
Object Detection in the DCT Domain: is
Luminance the Solution?

Benjamin Deguerre
INSA Rouen Normandie

ACTEMIUM Paris Transport
Email: benjamin.deguerre@insa-rouen.fr

Clement Chatelain
INSA Rouen Normandie

Email: clement.chatelain@insa-rouen.fr

Gilles Gasso
INSA Rouen Normandie

Email: gilles.gasso@insa-rouen.fr

Abstract—Object detection in images has reached unprece-
dented performances. The state-of-the-art methods rely on deep
architectures that extract salient features and predict bounding
boxes enclosing the objects of interest. These methods essentially
run on RGB images. However, the RGB images are often
compressed by the acquisition devices for storage purpose and
transfer efficiency. Hence, their decompression is required for
object detectors. To gain in efficiency, this paper proposes to take
advantage of the compressed representation of images to carry
out object detection usable in constrained resources conditions.

Specifically, we focus on JPEG images and propose a thorough
analysis of detection architectures newly designed in regard of the
peculiarities of the JPEG norm. This leads to a ×1.7 speed up in
comparison with a standard RGB-based architecture, while only
reducing the detection performance by 5.5%. Additionally, our
empirical findings demonstrate that only part of the compressed
JPEG information, namely the luminance component, may be
required to match detection accuracy of the full input methods.
Code is made available at : https://github.com/D3lt4lph4/jpeg
deep.

I. INTRODUCTION

Deep architectures, especially Convolutional Neural Net-
works (CNN) have become a standard for object detection.
Most of the proposed architectures rely on the same two
components: a feature extractor (backbone) pre-trained on a
classification task and a detection head to output the box pre-
dictions. Impressive results were achieved on datasets growing
in complexity such as Pascal VOC [1] or MS-COCO [2].
However, even though most of the images are compressed in
order to limit the storage and the transfer bandwidth require-
ments, state-of-the-art detection architectures are designed for
processing RGB inputs. Hence the usual procedure for any
detection task observes the two following steps:

• The image is uncompressed and possibly pre-processed,
namely with normalisation and/or resizing operations.

• Then the detection task is performed, typically using a
deep network.

Although effective, this procedure have some drawbacks
as the image decoding step induces a computational cost.
Moreover, the involved deep architectures may include a
tremendous amount of parameters, due to the RGB image res-
olution, making the network computationally expensive. These
facts hinder the large scale deployment of these networks
for applications with real-time and computation constraints

such as city surveillance [3] or road traffic monitoring and
management [4].

In this article, we propose to directly perform object de-
tection in compressed JPEG images, JPEG being one of the
most popular and effective compression algorithms. As the
JPEG compression transform images in a tiled frequency
space, through Discrete Cosine Transform (DCT), it raises the
question whether a detection network is able to efficiently map
the frequency domain into a spatial domain in order to output
the position of the objects in the original image. Detection in a
JPEG compressed domain is also faced to the chrominance (Cr

and Cb component) sub-sampling that is usually performed,
that may lead to a resolution change when compared to the
luminance component (Y component).

Our preliminary work [5] demonstrates that object detection
in JPEG images is feasible. By taking advantage of the
DCT blocks representation of the image to reduce the overall
computation cost, we were able to speed up the inference
stage by a factor of 2, at the cost of a reduced accuracy, 45%
lower than the detection performances of the RGB-based archi-
tectures. Furthermore, the sub-sampled chrominance problem
aforementioned was not addressed.

The present work shows that not only object detection in the
compressed domain is achievable, but also that very close de-
tection performance to those of RGB-based architectures can
be reached, still with a significant speed up gain. Additionally,
we investigate the use of the sole Y channel as input of the
proposed detection networks, the benefit being the reduction of
the required bandwidth. We empirically demonstrate that using
only the Y channel is enough to reach an accuracy equivalent
to the one of networks relying on Y CbCr.

To reach these goals, we train several backbone classifica-
tion networks designed to account for the specificity of the
JPEG norm. With regard to the detection task, we incorporate
these networks within a SSD [6], and evaluate the overall de-
signed detector on two common detection benchmarks, Pascal
VOC [1] and MS-COCO [2]. Finally, as a side contribution,
we provide with a thorough analysis of the learned classifica-
tion networks, in view of usage on restricted computational
resources. We evaluate the classification networks on the
ImageNet [7] dataset and show that networks that may be
highly preferment when evaluated with powerful GPUs may
behave poorly in more constrained settings.

https://github.com/D3lt4lph4/jpeg_deep
https://github.com/D3lt4lph4/jpeg_deep


To summarise, our contributions are threefold:
• We show that detection in the compressed domain can

nearly reach detection performance of the RGB domain,
and highlight its interest in embedded conditions. This is
achieved by embedding adapted classification networks
in a detection architecture such as the SDD [6].

• We provide a thorough evaluation of several detection
models (backbone + SSD) in the compressed domain on
two public datasets, namely Pascal VOC and MS-COCO.

• And finally, we experimentally show that using only the
luminance is enough for detection, effectively reducing
the need for bandwidth.

The rest of the paper is as follows: Section II goes over the
existing literature and Section III presents the JPEG norm. The
proposed approach and architectures are detailed in Section
IV. Section V present the obtained results and discusses on
the strength and limitation of compressed JPEG inputs.

II. RELATED WORKS

This article focuses on object detection in embedded con-
ditions. Section II-A gives related works to object detection
in RGB images, while section II-B details existing literature
on the usage of the compressed representation of data coupled
with deep learning.

