepancy coupled with the
every-to-one mapping could hinder the model when learning the translation.

(a) A single shared latent space (b) Multiple latent spaces space

Fig. 2: Two type of latent space are commonly used in domain translation (a) a
single shared latent space, (b) or using multiple latent space

2.3 Domain Translation

We will give an overview of common domain translation methods while classi-
fying them according to the previously defined assumptions in order to better
understand how we take different choice from them. These models can be divided
into roughly two types illustrated in Figure 2.

Methods using a single shared latent space can use adversarial learning
on the feature space [4,9, 11,15, 28], and possibly also on the original high-
dimensional space [6,11,14,17,22-24, 37|, using generative adversarial networks
(GAN [10]) to generate a view from a latent code. GAN has been notoriously
hard to train due to the min-max optimization that can lead to vanishing gra-
dient [1] and is subject to mode collapse [33] (a mode collapse occurs when
the generation is almost deterministic and the generator always create the same
output). Building on top of these existing works, models with multiple latent
spaces often use disentanglement learning, dividing the latent code into two-
part: a domain agnostic content code, and a domain-specific style code. This
more sophisticated setting allows learning a domain translation function that
would combine a content code from a source domain and the style code of the
targeted domain [16,20,22,25,32,36]. Learning a disentangled representation is
not straightforward as the definition in itself of content and style is ambiguous,
these approaches bring great results at the cost of additional complexity and
inductive bias (e.g. using adversarial learning between the content code and the
style code).

2.4 Latent Space Mapping Assumption

We will now present how LSM uses the previously defined concept and how
it differs from existing works by taking a different interpretation of the pre-
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sented assumptions. LSM use the manifold assumption by, for each domain D;,
learning a latent space where a view d; is embedded in its latent code cii. This
allows the approach to modelize intra-domain dependencies. Additionally, we
learn the inter-domain dependencies using the shared latent space assumption,
but here we decide to take a different approach from the classical full-shared
latent space while keeping its simplicity. Instead of using a single shared la-
tent space, we relax the assumption by supposing the existence of a function
Liyj: Di — Dj allowing to translate a latent code from one domain to the
latent code of another domain. The shared assumption is then applied between
translated codes L;_,; (CZZ) and codes ch from the original domain. Similar ideas
has been approached with success in existing works: in IODA [21] by the mean of
pre-training an input encoder using input data, an output decoder using output
data to initialize a network, and learning the final task in a supervised fashion.
And in SOP [2] where there is no pre-training but the learning of this latent
space is done in an unsupervised fashion as a regularization task. But SOP only
uses the manifold assumption and does not take into account the discrepancy
between a translated latent code and a latent code from the original domain.
To alleviate this issue, we will use a framework similar to that of the SOP. We
further regularizing each latent space by making the assumption that Li_n-(cii)

should be close to dNJ-.

3 LSM Framework

We now present LSM framework, illustrated in Figure 3, for domain transla-
tion between multiple modalities and multiple domains, by learning functions
Ipi=p,; + Di = Dj. The framework learn intra-domain dependencies, for each
view d; ~ D;, the model produces its embedding d;, this can been done in an
unsupervised way by the mean of reconstruction task. It also relaxes the shared
latent space assumption by supposing the existence of a function L;_,; allow-
ing to translate a latent code d; to another domain latent space Jj, the shared
assumption is then applied after the translation by the mean of a distance loss
when paired information is available or by the mean of adversarial in an unpaired
setting.

For clarity concern and without loss of generality, we will now consider only
two domains X and Y, and we will present the translation from domain X
to domain Y, the same losses are applied when translating from Y to X. The
under-script £ — y will be used on functions that are specific to the translation
of X to Y and has to be duplicated in the case of Y to X. Other functions
are only applied once. This approach leverage three types of data configuration,
either learning from view = ~ p(x) when y is not available, from y ~ p(y) when
it is provided without corresponding z, or from paired views (x,y) ~ p(z,y).
Our goal is to learn a translation function f,—, : X — Y from domain X to
domain Y as § = fq—y(2). Using the manifold assumption we introduce two
latent spaces Z (resp. §) where the view x (resp. y) could be encoded and where
the code would retain a summarized version of the original data. To learn this



6 F. Author et al.

latent space, two auto-encoders are used: Z = E,(z) and § = E,(y) mapping a
view to its latent code, and & = D, (&) and § = D, () mapping the latent code
to its original view. An additional function performs the mapping between latent
space X to Y as § = Lz_,5(&). Given these latent spaces and functions, f;—., can
be reformulated as: § = fy—y(2) = Dy(§) = DyoLz—4(Z) = Dyo Lz 50 E.(z).
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Fig. 3: Tllustration of LSM framework. The translation is presented from the
point of view of X — Y

3.1 Learning X to Y Domain Translation

When a pair is available as (z,y) ~ p(z,y), the model performs as a fully super-
vised method, predicting y from .

