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Abstract. Dynamic link prediction is a critical task in the analysis of
evolving networks, with applications ranging from recommender systems
to economic exchanges. However, the concept of the temporal recep-
tive field, which refers to the temporal context that models use for
making predictions, has been largely overlooked and insufficiently an-
alyzed in existing research. In this study, we present a comprehensive
analysis of the temporal receptive field in dynamic graph learning. By
examining multiple datasets and models, we formalize the role of tem-
poral receptive field and highlight their crucial influence on predictive
accuracy. Our results demonstrate that appropriately chosen temporal
receptive field can significantly enhance model performance, while for
some models, overly large windows may introduce noise and reduce ac-
curacy. We conduct extensive benchmarking to validate our findings,
ensuring that all experiments are fully reproducible. Code is available at
https://github.com/ykrmm /Benchmark TW.

Keywords: Dynamic Link Prediction - GNNs - Evaluation .

1 Introduction

Dynamic graphs play an essential role in modeling evolving interactions between
entities across various domains, from social networks to computational biology
[6,10]. The task of link prediction on such graphs is essential, with numerous
applications including forecasting user behavior in recommendation systems, pre-
dicting financial transactions, and identifying potential collaborations in academia.
Dynamic graphs in these domains are often represented as either a sequence of
static graphs captured at regular intervals, referred to as Discrete Time Dynamic
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Graphs (DTDG) [25,31], or as Continuous Time Dynamic Graphs (CTDG) which
capture interactions as they occur over continuous time [21,23,27,30].

Models that operate on Discrete Time Dynamic Graphs (DTDGs) usually
employ a combination of Message-Passing Graph Neural Networks (MP-GNNs)
to capture spatial dependencies and Recurrent Neural Networks (RNNs) to
capture temporal dependencies [33,18,24,3]. By capturing the evolution of graph
structures over time and integrating this dynamic information, these models
predict future links with greater accuracy and robustness, addressing the inherent
complexities of evolving networks.

However, real-world dynamic graph data come in diverse forms and span
different numbers of snapshots. The critical factor is the "length" of dependencies
to consider in terms of the number of time steps. This variability poses significant
challenges for modeling and prediction, as the number of relevant snapshots can
greatly affect the performance of predictive models [15,37,2].

Some models propose to use a temporal window as a hyper-parameter to
address this issue [15]. As illustrated in fig. 1, a temporal window defines the span
of past data considered for making predictions. Results have shown that in certain
cases, a large temporal window can introduce noise and degrade performance.
For example, some models like TADDY [15] or Todyformer [2] demonstrate
that excessive temporal data can lead to overfitting or irrelevant information
overshadowing crucial patterns.

Beyond these marginal hyper-parameter searches in a limited number of
models [15], there is a notable lack of a comprehensive analysis on the impact of
the temporal window across the wide range of datasets used by the "learning
on dynamic graphs" community. This gap calls for a systematic evaluation
to understand how different temporal contexts affect dynamic link prediction
performance.

In this work, we conduct a comprehensive analysis of the impact of the
temporal receptive field on dynamic link prediction performance. We evaluate
multiple Discrete Time Dynamic Graph Neural Networks (DTDGNNSs) across
diverse datasets, examining how different temporal receptive fields influence
predictive accuracy. Our contributions are as follows:

— Temporal receptive field analysis: We formalize the concept of temporal
receptive fields in dynamic graph learning and examine their influence on
predictive accuracy and model performance across various scenarios.

— Model and dataset evaluation:: By comparing the performance of multiple
DTDGNNSs on a diverse set of datasets, we identify specific contexts in which
different temporal window lengths optimize model performance. This analysis
provides insights into which datasets benefit most from dynamic information
and guides the selection of optimal temporal receptive field.

— Benchmarking and reproducibility: We conduct extensive benchmarking
by running various DTDG models across multiple datasets. All the experi-
ments in this work are fully reproducible. We provide full access to the code,
models, configuration files, and datasets. Our resources ensure that other
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researchers can easily integrate new datasets and models, facilitating rapid
evaluation of the need for temporal context in dynamic link prediction.