A. Object detection

Object detection aims at detecting multiple objects within
an image. This is generally achieved by finding the coordinates
of bounding boxes around objects in the images. Methods for
object detection are broadly based on RBG inputs and rely
on two main deep architectures: two-stage detectors and one-
stage detectors. The former networks are based on a region
proposal stage followed by a box classification stage while
the latter architectures use anchor-boxes and predict a set of
pre-defined boxes as object or background.

Two-stage detectors were introduced with R-CNN [8], using
Selective Search [9] as region proposal. Further, R-CNN
was improved in Fast R-CNN [10] with feature computation
sharing and in Faster R-CNN [11] with a Region Proposal
Network. Optimising object detection and object segmentation
simultaneously, Mask R-CNN [12] yielded another level of
performance improvement. Trying to reduce the number of
close multiple detection of the same object, Cascade R-CNN
[13], proposes a cascaded detection pipeline using increasing
Intersection over Union (IoU) thresholds to select the positive
examples used for training. CBNet [14], the current top-1
ranking approach in the MS-COCO detection challenge [2]
is built on Mask R-CNN and uses cascaded classification
backbone networks to improve the accuracy of the detector.

One-stage detectors were popularised by YOLO [15] and
SSD [6]. While originally suffering a lower accuracy than
SSD, YOLO was successively improved [16], [17] through
anchor-boxes K-means selection, multi-label object class pre-
diction or prediction across scales. RetinaNet [18] proposed
the focal loss to alleviate the background imbalance problem
for one-shot detectors. Using a unified module prediction

and connection between low and high prediction layers,
[19] further improved the accuracy of single stage detectors.
RepPoints [20], gets rid of the rectangular anchor boxes
through point prediction. Using a bi-directional feature pyra-
mid network to share information between the different scales,
EfficientDet is currently the best performing one-stage detector
on the MS-COCO dataset, behind CBNet [14].

While two-stage detectors tend to be more accurate, one-
stage detectors provide faster inference time. Because we focus
on settings with limited computational resource, we opt for
one-stage detectors. Of particular note, many methods were
proposed to speed up the inference stage of RGB-based archi-
tectures without harming the detection performances [21] [22]
[23]. The approach we propose rather takes another viewpoint
as it aims at improving the network’s inference speed by
considering light-weight input Y CbCr or Y . Although out of
the scope of this paper, the combination of our approach with
the aforementioned methods could be of interest.

B. Deep-Learning on compressed images/videos

Using compressed images has been explored in the past for
various computer vision tasks. Many applications estimating
flows from videos take advantage of the compression format
as the encoded data often include displacement information in
order to reduce the size of the videos by exploiting temporal
redundancy. Wang et al. [24] proposed an architecture for
object detection within compressed videos. They use motion
vectors and residuals to infer objects through time, while only
partially decoding the compressed video flux. Wu et al. [25]
also proposed to exploit encoded motion vectors and residuals
to improve both accuracy and inference speed for a task of
action recognition in videos. Taking an other approach, [26]
detects action by first generating an optical flow from motion
vectors and residuals and then using it to classify the action.
We shall mention that, while not coupled with deep learning,
motion vectors and/or DCT coded frames were leveraged on
to count vehicles [4] or to estimate the vehicles’ speed and
density on highways [27].

Besides videos, compressed representations were consid-
ered for image classification, segmentation or detection tasks.
Gueguen et al. [28] investigated different network architectures
for JPEG image classification. They reached state-of-the-art
classification performance while speeding-up the prediction
pass, even for their architectures requiring more FLOPs than
their RGB counterparts. The gain for such architectures mainly
stem from the reduced data transfer between CPU and GPU
due to the image compression. In [29], image segmentation
using JPEG compressed images is proposed. The methods
adapts a RGB network by removing the down-sampling blocks
to match the shape of the DCT inputs. The authors show im-
pressive results almost reaching the RGB baseline with similar
level of FLOPs. Finally, relying on JPEG2000 compression
norm, Lahiru et al. [30] showed results matching the RGB
baseline as well as speed improvements for classification. To
do so, they stack sub bands of half decoded images and feed
them to a modified neural network.



III. JPEG NORM

JPEG encoding is a lossy compression algorithm. It relies
on the human eye sensibility to chroma components in an
image. JPEG norm exploits the sparsity of the DCT (Discrete
Cosine Transform) representation of an image to carry the
compression.

The whole JPEG compression/decompression pipeline is
described in figure 1. The compression procedure is as follows:
first the RGB image is converted to the Y CbCr domain. The
human eye being less sensitive to the Cb and Cr components,
this allows for easy compression by subsampling (usually
1/2). Then a blockwise DCT (of size 8x8 pixels) followed by
a quantization is applied. The compressed image is attained
using the RLE/Huffman entropy coding.

As shown in figure 1, up until the entropy coding, the pro-
cessed data is similar to an image in shape, and, for two images
of the same size, the compressed representation will have the
same size. Because quantization and Huffman compression are
subject to variations depending on the compression level, we
choose to use the de-quantized DCT coefficients as input to
the models we propose (see figure 1, bottom).

Fig. 1: JPEG CODEC pipeline. Top: obtained representation
through the encoding steps, Middle: encoding steps, Bottom:
decoding steps; the faded boxes show the unused steps. Y is
represented in gray, Cb in dark green and Cr in faded pink.