This allows learning the translation network by optimizing the supervised loss

min - By Loy (Dy © Lig 0 Bp(2),y) = Loy (9, y) (2)

0p,.0L; ,;:9D,

Where £,_,, can be a cross-entropy loss for a segmentation problem, or a MSE
loss for a regression problem for example.

3.2 Intra-Domain Dependencies Regularization

When a pair of views is available as (x,y) ~ p(z,y), or when only x ~ p(z),
or only y ~ p(y) are available, it is possible to regularize the training of the
model by adding two additional reconstruction losses. These losses based on the
manifold assumption allow to learn intra-domain dependencies via the mean of
reconstruction, with auto-encoder for example [3,12,13]. The model optimizes
the reconstruct of the views from their latent code as:

2= D,(Z) = D, o Ey(x) (3)
9= Dy(y) = Dy o Ey(y) (4)
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The two associated reconstruction losses

, mi@n Ep@) Loz (De o Br(z),2) = Losa(, ) (5)
Eg»>VDg
Ey.9D,

can be used also when not all the data are available. When only z (resp. y) is
available, only £,_,, (resp. £,_,,) is optimized.

In machine learning, it is a common case to have plenty of unlabeled x only
views, but to have only labels without the x available is more rare. For example,
in a domain translation as style transfer, having y only sample is often easy to
obtain as it needs collecting images of the desired style. For some other tasks
like semantic segmentation, it is possible to obtain y only sample in road seg-
mentation through the usage of simulator [27], in medical images segmentation
the use of phantom able the generation of y only sample [8].

So far, by only taking the translation from X to Y, this framework corre-
sponds to the SOP architecture [2]. LSM extends SOP in order to allow multi-
domain translation by taking into account the transition from Y to X and further
leveraging inter-domain dependencies.

3.3 Inter-Domain Dependencies Regularization

Unlike previous approaches using the shared latent space assumption (one can
mention CorrNet [4] which our approach is similar to), we consider that this
assumption should be relaxed and that L;z_,5(Z) should be close to g. CorrNet
makes the assumption of a fully shared latent space and applies correlation
regularization between each latent code from different views. Without domain-
specific information, the regularization might hinder the learning process by
removing uncorrelated, domain-specific features which might be useful for the
domain translation task. LSM prevents this issue by creating a latent space for
each domain, and regularization is done between a latent code ¢ originating from
a domain and a translated latent code into this domain Lz_,;(Z). This does not
penalize keeping domain-specific information in each latent code.

To enforce latent code Lz_,5(Z) to be close to g, two additional losses are
added, depending on the available supervision.

Supervised case In the case where the pair of view (z,y) is available, LSM
minimizes
min Epz,5) LDist; (,9) = d(Lz—5(Z), 7) (7)

0p,.0L;_,;.08,

where d is a distance function, as for example L; distance. Minimizing Lp;s,
allows bringing closer the translated latent code Lz_,;(Z) and the latent code
7. In the supervised case, where all views are available, for example in a road
semantic segmentation context considering the RGB image and its segmentation
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map (x,y), and their latent representation (, 7). Supposing that ¢ allows recon-
structing y through the decoder D, (y) = y, then if L;_,;(Z) = g, obtaining g
using x would allow to translate x into y through the latent space mapping. In
order for the translation to be accurate, one would expect Lz_.3(Z) to be close
to E,(y) = y. Equation 7 enforce this constraint by minimizing the distance
between latent codes.

Unsupervised case When the supervision is incomplete (either only z or only y
is available), we substitute the distance loss £ Dist; With a feature adversarial
loss inspired by existing domain adaptation approaches as done in [34].

We would like the translated latent code L;z—,5(Z) to be invariant from the
latent code y. Classical machine learning models assume that all the input came
from the same distribution, in this case the model is the decoder, and the inputs
are latent codes. We consider latent codes to be invariant if a domain classifier
is unable to distinguish its source. For that purpose, a domain classifier DCj is
added on top of Y latent space in order to draw the two distributions closer.
For the domain classifier, the loss is a binary cross-entropy (BCE) where the
discriminator has to correctly classify the presented latent code in the right
domain.

min Ep(i)m(ﬂ)‘CDCg (Z,9) = BCE(DC@ o Li_@(f), 0) + BCE(DO@(?;), 1) (8)

Opc

The domain classifier attempt to discern from which domain the presented latent
code is sampled.