2 Context and related work

This section reviews a few key concepts relevant to the dynamic link prediction
task with discrete time dynamic graph neural networks.

2.1 Discrete Time Dynamic Graph Link Prediction

A Discrete Time Dynamic Graph (DTDG) can be viewed as a sequence of static
graphs (called snapshots) as shown in Equation 1 and Figure 1 (a). Each snapshot
G is represented by a set of nodes V! and a set of edges E!, with optional X
or X! representing node or edge attributes [25,35]. Nt = |V!| and M? = ||
indicate respectively the numbers of nodes and edges in snapshot G?.

DTDG = (G',G?,...,GT) (1)
(a) Temporal Receptive Field
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Fig. 1: (a) Dynamic Link Prediction task on a Discrete Time Dynamic Graph:
In this figure, the model takes snapshots from ¢y to t4 as input and predicts the
existence of edges at time t5. The number of time steps in which the model can
capture information is called the size of the receptive field, denoted as 7.

(b) When predicting, for example at t5, the encoder of the model computes node
representation vectors based on the input.

(c) For each edge to be predicted, the decoder of the model computes the relevant
node representations to obtain the probability of the existence of the edge. The
figure shows the edge between the green and yellow nodes at time ¢5 as an
example.
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The dynamic link prediction task aims to predict the existence of an edge
elt} between two nodes u and v at time ¢ + 1 using past information from a
time-window of size 7 {G'~7", ..., G'}. A model learns to represent nodes and/or
edges with the first T},qin snapshots of the DTDG. Then, for each snapshot G*
in the subsequent Ti.s; time steps, the model predicts the probability of the

existence of the edges in the future time step ¢ + 1.

2.2 Discrete Time Dynamic Graph Neural Networks

To address DTDG tasks such as Dynamic Link Prediction, encoder-decoder
structures are widely used in Discrete Time Dynamic Graph Neural Networks
(DTDGNNSs) [14,3,11]. The encoder transforms input signals such as attributes
and structure of the graph into latent representations. This process is also known
as representation learning. The node representations are denoted as Zf € RY ’ xd
where d represents the size of the vector, as shown in figure 1 (b). Edges can
be encoded in the same way [22,32]. The decoder, coming after the encoder
in a neural network, computes latent representations to obtain predictions for
downstream tasks [8], as shown in figure 1 (c).

To handle both temporal and structural information, the DTDG encoder
typically combines static graph encoders fg(-) with temporal encoders fr(-)
[31]. Graph encoders commonly rely on Graph Neural Networks (GNN) [29],
Random Walk-based methods [7], or Graph Transformers [16] for propagating
node representations and capturing structural information within a snapshot.
Temporal encoders typically leverage Recurrent Neural Networks (RNN) [9],
Temporal Convolutional Networks (TCN) [17], or Transformers [26] for capturing
temporal patterns among multiple time steps.

From the perspective of how to encode information across multiple snapshots,
DTDGNNSs fall into two main paradigms: Sequentially Encoding Hidden states
and Sequentially Encoding Model Parameters, denoted as Enc(H) and Enc(©)
respectively, as shown in figure 2.

The Enc(H) paradigm uses the graph encoder fg(+) to encode each snapshot
as a static graph, and then uses the temporal encoder fr(-) to encode temporal
information across snapshots, as shown in equation 2. The two modules can be
combined in either a stacked or integrated structure. In stacked structures, fg and
fr layers are stacked one or several times. For example, DySAT [24] successively
uses structural self-attention [26] and temporal self-attention to encode graph
and temporal information; STGCN [34] uses stacked (TCN, GNN, TCN) layers
as the basic module and repeats it several times.

Enc(H) with integrated structure takes another approach by incorporating
fa(+) into fr(-). Given that fr(-) has linear projection [9] or convolution modules
[17] to handle the node features, this approach aggregates neighboring features
by replacing these modules with fg(-). Typical models include GC-LSTM |[3]
replacing the linear layer in LSTM [9] with GCN [12].
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Fig.2: Two categories of Discrete Time Dynamic Graph Neural Networks (DT-
DGNNGS). Left: Sequentially encoding the hidden states H of each snapshot across
time with a temporal encoder f7(-). Right: Sequentially encoding the parameters
© of the graph encoder fg(-) across time with a temporal encoder fr(-).