IV. PROPOSED APPROACH

A. Detection in the frequency domain

Our goal is to design an object detection network starting
from compressed JPEG images. The main challenge lies in
classifying and localising an object using frequency domain
information, namely the DCT block coefficients of the in-
tended image. Indeed, contrary to RGB images, the spatial
information relative to the objects may be impeded by the
DCT transform. We lay our proposal on SSD [6] which was
originally designed to work on RGB inputs. SSD is based on
a multi-scale box prediction, each of the successive feature
maps are designed to predict boxes of different sizes. In order
for the SSD to work with JPEG compressed inputs, we need
to modify it. As shown in Figure 2, due to the blockwise DCT,

R
G

B

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6

D
C

T

3

w

h

w/8

h/8

64 64
w/16

h/16

/2 /2 /2 /2

64

/2

Cb Cr

Y

Fig. 2: Principle of the DCT-based object detector. The grids
at the bottom right represent the predicted boxes by the
network. The further we advance in the network, the bigger the
predicted boxes. Depending on the setup, Y CbCr or only Y
inputs are fed to the networks. For clarity, not all the prediction
layers are shown.

Y inputs to the network are downsized by 8 and the number of
channel is augmented to 64 when compared with the original
RGB image. Furthermore, due to the down-sampling on the
chrominance components, we can see the Cb and Cr inputs
further downsized by a factor of two. Hence, the first blocks of
the genuine SSD are skipped (or replaced by blocks without
down-sampling).

B. Design of the backbones, Y CbCr input and Y input

As aforementioned, the JPEG compression algorithm re-
quires to design carefully the detection network. Indeed, the Cb

and Cr components are down-sampled, which leads to input
matrices smaller by a factor of two for these components. As
a result, the smallest predicted boxes are not provided with
the chromatic information. This is illustrated in Figure 2. To
fix this, we propose to use a deconvolution layer to scale up
the Cb and Cr components to use them in combination with
the Y component.

Because of the change in resolution induced by the JPEG
compression algorithm, we make the hypothesis that all the
components may not be useful. Intuitively, as the sub-sampling
operation is carried before the blockwise DCT, the Cb and
Cr 8 × 8 blocks are actually a sparse representation of an
equivalent four Y 8×8 blocks. Hence, the learning algorithm
has to deal with both sparsity and resolution problems when
the Cb and Cr inputs are concatenated with the main part
of the networks, potentially impeding the training. We thus
propose to test a variation of the networks that only uses the
Y component as input.

C. Proposed architectures

We now detail all of the tested architectures. Originally, the
SSD was built on top of a VGG classification network. Besides
modified VGGs for frequency domain, we also investigate
ResNet50 based classification backbones as such networks
have provided impressive results in terms of accuracy and
inference speed for JPEG image classification [28]. The fea-
tures of these detection architectures are summarised in table



I. Notice that the networks using the sole Y channel are not
detailed as they are simplified instances of the Y CbCr-based
networks.

We start by reviewing the RGB architectures in IV-C1. Then
in IV-C2 we detail the architectures using the compressed
inputs that do not use deconvolution layers. And we finish
with the deconvolution architectures in IV-C3.

1) RGB baselines: For each of the backbones, we compare
our results with the RGB based architecture. For the VGG
based SSD, we use the original architecture [6]. In order to use
the ResNet50 as backbone, few modifications must be applied
to the original SSD. Originally, part of the SSD convolutional
layers, the fc6 and fc7 layers (c.f Table I), were designed to
use the VGG dense layers’ weights. As the ResNet50 does not
contains such layers, we need to modify the SSD architecture
to correctly incorporate the ResNet50 backbone. We remove
all the original SSD layers up to (including) the fc7 layer
and replace them with the ResNet50 ones (except for the
last classification layer). This way, as for the VGG, only the
weights from the classification layer are not pre-loaded into
the SSD.

2) Y CbCr DCT methods: We present the DCT architec-
tures that do not account for the discrepancies between the
Y and Cb,Cr components. Hence, for all the architectures of
this subsection, the smallest boxes only rely on the Y input for
predictions (c.f Figure 2). The VGG-based architecture, SSD
DCT, is directly re-implemented from [5]. For the ResNet50-
based architectures, we select two classification networks,
Late-Concat-RFA (LC-RFA) and Late-Concat-RFA-Thinner,
which have shown good precision/accuracy ratios as evidenced
in [28]. RFA stands for Receptive Field Aware. The LC-RFA
architectures imitate the original ResNet50 receptive field by
removing the downsizing carried by some of the ResNet50
convolution layers. LC-RFA-Thinner is a lighter, hence faster,
variant of LC-RFA.

a) SSD DCT: This method is based on the original SSD,
the first three convolution blocks are removed and the Y and
Cb,Cr inputs are respectively plugged in the fourth and fifth
block. Due to the hard pruning of the first blocks, this is one
of the fastest detection architecture proposed.

b) SSD LC-RFA: We integrate the LC-RFA classification
network in the same way as the ResNet50 SSD RGB version.
This architecture does not prune away the first convolution
blocks, instead, the downsizing operations are removed by
changing the stride of the convolutions from 2 to 1 when
required. It is worth noticing that we had to modify part
the original architecture from [28] as the one given by the
authors lead to channel incompatibility on some of the layers.
Specifically, we replace the last two CB4 blocks along the Y
and Cb, Cr axis with CB3 blocks.

c) SSD LC-RFA-Thinner: It is a lighter version of SSD
LC-RFA with a reduced number of layers [28]. This approach
increases detection speed while keeping fairly good accuracy.
Modifications in the number of channels is as follows: along
the Y axis, channels from the three first CB blocks are set from

{1024, 512, 512} to {384, 384, 768} and along the Cb, Cr

axis, the channels of the CB block set from {512} to {256}.
3) Y CbCr DCT Deconvolution methods: We use deconvo-

lution methods to align the size of the down-sampled Cb, Cr

to the one of Y . The related architectures are given below.
a) SSD DCT-Deconv: It is based on a VGG where the

first three blocks are skipped. The Cb and Cr inputs first go
through a deconvolution layer each and are concatenated with
the Y component. Then a Batch Normalization is applied and
outputs the input of the fourth block. The rest of the network
follows the original SSD.

b) SSD Deconvolution-RFA: It is based on ResNet50. We
test using the deconvolution module proposed in [28]. Contrary
to SSD DCT-Deconv, the first blocks are not skipped, instead
the stride of the first convolutions is changed from 2 to 1 when
required. This architecture is mostly equivalent in speed and
accuracy to the LC-RFA network for classification purpose.