Classical adversarial approaches make the generating part maximizing the
error of DCy, however as state in [35], the two distributions L;_,3(Z) and g
are changing, this could lead to an optimization problem. When the generating
part is optimal, the domain classifier would only have to flip its sign in order to
produce the correct prediction. This would result in oscillations in the optimiza-
tion. Therefore, we encourage domains to produced features L;_.5(Z) and § to
be indistinguishable, using a confusion loss [34], where we compare the domain
classifier decision against a uniform distribution:

. oo 1
min ]Ep(g“c),p(y)ﬁc’onfg (LE, y) :BCE <DC@ o Lj_>g (JT) ) (9)

0p,.08,,00; 5 2

+ BCE (ch(g), ;) (10)

3.4 Final Loss

Finally, the model is trained to optimize the weighted sum of all the previous
losses. For a two-way X /Y domain translation (x — y and y — ), the global
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loss is

min EFinal = A1lcx—>x + /\Q‘Cy—>y + )\éﬁmay + )\gﬁy%m

08, .08,,0L;

0D, ,0D,,0L;_,

T

+ >\4 (EDiStj + [/Distg> + )\5 (‘CConfg + EConfg) (11)

min »CAdversarial - »CDCi + »CDCZ; (12)
0pc;,9p0y

It allows the model to receive supervision regardless of whether the samples
are drawn from a marginal distribution  ~ p(z) and y ~ p(y), or from their
joint distribution x,y ~ p(x,y). Lpist, and Lcony, applied on a latent space on
domain Y further push the model to create an embedding where the translated
latent code Lz_.3(Z) and the original latent code § are more similar. In the
general cases where all domains are similar (e.g. both domains are real images),
= A2,

This formulation differs from other models as CorrNet [4], which makes the
assumption of the single shared latent space. Similarly to CorrNet, a represen-
tation is learned by means of reconstruction using autoencoders and a corre-
lation regularization term in the latent space is applied. The main differences
are that a) CorrNet modelizes a shared latent space as a combination of la-
tent codes from different views. The unique shared latent code Z is constructed
as Z = o(W,ZT + W,y + b) where o is an activation function, = E,(z) and
gy = E,(y) are the last activation of the encoder for each domain, W and b
are projections matrices and bias. This is the formulation when both views are
available. When only one view is available (for example only z) this formu-
lation becomes Z = o(W,Z + b) as y is set to 0. b) CorrNet maximizes the
Pearson correlation when pairs of data are available, this approach is classical
in disentanglement learning, where the correlation (or mutual information) be-
tween domain-agnostic latent codes is maximized (section 2.3). In addition, in
most disentanglement learning frameworks, a domain-specific latent code ensures
that the specific information is kept, which is not the case in CorrNet. These
optimization terms require all the views to be available at the same time.

We think that the formation introduced in a) might hinder the training, as
by construction, given two views (z,y), the latent code Z has to be different if
only z is available, or only y is available, or if the two views are available at
the same time. This assumption may not hold in general, for example in a road
context with two domains: (x) RGB images and (y) polarimetric images. We
might expect the latent code & = E,(x) to be equal to § = E,(y), but also in
the case where both views are available, equal to Z = E(z,y), where Z is the
denomination of the latent code when both views are available, and E,, is a
general encoding function. In CorrNet this is impossible by construction.

LSM tackles this by removing the shared latent space assumption without
adding the separation of domain-specific and domain-agnostic latent code, and
adding the mapping network. The reconstruction loss is then applied either on
the origin latent code, or on the translated latent code in a similar fashion as in
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CorrNet. Furthermore, LSM encourages latent code from different views to be
similar using the distance and the latent discriminator.

b) We observe that CorrNet regularizes the latent space only when all the
views are available. LSM leverages the information from the latent discriminator
from the confusion adversarial loss (equation 8) in order to encourage the latent
code from different views to be indistinguishable even when no supervision is
available.

4 Experiments

In this section, we provide an evaluation of LSM along with three baselines
on three datasets. To evaluate the benefits induced by LSM, we evaluate every
approach using the same architecture that we made as simple as possible. We
empirically show that the use of LSM is not detrimental when a lot of supervision
is available. Furthermore, LSM allows for improving the training when additional
unsupervised information is available and improves the training while reducing
the variance of the models. Qualitative results are available in Appendix D.