H" = fo(AF B, kel[t—r+1,14 (2)
Ht+1 — fT(H/t—T+1:t)

Another paradigm Enc(®) lets the parameters of fo(+) keep evolving. This
paradigm uses fr(-) to encode the parameters of fo(-) across snapshots, allowing
each snapshot to be encoded in a more adaptive way. EvolveGCN (EGCN) [1§]
suggests dynamically updating the GCN [12] weight parameters. As shown in
equation 3, the graph encoder parameters @?C;l in each snapshot are predicted
by a temporal encoder.

Ol = f1(O), H') H™ = f(A"H'; 0 (3)

The diverse model architectures demonstrate how existing research incorpo-
rates temporal contexts when extending static graph encoders to dynamic graphs.
This opens up possibilities for various tasks and applications of DTDG.

3 Temporal Receptive Field in Dynamic Graph
Representation Learning

Capturing temporal patterns plays an important role in Dynamic Graph Rep-
resentation Learning. Toward better temporal encoding, existing research has
primarily focused on structural optimizations of fr(-), such as incorporating
attention mechanisms [24] or gating mechanisms [14,34]. However, there has been
limited discussion of the temporal receptive field of DTDGs.

We introduce the concept of the temporal receptive field. The temporal
receptive field refers to the temporal information or contexts in the data that
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a model can capture and use when processing sequential data [28,20]. Different
neural network architectures handle temporal contexts in various ways.
Recurrent Neural Networks (RNN) [9,4] process sequential data through a
recursive structure, where the output of each time step depends not only on the
current input but also on the hidden state from the previous time step. Due to
this recursive nature, each step connects to the entire time steps in the given
input, theoretically making its temporal receptive field encompass all input time
steps. Practically, vanilla RNNs are trained using the Backpropagation Through
Time algorithm that unfolds the network, making it deeper and subject to the
vanishing gradient issue [19]. Therefore, the unfolded network is generally limited
to a reduced number of time steps, thus limiting their temporal receptive field.
LSTM and GRUs partially compensate for this limitation by adding an explicit
memory cell in their units, but can still suffer from the vanishing gradient.
Among non-RNN structures, common temporal encoders include Temporal
Convolutional Networks (TCNs) and Transformers. TCNs apply causal con-
volution [17] along time steps to process sequential data. Transformers utilize
self-attention mechanisms [26] to process sequential data, allowing each input
position to interact with all other positions in the sequence. The size of their
receptive field 7 is explicitly determined by model hyper-parameters.
Intuitively, a larger temporal receptive field contains richer past information
for the model to capture. However, in practice, RNNs suffer from the problem
of vanishing or exploding gradients [19]. More complex RNN models such as
LSTM and GRU also have problems with the effectiveness of memory over long
sequences [1,36]. Empirically, some models indicate that incorporating more time
steps in dynamic graphs does not necessarily yield better performance [15,2].
To our knowledge, the influence of the temporal receptive field size on model
performance on DTDGs remains an unexplored area. Many analyses of the tem-
poral receptive field of the inputs/outputs in DTDGs focus on hyper-parameter
search [15,11,5,37], highlighting the necessity of this research. This emphasizes
the importance of a benchmark in this field to investigate how much temporal
context is necessary to perform effectively on dynamic link prediction tasks, and
extend to generalized DTDG representation learning.

4 Experiments

The dynamic link prediction task is often modeled as a binary classification
problem, where truly existing edges labeled as 1 and non-existent edges labeled as
0[18,3,11,24]. As a standard practice, existing studies use the "negative sampling"
method when evaluating model performance [18]. This method samples M**!
non-existent edges and mixes in M**! truly existing edges at ¢ + 1 to formulate a
balanced binary classification task. The average precision is therefore widely used
to evaluate the performance of the model. This is also the case in our experiments.