V. EXPERIMENTS AND RESULTS

Experiments were conducted to evaluate the investigated
detection networks. As a preliminary, we first implement and
train the classification networks ResNet50, VGG, LC-RFA
and their variants (see Section IV-C) using JPEG images
(namely their block DCT parameters). For this, we use the
Imagenet2012 training set [31]. The learned DCT-based net-
works are then evaluated on the validation set.

As for detection, we train and evaluate on two datasets,
Pascal VOC and MS-COCO. All reported results on Pascal
VOC are the models evaluation on 2007 test set. For the MS-
COCO dataset, we use the standard train-validation-test sets.

A. Implementation details

a) Classification: We train the classification networks us-
ing a distributed environment and follow the recommendations
from [32]. The models were trained using horovod on 4 nodes
amounting to a total of 8 GPUs. Default training parameters
were used for VGG and ResNet as described in [33], [34].
For data-augmentation, we rescale the images so that the
smallest side is 256 pixels, we randomly crop a 224x224 patch
and then randomly apply horizontal flip. The learning rate is
decayed by 10 whenever the validation loss plateaued. While
the original articles apply weight decay on the loss, due to
framework limitation, we use a per layer one. We found out
later that in this setting, the weight decay should actually be
reduced by a factor of 2. Given that we get results close to the
authors’ baselines for the RGB networks, we keep the setting.
The trained classification networks served as backbone for the
detection networks.

We evaluate the number of Frames Per Seconds (FPS)
that can be processed for each of the networks. We use
a NVIDIA GTX 1080, set the batch size to 8 and do 10
runs of 200 predictions. The final FPS value is the average
over the runs. FPS from other papers (when provided by the
authors) are are not directly reported as they used different
GPU implementations.



TABLE I: Features of the proposed networks. A * indicates that the layer is used for boxes prediction. The lines are arbitrary
and do not represent the shape of the layers. Note that LC-RFA-thinner is skipped as it is a variation of the LC-RFA model.

SSD [6] SSD DCT [5] SSD DCT-deconv SSD ResNet SSD LC-RFA SSD Deconvolution-RFA
(reference: SSD) (reference: SSD) (reference: SSD) (reference: SSD ResNet) (reference SSD ResNet)

RGB (300,300,3) Y (38,38,64) Cb, Cr (19,19,128) Y (38,38,64) Cb, Cr (19,19,128) RGB (300,300,3) Y (38,38,64) Cb, Cr (19,19,128) Y (38,38,64) Cb, Cr (19,19,128)
C11, C12
P1 C(64,7,2)
C21, C22 BN, R Deconv(28, 28, 128)
P2 M(3,2) Concat(39,39,192) - - - -
C31, C32, C33 Deconv(38,38,128) CB2(s=1) BN,CB4(k=1,s=1) CB4(k=1,s=1)
P3 BN, C(256,3,1) Concat(38,38,192) - - - - IB, IB IB(k=2), IB IB(k=2), IB
C41, C42, C*

43 C41, C42, C*
43 BN, C41, C42, C*

43 CB3 CB3 ←
P4 P4 BN P4 IB, IB, IB* IB, IB, IB*

Concat - - - - CB4 BN, CB4(k=1, s=1)
C51, C52, C53 ← ← CB4 Concat - - - -
P5 IB, IB, IB, IB, IB ←
fc6, fc7 CB5(s=1), IB, IB, C61
C61, C*

62 C*
62

C71 ←
C*

72
C81, C*

82
C91, C*

92

Legend
RGB RGB pixel input Deconv Deconvolution with 64 output channels, fil-

ter size 2, stride 2. Separate deconvolution
layers are applied to Cb and to Cr, resulting
in 128 total output channels

Y Y channel DCT input BN BatchNormalization
Cb, Cr Cb and Cr channel DCT input R Relu
Cij J-th convolution layer of the I-th block in

the original SSD architecture
CBn ConvBlock stage n, with number of chan-

nels as in original ResNet-50 paper, kernel
size = 3 and stride = 2 unless specified
otherwise.

Pi Pooling layer of the I-th block in the original
SSD architecture

IB IdentityBlock, with number of channels
matched to preceding CB layer (as in
ResNet-50)

C Convolution(channels, filter size, stride) M MaxPooling(pool size, stride)
Concat Channel wise concatenation ← Layers after this point are the same as

reference
- - - - Channel is being concatenated * Layer is used for boxes prediction

b) Detection: The SSD-based detection networks were
trained on a single GPU. The networks were initialised using
the weights from the corresponding classification networks.

For the VGG based SSD, we follow [6] and convert the
dense classification layers into convolutional layers. When
converting the VGG’s dense layers weights to fit the convo-
lution layers from the SSD, we use a pre-set sub-sampling of
0:4:4096 to extract 1024 channels from the original 4096.