4.1 Datasets

Synthetic Image Translation (SIT) Dataset The synthetic image transla-
tion dataset consists of image pairs made by superposing a background texture
and a ring from another texture 2 for the input domain and the associated cir-
cle segmentation for the output domain. Four parameters control the texture
generation: circle x position, circle y position, circle radii, and circle thickness.
In order to complexify the task, for the segmentation mask, we swapped the x
position with the circle thickness and the y position with the circle radii. This
changes the task from a segmentation task to a more challenging image-to-image
translation task. We use the standard mean Intersection over Union (mlIoU) as
evaluation metric for the output prediction. Figure 4 displays two pairs of an
input image and ground truth. We refer to Appendix A.1 for dataset description
details.

Facial Landmark Detection (300-W) Dataset We study the real case of
facial landmark detection, on the 300 Faces In-the-Wild Challenge (300-W) [30,
31]. This 300 Faces In-the-Wild Challenge dataset is constituted of 300 indoor
images and 300 outdoor images with associated 68 facial landmarks for each
face. It provides a context with multiple modalities (image faces, and vector
of positions) and with a highly structured output domain that presents strong
intra-dependencies. We use the standard Normalized Root Mean Square Error
(NRMSE) as metric for facial landmark detection. We refer to Appendix A.2
and [30,31] for dataset description details, examples of data are given in Figure 5.

2 https://www.ux.uis.no/~tranden/brodatz.html
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X GT N=100%  N=40% N=5%

Fig.4: SIT samples with their associated prediction from LSM for different
amounts of available (z,y) views. More predictions in Appendix D

Fig.5: 300-W with their associated facial landmarks (red dot) and predicted
landmark from LSM (blue dot) for different amounts of available (z,y) views.
More predictions in Appendix D
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Sarcopenia Semantic Segmentation Dataset (SSS) We study segmenta-
tion of the third lumbar vertebra (L3) level from Computed Tomography (CT)
scans. This task is needed for predicting the sarcopenia level, which is a mea-
sure of muscle atrophy, later used in cancer diagnostic [19,26]. We use the mean
Intersection over Union (mlIoU) as metric for the segmentation. We refer to Ap-
pendix A.3 for dataset description details, examples of data are given in Figure 6.

X GT N=100% N=20% N=1%

Fig.6: SSS samples with their associated prediction from LSM for different
amounts of available (z,y) views. More predictions in Appendix D

4.2 Baselines

We compare our model with 5 baselines: a basic baseline, IODA [21], SOP [2],
CycleGAN [38] an unsupervised domain translation approach, and Pix2Pix [17]
a supervised domain translation approach. Every baseline used has the same
model architecture. For the architecture, we used this® implementation from
GitHub designed for CycleGAN and Pix2Pix. When necessary, the models have
been adapted for the use case.

The basic baseline, is restricted to D, o L35 o E, as in Section 3.1, this
corresponds to using only the input to output translation with the loss described
in equation 2. IODA [21] model has a similar structure as our model and also
exploits information from input data and output data, but the learning of ad-
ditional information is performed offline during a pre-training phase. Namely
IODA first pre-trains D, o E, and D, o E,. Then in a final phase, the model
D, o Lz_,5 o E; is initialized using the pre-trained weights and training using
equation 2. SOP [2] has a similar architecture, and uses information from input
and output as a mean to regularize the training of equation 2. The difference be-
tween the SOP model and our model lies in the equation 7 and equation 8 that

3 https://github.com/junyanz/pytorch-CycleG AN-and-pix2pix
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are not present in SOP. Namely, a distance cost brings closer representations
from different origins, and an adversarial cost pushes closer different embed-
ding to follow the same distribution. CycleGAN ([38] learns a two-ways domain
translation in an unsupervised way. Unlike IODA, SOP, and LSM, it does not
explicitly modelizes a latent space. The translation x — y is learned by a gener-
ator Dy o Lz_,5 o E,; and is enforced realistic using a domain discriminator and
a meaningful semantic is enforced using a cycle-consistency loss between = and
DyoLj,z0E 0Dy 0Lz ,;0E,). Pix2Pix [17] learns a one-way domain transla-
tion in a supervised way. Not explicitly modelizing a latent space, Pix2Pix learns
a generator DyoLz_,50F,. The supervision came from a discriminator that takes
as input either (z,y) as the real examples or (z, D, o Lz_.; 0 E,(y)) as the fakes
examples, with an additional supervised loss between y and Dy o Lz_,5 0 E,(y).

4.3 Adapting to Lower Supervision

We first compare each model while adapting the amount of available supervision,
controlled by taking N% of the dataset as supervised pair (z,y), and splitting
evenly the remaining (100 — N)% as only = samples and only y samples (un-
supervised pairs). We lower N in order to see an evolution in the metrics. To
ensure that no x and y in the unsupervised set could come from the same pair,
we divide the dataset in two before the training, keeping one part as a bank of
unsupervised pairs. This has for effect to divide the effective dataset length by
two. As CycleGAN operates in an unsupervised setting, its performance does
not change for each N value. LSM is compared for different values of N for
the facial landmark in Figure 7a, the sarcopenia dataset in Figure 7b and the
synthetic image translation in Figure 8.

High Amount of Supervision For the highest N values (N = 100) and the 300-W
and SSS dataset, there are no significant differences between models, as there is
plenty of (z,y) views, the different baselines are able to learn the tasks. For SIT
we found that LSM greatly improves on the metric compared to the baselines,
this is explained by the fact that, unlike in the two previous tasks, there is not
direct pixel-to-pixel (or spatial) correspondence between the two domains (due
to the swapping of variables). We found that CycleGAN is able to perform on
the 300-W and SSS tasks, where there is a pixel-to-pixel correspondence, but
fails the SIT image translation, as the correlation between domains is not pixel-
to-pixel, this unsupervised approach is not able to understand the swapping of
variables and not suited for this task.

Medium values of N(N € {80,60,40} for facial landmark, N € {80, 60,40}
for sarcopenia datasets, N € {80} for synthetic dataset) only slightly affect the
training. For the two first, the metric only starts to really decrease for LSM and
the baseline when NV < 40, this is explained by the fact that the model does not
need every sample to learn the task. Those values of N are Pareto optimal for
this combination of dataset and model leading to either no or a slight decrease
in the metrics. For the synthetic dataset SIT, the metric start to decrease earlier
as the task might be harder for the models and the amount of data is lower.
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CycleGAN F 0.30
- baseline
= |ODA |
= SOP 0.25 LLH
LSM
—— Pix2Pix -0.20 E
=2
- 0.15
- 0.10
100 80 60 40 20 10 5 4 3 2 1
% of (x, y) data
(a)
- 0.8
CycleGAN 8
- baseline - 0.6 é
= |ODA
— SOP
LSM
= Pix2Pix 0.4

100 80 60 40 20 10 5 4 3 2 1
% of (x, y) data

(b)

Fig. 7: Impact of the number of available pairs from (a) the 300-W dataset on
the NRMSE metric (lower is better) and (b) the SSS dataset on the mIoU metric
(higher is better). Areas around LSM line represent the standard deviation (5
trained models for each baseline)
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CycleGAN
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Fig. 8: Impact of the number of available pairs from the synthetic image trans-
lation dataset on the mIoU metric (higher is better). Areas around LSM line
represent the standard deviation (5 trained models for each baseline)

Low Amount of Supervision When N became low (N < 60 for every dataset)
and the amount of supervision became limited, every model’s performance start
to degrade as the amount of supervision is no longer sufficient to completely
learn the task and generalize over the test set.

Table 1: NRMSE evaluation on the Facial Landmark Dataset according to the
portion of available pairs (z,y) from the dataset

Model 100 % 60 % 10 % 5 % 4% 3% 2% 1%

Baseline 1.25e-1 1.47e-1 2.25e-1 2.38e-1 2.5le-1  2.59e-1  2.87e-1 3.1le-1
IODA 1.46e-1  1.62e-1 2.20e-1 2.4le-1 2.62e-1 2.76e-1 2.72e-1  2.75e-1
SOP 1.19e-1 1.36e-1  2.07e-1 2.33e-1 2.53e-1  2.50e-1 2.64e-1 2.7le-1
LSM 9.53e-2 1.05e-1 1.81le-1 2.22e-1 2.27e-1 2.483e-1 2.48e-1 2.65e-1

Pix2Pix 1.02e-1 1.21e-1 2.00e-1 2.45e-1 2.49e-1 2.71le-1  2.64e-1  2.89%e-1
CycleGAN 2.30e-1  2.30e-1 2.30e-1 2.830e-1 2.30e-1 2.30e-1 2.30e-1 2.30e-1

For the 300-W and SIT datasets (Figure 7a) and the lowest amount of su-
pervision (N = 1), the model performances decline and reach the same NRMSE
as the supervised and unsupervised baselines. While for the SSS dataset, LSM
is able to better adapt to a low amount of supervision than the other supervised
baselines. In the low-supervision setting, unsupervised models such as Cycle-
GAN are able to perform well, for N < 4 for 300-W, and N < 2 for SSS. For the
synthetic dataset, the task is impossible to solve without supervision due to the
swapping of variable, and LSM stay above all the baseline for low values of N.
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For the sarcopenia dataset Figure 7b, we can note that LSM performances
decrease slower than the supervised baselines. We conjuncture that LSM is able
to leverage the side information from only x or only y views without increasing
the discrepancy between both domains. Where SOP learning schema does not
take into account this discrepancy and falls behind the baseline. We suppose
that IODA is able to perform well in this kind of setting by providing a good
parameter initialization without constraining the later learning of the model.