For the PASCAL VOC, we train on two different sets,
the original 2007 training/validation and the 2007+2012 train-
ing/validation. They are respectively denoted as 07 and 07+12
in the result tables. For the MS-COCO, we use the provided
training/validation datasets.

We evaluate the FPS of each detection network using the
same parameters as for classification. When evaluating the
speed of the networks we find the Non-Maximum Suppression
to be the limiting factor. For some of the architectures, this
led to a sub-optimal usage of the GPU’s capacities, especially
for the VGG-DCT based networks. To account for this, we
report two speed evaluations: i) with one model instantiated
on the GPU, and ii) with two models instantiated on the GPU.
We stopped at two instances as the models were saturating the
capacities of the GPU.

B. Evaluation of the classification networks

We rescale the smallest size of the images to 256 and keep
the proportions. We feed them to the networks and average the
predictions through a Global Average Pooling layer whenever
required. For each of the networks, we also retrain on RGB
images to set a baseline given our data-augmentation. Results

on the ImageNet validation dataset are reported in Table II
and the Accuracy vs FPS is shown in Figure 3.

a) Training with Y CbCr DCT inputs: We first retrain all
the architecture presented in [28], namely LC-RFA, LC-RFA-
Thinner and Deconvolution-RFA, and get accuracy results that
are about 1∼2 % lower that the original ones. We attribute
these differences to small changes in the evaluation method
as well as some possible differences in hyper-parameters as
they were not fully disclosed. The main difference concerns
the FPS of the networks, we do not reproduce the same speed
improvements between the RGB and DCT architectures. The
main gains are obtained for the LC-RFA-Thinner architecture
when compared with RGB with a ×1.2 (×1.77 in [28]) speed
improvement, at equivalent accuracy. We believe these differ-
ences are due to the different GPU used for the evaluation. Our
testing GPU does not process the images at a rate sufficient to
take advantage of the reduce data transfer between CPU and
GPU entailed by the compressed inputs.

We retrain the VGG-DCT presented in [5] with our training
pipeline and show improvements of 41% on the error (23.5
points) while showing the same speed-up at ×2.1 (vs ×2 for
[28]) when compared with RGB networks. The Deconvolution
version of this network performs a bit better with an accuracy
of 65.9 and improves the FPS by ×2.2 when compared with
RGB VGG.

If we compare the VGG based networks with the ResNet50
based ones, we can see that the VGG networks are about a 50%
faster but increase the error by 9 points (34%). We attribute
these differences to the hard pruning done on the first layers
of the RGB architecture.



b) Training with only Y DCT input: The related clas-
sification networks are respectively denoted as VGG-DCT
Y, LC-RFA Y and LC-RFA-Thinner Y. The obtained results
lead to the following remarks: the accuracy slightly decreases
while the networks’ speed increases. The smallest decrease is
for the LC-RFA Y architecture with 3.1% drop in accuracy
while the biggest is for the VGG-DCT Y network with a
decrease of 4.4%. This seems to be consistent with the fact
that ResNet50 classifier is more accurate than the VGG. The
speed improvements, ranging from 6 to 30 FPS, are due to the
reduction in computation entailed by only using the Y input.
While FPS gain may be negligible when comparing with the
loss in accuracy, the reduced bandwidth due to the usage of
the Y component only makes such architecture attractive in
case of limited computation resources.

TABLE II: Classification results on ImageNet. The top panel
refers to RGB-based networks, the second one corresponds
to DCT-based architectures. The two last panels refer to our
implementations. In bold are the best results of our trainings.

Network top-1 accuracy top-5 accuracy FPS
State of the Art:
VGG [33] 73.0 91.2 N/A
VGG-DCT [5] 42.0 66.9 N/A
Resnet50 [28] 75.78 92.65 N/A
LC-RFA (DCT) [28] 75.92 92.81 N/A
LC-RFA-thinner (DCT) [28] 75.39 92.57 N/A
Deconvolution-RFA (DCT) [28] 76.06 92.02 N/A
our trainings (VGG based):
VGG 71.9 90.8 267
VGG-DCT 65.5 86.4 553
VGG-DCT Y 62.6 84.6 583
VGG-DCT Deconvolution 65.9 13.3 571
our trainings (ResNet50 based):
Resnet50 74.73 92.33 324
LC-RFA (DCT) 74.82 92.58 318
LC-RFA Y (DCT) 73.25 91.40 329
LC-RFA-Thinner (DCT) 74.62 92.33 389
LC-RFA-Thinner Y (DCT) 72.48 91.04 395
Deconvolution-RFA (DCT) 74.55 92.39 313

C. Detection

We train the detection networks using the classification
networks discussed previously. For fairness of comparison, we
also retrain the RGB networks with our trained classification
networks. The results for the PASCAL VOC evaluation are
reported in table III and the MS-COCO results are reported in
table V. We evaluate the speed of inference on the networks
trained on the 07+12 PASCAL VOC dataset. Accuracy vs
Speed is detailed in figure 4 and the speed results are shown
in table IV.

a) Comparison of the two RGB backbones: Except when
training on the Pascal VOC 2007 set, we manage to reproduce
the detection results for the SSD300 architecture. Regarding
the ResNet50 based architecture, it performs worse than origi-
nal SSD300 on the Pascal VOC dataset but performs better on
the MS-COCO dataset. These results seem to indicate that the
ResNet50 based architecture has a better convergence when
provided with enough data. For both of the networks, FPS are
mostly comparable.