Table 2: mIoU evaluation on the synthetic image translation dataset according
to the portion of available pairs (z,y) from the dataset

Model 100 % 60 % 10 % 5 % 4 % 3% 2 % 1%
Baseline 5.85e-1 4.25e-1  3.25e-1 2.93e-1 3.03e-1 3.0le-1 2.86e-1  2.69e-1
IODA 3.74e-1  3.63e-1 3.20e-1 3.03e-1 2.87e-1 2.82e-1 2.83e-1 2.48e-1
SOP 4.86e-1  4.0le-1  3.19e-1  3.05e-1 3.02e-1 3.02e-1 2.89e-1  2.72e-1
LSM 7.32e-1 6.50e-1 4.32e-1 3.85e-1 3.77e-1 3.75e-1 3.63e-1 3.27e-1

Pix2Pix 5.14e-1  4.82e-1 3.22e-1 3.02e-1 2.90e-1 3.03e-1 2.93e-1 2.97e-1
CycleGAN 3.03e-1  3.03e-1  3.03e-1 3.03e-1 3.03e-1 3.03e-1 3.03e-1 3.03e-1

Table 3: mIoU evaluation on the sarcopenia dataset according to the portion of
available pairs (z,y) from the dataset

Model 100 % 60 % 10 % 5% 4 % 3% 2% 1%

Baseline 7.99e-1 7.8le-1 6.67e-1 6.3le-1 6.23e-1 5.89e-1 4.45e-1 4.12e-1
IODA 8.08¢-1 7.90e-1 7.21e-1 6.36e-1 6.33e-1 6.13e-1 5.87e-1  4.03e-1
SOP 8.13e-1 8.06e-1 6.92e-1 5.18e-1 4.98e-1 4.46e-1 4.54e-1  3.80e-1
LSM 8.38e-1 8.29e-1 7.69e-1 7.39e-1 7.23e-1 7.21le-1 6.70e-1 6.11e-1

Pix2Pix 7.74e-1  7.82e-1 5.67e-1 5.42e-1 4.78e-1 5.09e-1 5.13e-1  4.53e-1
CycleGAN 7.18e-1 7.18e-1 7.18e-1  7.18e-1 7.18e-1 7.18e-1 7.18e-1 7.18e-1

5 Conclusions

We presented LSM, a novel training framework allowing to learn domain trans-
lation with multiple supervision levels, either fully supervised, or with views
from only some domains. LSM learns for each domain a latent space and a map-
ping function between each of these latent spaces. Unlike previous approaches,
LSM does not make the shared latent assumption directly, but rather relaxes it
by supposing the existence of a mapping function between latent spaces. And
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further constraints each mapped latent code to be consistent with the original
latent code from one domain. This makes LSM suitable for multi-modal domain
translation tasks, especially when incomplete supervision is available.

The experiments confirmed that LSM is not penalizing when a lot of su-
pervision is available and is able to leverage additional information in order to
improve the training of models in low data settings.

While LSM allows learning the translation between multiple domains in a
weakly-supervised setting, it does not leverage the availability of multiple re-
lated views to enhance the translation during the inference (LSM leverages the
availability of multiple related views during training only). We plan to address
this issue in future works which will combine information from multiple related
views as input to improve the translation. Another issue that arises from LSM
is the increasing model size as the number of domains grows, this makes such
an approach heavy for a high number of domains.
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A Dataset Details

A.1 Synthetic Image Translation (SIT) Dataset

The synthetic image translation dataset consists of image pairs made by super-
posing a background texture and a ring from another texture ¢ for the input
domain and the associated circle segmentation for the output domain. Four pa-
rameters control the texture generation: circle x position, circle y position, circle
radii, and circle thickness. In order to complexify the task, for the segmentation
mask, we swapped the x position with the circle thickness and the y position
with the circle radii. This changes the task from a segmentation task to a more
challenging image-to-image translation task. We use the standard mean Inter-
section over Union (mloU) as evaluation metric for the output prediction and
generate a total of 500 images. Figure 4 displays two pairs of an input image
and ground truth. The images are 128 x 128 pixels (we randomly take a square
in the texture 17 and 77 of size 128 x 128). Values are normalized in [0, 1], 500
samples are generated. We train on 70% of the data, keep 10% for the vali-
dation and 20% for the testing. We use the cross-entropy as the loss function
for the segmentation-related tasks, mean-square-error for input reconstruction-
related tasks. As segmentation metric, we use the mean intersection-over-union,
computed on the three classes and not on the background.

Fig.9: Two couples of input image textures and their associated output. Here
we swap generating parameter between the image and its segmentation creating
an image-to-image translation task

A.2 Facial Landmark Detection (300-W) Dataset

We study the real case example of facial landmark detection, on the 300 Faces
In-the-Wild Challenge (300-W) [30,31]. This 300 Faces In-the-Wild Challenge
dataset is constituted of 300 indoor images and 300 outdoors images with as-
sociated 68 facial landmarks for each face. It provides a context with multiple
modalities (image faces, and vector of positions) and with a highly structured
output domain that presents strong intra-dependencies.

We rescale each image into 64 x 64 pixels and normalize the pixels values
in [0, 1] and the landmarks in [0, 1]. We train on 70% of the data, keep 10% for

* https://www.ux.uis.no/~tranden/brodatz.html
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the validation and 20% for the testing. We use the mean-square error for input
reconstruction-related tasks and prediction-related tasks. We use Normalized
Root Mean Squared Error (NRMSE in equation 13) [7] as the metric for the
prediction task.

N .
NRMSE(j y)zw (13)
’ N x D
With N = 68 the number of landmark points § € RV*2 is the landmark pre-
diction and y € RV*2 is the landmark ground-truth, and D is the inter-ocular
distance computed from y.

Fig. 10: Faces with their associated facial landmarks from the 300-W dataset

A.3 Sarcopenia Semantic Segmentation Dataset (SSS)

Segmentation of the third lumbar vertebra (L3) level is useful in order to predict,
from CT scan (computed tomography scan), the sarcopenia level - characterizing
a level of muscle atrophy - which is later used in cancer diagnostic [19,26]. The
segmentation task is a tedious task for the medical practitioner as the hand-made
segmentation can take 4 minutes for an expert [21]. Two challenges arise from the
data, inter-patient variability, as there are different factors that will impact the
CT scan (age, sex, disease ...); and inter-image variability, a lot of parameters
exterior the patient can impact the CT scan quality (quality of the device, the
radiation dosage ...). This is illustrated in Figure 6 with two samples of CT
scans and their ground-truth segmentation that are really different from one
another. Examples of data are given in Figure 6, there are 4 classes: background
(black), subcutaneous adipose tissue (purple), visceral adipose tissue (green),
and skeletal muscle (red). The skeletal muscle segmentation is used to compute
the sarcopenia level. The dataset contains a total of 527 pairs of CT images and
their masks, we train on 70% of the data, keeping 10% for the validation and
20% for the testing. For this task, the image’s background is cropped, they are
resized to 128 x 128 pixels and normalized between 0 and 1. We use the cross-
entropy as the loss function for the segmentation-related tasks, mean-square-
error for input reconstruction-related tasks. As segmentation metric, we use the
mean intersection-over-union, computed on the three classes and not on the
background.
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X GT LSM X GT LSM

Fig. 11: Two tuples of CT scans, their ground-truth segmentation mask from our
dataset and the LSM translation

B LSM Training complexity

We study the possible training overhead that LSM might induce in terms of the
number of epochs. For each model, a training budget of 1000 epochs was available
and for IODA, we also allow 1000 epochs for each pre-training stage. We compare
how the different approaches behave within this computational budget and for
each dataset. We display results in Figure 12.

We did not find that LSM uses an excessive number of epochs before early
stopping (with a patience of 100 epochs), especially when compared to pre-
training methods such as IODA, with an additional training stage, which can
take a lot of training.

For methods using Generative Adversarial Networks such as CycleGAN and
Pix2Pix, we consume all the training budget but display the best epoch per
run. For unsupervised method as CycleGAN, it is not possible to perform early
stopping as there is no ground truth available to compute a metric on an unpaired
dataset in practice.

epoch

Baseline I0DA SOP LSM CycleGAN Pix2Pix
model

Fig.12: Indices of the best epoch per model and per dataset using the fully
labeled dataset (N = 100).
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C Distance and Adversarial Loss Ablation

We study how the different losses contribute to the model performances while
varying the amount of available supervision. We name each ablation according
to the format A; As Az Ay where A; = 1 if A; # 0. We found that, among all
configurations, the one using every loss, have the lower NRMSE and the higher
mloU.