150 200 250 300 350 400 450 500 550 600
FPS

60.0

62.5

65.0

67.5

70.0

72.5

75.0

77.5

80.0

Ac
cu

ra
cy VGG

ResNet50

VGG-DCT
VGG-DCT Deconvolution*

VGG-DCT Y*

LC-RFA

LC-RFA-Y*
LC-RFA-thinner

LC-RFA-Y-thinner*

Deconvolution-RFA

RGB Networks
VGG based DCT networks
Resnet based DCT networks

Fig. 3: Accuracy vs FPS for the classification networks. The
starred networks are the ones presented in this paper.

TABLE III: Detection results on the PASCAL VOC 2007 test
set, 07 is for trained on 2007 data and 07+12 means trained on
2007+2012 data. The last two panels report the performances
of our trained networks. In bold are the best results of our
trainings.

Network mAP (07) mAP (07+12) FPS
SoT:
SSD300 [6] 68.0 74.3 N/A
SSD300 DCT [5] 39.2 47.8 N/A
our trainings (VGG based):
SSD300 65.0 74.0 102
SSD300 DCT 48.9 60.0 262
SSD300 DCT Y 50.7 59.8 278
SSD300 DCT Deconvolution 38.4 53.5 282
our trainings (ResNet50 based):
SSD300-Resnet50 (retrained) 61.3 73.1 108
SSD300 DCT LC-RFA 61.7 70.7 110
SSD300 DCT LC-RFA Y 62.1 71.0 109
SSD300 DCT LC-RFA-Thinner 58.5 67.5 176
SSD300 DCT LC-RFA-Thinner Y 60.6 70.2 174
SSD300 DCT Deconvolution-RFA 54.7 68.8 104

TABLE IV: Speed inference of the tested detection networks.
The tests were performed on a GTX 1080, ”1 inst.” means
that only one instance of the model was loaded on the GPU
for testing, ”2 inst.” means that two instances of the model
were loaded on the GPU.

Network FPS (1 inst.) FPS (2 inst.)

V
G

G

SSD300 88 102
SSD300 DCT 136 262
SSD300 DCT Y 140 278
SSD300 DCT Deconvolution 144 282

R
es

N
et

50

SSD300-Resnet50 88 108
SSD300 DCT LC-RFA 87 110
SSD300 DCT LC-RFA Y 91 109
SSD300 DCT LC-RFA-Thinner 98 176
SSD300 DCT LC-RFA-Thinner Y 101 174
SSD300 DCT Deconvolution-RFA 87 104



TABLE V: Detection results on MS-COCO test-dev set. In bold are the best results of our trainings.

Network Avg. Precision, IoU: Avg. Precision, Area: Avg. Recall, #Dets: Avg. Recall, Area:
0.5:0.95 0.5 0.75 S M L 1 10 100 S M L

SSD300 [6] 23.2 41.2 23.4 5.3 23.2 39.6 22.5 33.2 35.3 9.6 37.6 56.5

V
G

G
SSD300 (our training) 24.5 42.4 25.2 7.8 25.3 38.0 23.0 34.0 35.7 12.3 38.1 54.4
SSD300 DCT 14.3 27.0 13.7 2.1 12.1 26.2 15.8 22.4 23.4 3.4 21.1 42.5
SSD300 DCT Y 14.4 27.0 14.0 2.1 12.0 26.5 15.8 22.2 23.3 3.5 20.8 42.3
SSD300 DCT Deconvolution 13.5 26.0 12.6 2.5 11.3 23.8 15.3 21.9 23.1 4.5 21.1 39.6

R
es

N
et

50

SSD300 Resnet50 26.8 43.8 28.3 6.2 28.2 45.2 24.6 35.6 37.1 10.0 40.4 60.0
SSD300 DCT LC-RFA 25.8 42.4 27.1 5.1 27.0 44.4 23.9 34.2 35.6 8.0 38.8 59.0
SSD300 DCT LC-RFA-Y 25.2 41.6 26.5 5.2 25.7 43.7 23.6 33.7 35.0 8.1 37.4 58.2
SSD300 DCT LC-RFA-Thinner 25.4 41.8 26.9 4.7 26.3 44.6 23.7 33.8 35.1 7.2 38.0 59.4
SSD300 DCT LC-RFA-Thinner-Y 24.6 40.6 25.8 4.7 24.8 43.4 23.1 32.8 34.1 7.2 36.3 57.6
SSD300 DCT Deconvolution-RFA 25.9 42.5 27.2 5.4 26.7 44.4 24.0 34.5 36.0 8.5 39.0 59.4

0 50 100 150 200 250 300 350
FPS

50

55

60

65

70

75

80

85

m
AP

SSD300

SSD-DCT

SSD-DCT-Deconv*

SSD-DCT-Y*

SSD300-Resnet*
SSD-LCRFA*

SSD-LCRFA-Y*

SSD-LCRFA-Thinner*
SSD-LCRFA-Y-Thinner*

SSD-Deconv-RFA*

RGB Networks
VGG based DCT networks
Resnet based DCT networks

Fig. 4: mAP vs FPS for the detection networks. Networks with
a star at the end of their names are the one presented in this
paper.

b) Training with Y CbCr DCT inputs: We detail all the
architectures using the full compressed inputs, namely SSD300
DCT, SSD300 DCT LC-RFA and SSD300 DCT LC-RFA-
Thinner. Deconvolution approaches are treated in the next
section. For SSD300 DCT, we largely improve the results
when compared with [5]. We relate these improvements to a
better trained backbone and to the incorporation of the dense
layers as pre-trained convolutional layers. On the Pascal VOC
07+12 dataset we reach 60.0 mAP and are 14.0 points behind
the RGB method (18.9% decrease). On the MS-COCO dataset,
we lose 10.1 points when compared with the RGB method but
this time it represents a 42.2% decrease. As could be expected,
the hard pruning of the network is a limitation factor on more
complex dataset such as MS-COCO.

Regarding the ResNet50 based methods, SSD300 DCT
LC-RFA and SSD300 DCT LC-RFA-Thinner outperform the
VGG-based network by a large margin on the two datasets.
They even outperform the original SSD on MS-COCO dataset.
While this might be expected as the classification backbones
used provide similar accuracy performances, the gap is sharper
for detection. When comparing the SSD300 DCT LC-RFA
with the SSD300 DCT LC-RFA-Thinner, we see that the
second approach is 3 points behind the first on the Pascal

VOC datasets and about the same accuracy on MS-COCO.
The main advantage of the SSD300 DCT LC-RFA-Thinner is
the number of FPS it can process, ×1.63 more images than
the SSD300 DCT LC-RFA while maintaining an equivalent
accuracy.

c) Influence of the Deconvolution on detection perfor-
mance: While the deconvolution networks tend to perform
better for classification we can see more mitigated results
for detection. For the networks trained on the Pascal 2007
data only, we have a mAP of 38.4 for the VGG based
network and 54.7 for the ResNet50 based one. They are
respectively 12.3 points and 7.4 points lower than the mAP
of the best performing DCT networks at equivalent speed
(same backbone type, i.e VGG or ResNet). While the gap is
reduced for the network trained on the 07+12 data, they still
lag behind. However for the MS-COCO dataset the SSD300
Deconvolution-RFA is the best performing of all the DCT
based architectures. Moreover, when looking at results by size
of area (Small, Medium or Large), we can see that both of
the deconvolution architectures improve the accuracy for small
objects. Overall, it seems that when provided with a enough
data, the network will reach accuracy level equivalent to the
non-deconvolution networks.

The SSD300 DCT Deconvolution is the fastest of all the
detectors with a speed of 282 FPS but with the worst overall
accuracy. The SSD300 Deconvolution-RFA as a speed equiv-
alent to the RGB networks while not performing better than
the SSD300 Resnet50.

d) Evaluation of the detection networks using only the
Y input: On the Pascal VOC dataset, we get similar mAP in
comparison with the networks using the full Y CbCr input. The
reverse holds for the MS-COCO dataset, where performances
using only the Y input tend to be lower than their full input
counter-parts (1 point below). Yet, it appears that the Cb and
Cr components are not critical to correctly detect objects
within images. Moreover, networks for detection using only
the Y component have equivalent or higher speed than the
networks using the Y CbCr inputs and require less bandwidth.
The SSD300 DCT LC-RFA-Thinner Y network is ×1.70 faster
(with 2 instances, ×1.15 when using only one instance of the
network) than the original SSD while being only 3.8 point less
accurate on the Pascal VOC dataset and more accurate on the
MS-COCO dataset. The SSD300 DCT Y is even faster with
a ×2.72 speed improvement (with 2 instances, ×1.59 when



using only one instance) but at the cost of 14.2 points drop
in the mAP for the Pascal VOC dataset and 10.1 points for
MS-COCO dataset.

e) On the speed of the networks: The FPS ratio the
networks can process were computed either with one instance
or with two instances of the model on one GPU. While
this may seem anecdotal, we see that all the DCT network
scale effortlessly when using 2 instances. The results for the
network using compressed inputs indicates that they could be
deployed on GPUs half as powerful as the one we used for
the experiments and maintain the FPS obtained during the
tests with 1 instance of the networks. This is not true for
the RGB based network, which were already almost using all
the computation capabilities of the GPU with only one model
instantiated and thus would face important loss in regard to the
FPS if deployed on GPUs half as powerful. This means that the
presented architectures using the compressed inputs are good
matches for usage in limited resources environment or on small
remote computation devices. By combining our approach with
other methods such as MobileNet [22] or TinySSD [21] we
expect to even better fit such conditions.

VI. CONCLUSION

In this paper, we investigate object detection in JPEG com-
pressed images. We devise several deep architectures based
on the SSD detection network framework. The architectures
we explore differ in the classification backbones the rely on.
Experimental evaluations evidence that they are not all equal
for detection performance. When using ResNet50 as backbone
we witness a slight performance drop of 5.5% and 5.3% on the
Pascal VOC and MS-COCO datasets respectively in compar-
ison to the best RGB network. Furthermore, we demonstrate
an effective speed up of ×1.7 when using compressed input.
Also, we demonstrate that using only the Y input leads to
detection performances similar to those of networks using the
Y CbCr input. The benefit is the reduced bandwidth for image
transfer. These findings are promising and may prove useful
for the deployment of large real-time monitoring application.

ACKNOWLEDGMENT

This research is supported by ANRT and ACTEMIUM Paris
Transport. We thank ACTEMIUM Paris Transport the funding.
We thank CRIANN for the GPU computation facilities.

REFERENCES

[1] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zis-
serman. The pascal visual object classes (voc) challenge. International
Journal of Computer Vision, 88(2):303–338, June 2010.

[2] T-Y Lin, M Maire, S J. Belongie, L D. Bourdev, R B. Girshick, J Hays,
P Perona, D Ramanan, P Dollár, and C. Lawrence Zitnick. Microsoft
COCO: common objects in context. CoRR, abs/1405.0312, 2014.

[3] T Ide, T Katsuki, T Morimura, and R Morris. City-wide traffic
flow estimation from a limited number of low-quality cameras. IEEE
Transactions on Intelligent Transportation Systems, pages 1–10, 08
2016.