= LSM 0000 - 0.30
— LSM 1000
—— LSM 1100 025w
— LSM 1110 L 0.20 E
LSM 1111 =
r0.15
r0.10

100 60 20 5 3 1
% of (x, y) data

Fig. 13: Impact of the losses on LSM on 300-W dataset on the NRMSE metric

Table 4: ITmpact of losses ablation on LSM, on 300-W dataset on the NRMSE

metric

Model 100 % 60 % 20 % 5% 3% 1%
LSM 0000 1.25e-1 1.47e-1 1.98e-1 2.38e-1 2.59e-1 3.1le-1
LSM 1000 1.03e-1 1.13e-1 1.58e-1 2.54e-1 2.98e-1  3.22e-1
LSM 1100 1.05e-1 1.15e-1 1.71le-1 2.53e-1 2.67e-1  3.05e-1
LSM 1110 1.08e-1 1.18e-1 1.47e-1 2.5le-1 2.54e-1 2.93e-1
LSM 1111 9.53e-2 1.05e-1 1.46e-1 2.22e-1 2.43e-1 2.65e-1
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L 0.8

— LSM 0000 o6
—— LSM 1000 3
1 £

LSM 1100 o4
—— LSM 1110
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100 60 20 5 3 1

% of (x,y) data

Fig. 14: Impact of the losses on LSM on SSS dataset on the mIoU metric

Table 5: Impact of losses ablation on LSM, on SSS dataset on the mIoU metric

Model 100 % 60 % 20 % 5 % 3% 1%
LSM 0000 7.99e-1 7.8le-1 7.40e-1 6.3le-1 5.89e-1  4.12e-1
LSM 1000 8.30e-1  8.23e-1 7.85e-1 6.85e-1 4.39e-1 1.72e-1
LSM 1100 8.81e-1 8.20e-1 7.85e-1 7.04e-1 6.80e-1 3.60e-1
LSM 1110 5.52e-1  8.20e-1  7.92e-1 7.16e-1 4.54e-1  3.96e-1
LSM 1111 8.38e-1 8.29e-1 7.96e-1 7.39e-1 7.21le-1 6.1le-1

LSM 0000 | 5
LSM 1100
Lsm 1110 [ 0-6
LSM 1000 | 0.5
LSM 1111

miou

r0.4

r0.3

100 60 20 5 3 1
% of (x, y) data

Fig. 15: Impact of the losses on LSM on SIT dataset on the mloU metric

D Qualitative Results

We provide LSM prediction for each dataset and different levels of supervision to
access the evolution of prediction quality according to the available supervision.
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Table 6: Impact of losses ablation on LSM, on SIT dataset on the mloU metric

Model 100 % 60 % 20 % 5 % 3% 1%
LSM 0000 5.35e-1  4.25e-1  3.43e-1 2.93e-1 3.0le-1 2.69e-1
LSM 1000 4.08e-1 3.76e-1 3.26e-1 3.16e-1  3.04e-1 2.91e-1
LSM 1100 3.99e-1 3.56e-1 3.26e-1 2.96e-1 3.00e-1  2.88e-1
LSM 1110 4.03e-1 3.73e-1 3.23e-1  3.16e-1 3.00e-1  2.90e-1
LSM 1111 7.32e-1 6.50e-1 4.94e-1 3.85e-1 3.75e-1 3.27e-1

Fig. 16: Predicted sample from LSM on 300-W test set, with different proportion
of (z,y) available (100%, 40%, 10%). Ground-truth marker in blue, prediction
marker in red
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N=40%

100%

N=

GT

1011

Fig. 17: Predicted sample from LSM on SIT test set, with different proport

of (z,y) available (100%, 40%, 5%)
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X GT N=100% N=20% N=1%

Fig. 18: Predicted sample from LSM on SSS test set, with different proportion
of (z,y) available (100%, 20%, 1%)
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X GT N=100% N=20% N=1%

Fig. 19: Predicted sample from LSM on SSS test set, with different proportion
of (z,y) available (100%, 20%, 1%)
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X GT N=100% N=20% N=1%

Fig. 20: Predicted sample from LSM on SSS test set, with different proportion
of (z,y) available (100%, 20%, 1%)



30 F. Author et al.

X GT N=100% N=20% N=1%

Fig. 21: Predicted sample from LSM on SSS test set, with different proportion
of (z,y) available (100%, 20%, 1%)