[4] Z Wang, X Liu, J Feng, J Yang, and H Xi. Compressed-domain highway
vehicle counting by spatial and temporal regression. IEEE Transactions
on Circuits and Systems for Video Technology, PP:1–1, 10 2017.

[5] B Deguerre, C Chatelain, and G Gasso. Fast object detection in
compressed JPEG images. CoRR, abs/1904.08408, 2019.

[6] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C.-Y. Fu, and
A. C. Berg. SSD: single shot multibox detector. CoRR, abs/1512.02325,
2015.

[7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet:
A Large-Scale Hierarchical Image Database. In CVPR09, 2009.

[8] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature
hierarchies for accurate object detection and semantic segmentation.
CoRR, abs/1311.2524, 2013.

[9] J.R.R. Uijlings, K.E.A. van de Sande, T. Gevers, and A.W.M. Smeul-
ders. Selective search for object recognition. International Journal of
Computer Vision, 2013.

[10] R. B. Girshick. Fast R-CNN. CoRR, abs/1504.08083, 2015.
[11] S. Ren, K. He, R. B. Girshick, and J. Sun. Faster R-CNN: towards

real-time object detection with region proposal networks. CoRR,
abs/1506.01497, 2015.

[12] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick. Mask R-CNN. CoRR,
abs/1703.06870, 2017.

[13] Z Cai and N Vasconcelos. Cascade R-CNN: high quality object detection
and instance segmentation. CoRR, abs/1906.09756, 2019.

[14] Y Liu, Y Wang, S Wang, T Liang, Q Zhao, Z Tang, and H Ling. Cbnet:
A novel composite backbone network architecture for object detection.
ArXiv, abs/1909.03625, 2019.

[15] J. Redmon, S. Kumar Divvala, R. B. Girshick, and A. Farhadi. You only
look once: Unified, real-time object detection. CoRR, abs/1506.02640,
2015.

[16] J. Redmon and A. Farhadi. YOLO9000: better, faster, stronger. CoRR,
abs/1612.08242, 2016.

[17] J. Redmon and A. Farhadi. Yolov3: An incremental improvement.
CoRR, abs/1804.02767, 2018.

[18] T-Y Lin, P Goyal, R B. Girshick, K He, and P Dollár. Focal loss for
dense object detection. CoRR, abs/1708.02002, 2017.

[19] K Lee, J Choi, J Jeong, and N Kwak. Residual features and unified
prediction network for single stage detection. 07 2017.

[20] Z Yang, S Liu, H Hu, L Wang, and S Lin. Reppoints: Point set
representation for object detection. CoRR, abs/1904.11490, 2019.

[21] A. Wong, M. Javad Shafiee, F. Li, and B. Chwyl. Tiny SSD: A tiny
single-shot detection deep convolutional neural network for real-time
embedded object detection. CoRR, abs/1802.06488, 2018.

[22] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam. Mobilenets: Efficient convolutional neural
networks for mobile vision applications. CoRR, abs/1704.04861, 2017.

[23] M Tan, R Pang, and Q V. Le. Efficientdet: Scalable and efficient object
detection. ArXiv, abs/1911.09070, 2019.

[24] S Wang, H Lu, P A. Dmitriev, and Z Deng. Fast object detection in
compressed video. CoRR, abs/1811.11057, 2018.

[25] C-Y Wu, M Zaheer, H Hu, R. Manmatha, A J. Smola, and P Krähenbühl.
Compressed video action recognition. CoRR, abs/1712.00636, 2017.

[26] Z Shou, Z Yan, Y Kalantidis, L Sevilla-Lara, M Rohrbach, X Lin, and
S-F Chang. Dmc-net: Generating discriminative motion cues for fast
compressed video action recognition. CoRR, abs/1901.03460, 2019.

[27] X-D Yu, L-Y Duan, and Q Tian. Highway traffic information extraction
from skycam mpeg video. pages 37 – 42, 02 2002.

[28] L. Gueguen, A. Sergeev, B. Kadlec, R. Liu, and J. Yosinski. Faster neural
networks straight from jpeg. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in
Neural Information Processing Systems 31, pages 3933–3944. Curran
Associates, Inc., 2018.

[29] S-Y Lo and H-M Hang. Exploring semantic segmentation on the DCT
representation. CoRR, abs/1907.10015, 2019.

[30] L D. Chamain and Z Ding. Faster and accurate classification for
jpeg2000 compressed images in networked applications. ArXiv,
abs/1909.05638, 2019.

[31] O Russakovsky, J Deng, H Su, J Krause, S Satheesh, S Ma, Z Huang,
A Karpathy, A Khosla, M Bernstein, A C. Berg, and L Fei-Fei. ImageNet
Large Scale Visual Recognition Challenge. IJCV, 115(3):211–252, 2015.

[32] P Goyal, P Dollár, R B. Girshick, P Noordhuis, L Wesolowski, A Kyrola,
A Tulloch, Y Jia, and K He. Accurate, large minibatch SGD: training
imagenet in 1 hour. CoRR, abs/1706.02677, 2017.

[33] K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition. In ICLR, 2015.

[34] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In 2016 IEEE CVPR, pages 770–778, June 2016.


	Introduction
	Related works
	Object detection
	Deep-Learning on compressed images/videos

	JPEG Norm
	Proposed approach
	Detection in the frequency domain
	Design of the backbones, YCbCr input and Y input
	Proposed architectures
	RGB baselines
	YCbCr DCT methods
	YCbCr DCT Deconvolution methods


	Experiments and results
	Implementation details
	Evaluation of the classification networks
	Detection

	Conclusion
	References