The goal of these experiments is to address the following questions: (1) How
does the temporal receptive field influence results in dynamic link prediction
(section 4.2) ? (2) Which datasets require the broadest temporal receptive field



Temporal receptive field analysis 7

(section 4.3) ? (3) What is each model’s capacity to capture dynamic information
(section 4.4) 7 Additionally, these experiments provide a rigorous benchmarking
of several models across a wide range of datasets used by the dynamic graph
learning community. At the end of this experimental section, we also discuss
the implications of the results for DTDGNN models and suggest future research
directions (section 4.5).

4.1 Baselines and Datasets

Table 1: Statistics of datasets used in our experiments.

Datasets ‘ Domains Nodes Links Snapshots Duration
CanParl Politics 734 74,478 14 14 years
USLegis Politics 225 60,396 12 12 congresses
Trade Economics 255 507,497 32 32 years
UNVote Politics 201 1,035,742 72 72 years
UCI-Message | Social 1,899 59,835 88 196 days
AS733 Router 6,628 13,512 30 86 days
Enron Mail 184 790 11 3 years
Colab Citations 315 943 10 9 years
Bitcoin-OTC | Trust Networks 5,881 35,592 136 5 years
Bitcoin-Alpha | Trust Networks 3,783 24,186 136 5 years

To answer these questions, we selected ten discrete dynamic graph datasets
(table 1) commonly used by the dynamic graph learning community [18,24,21].
These graphs are diverse, ranging from social networks to economic and political
networks. The datasets CanParl, USLegis, Trade, and UNVote are sourced from
the dynamic link prediction evaluation paper [21]. The UCI-Message, AS733,
Bitcoin OTC, and Bitcoin Alpha datasets were used by the EGCN model [18]
and are also part of the Stanford database [13]. We also included the Enron
email dataset and the scientific collaboration dataset Colab from [13]. An initial
observation is the disparity in the lifespan of these DTDGs, ranging from a few
days for the AS733 router network to almost a century for the UNVote dataset.
We provide more details of each dataset in section B of the appendix.

4.2 Enhancing dynamic link prediction with an optimal temporal
receptive field

This subsection and results address the question: (1)How does the temporal
receptive field influence results in dynamic link prediction? Our first results in
fig. 3 demonstrate that adapting the temporal receptive field 7 can significantly
enhance model performance. The first part of the table is the score of models
using all the temporal information, with a temporal receptive field of 7,. This is
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Fig. 3: Model performance in average precision, with an optimal temporal receptive
field 7* vs. all temporal information 7.

the standard implementation of existing DTDGNNs models [24,34,18,3]. To find
the optimal value of 7, we conducted a parameter search within a range from 1 to
the number of snapshots. The results for the optimal 7 are shown in the second
part of the table 7*. The optimal 7 value is indicated in parentheses following
the AP score. Using the optimal temporal receptive field 7* generally improves
performance compared to using all temporal information 7. For instance, EGCN
shows an average gain of +3.40 points in AP, while GCLSTM improves by
+3.24 points, DySat +1.80, Edgebank +1.92 and 0.58 for STGCN. These
findings highlight the importance of selecting an appropriate 7 tailored to the
models and the dataset’s characteristics.

For most datasets, using the optimal temporal receptive field 7* leads to
marked improvements in performance compared to using all temporal information
Teo- This indicates that carefully selecting a temporal window size can enhance
predictive accuracy significantly. We present more detailed results in table 4 of
section A of the appendix.

4.3 Analysis of temporal receptive field size and dataset
characteristics

This subsection addresses the question (2): Which datasets require the broadest
temporal receptive field? In the table 2, we show that for some datasets, using the
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7| Datasets |EGCN [18] DySat [24] GCLSTM [3] STGCN [34] EdgeBank [21]

CanParl  [89.70 79.44 70.47 90.64 54.48
USLegis  [90.02 88.36 84.42 90.95 57.75
Trade 91.95 92.78 90.15 92.62 65.94
UCI-Message [54.33 77.04 87.22 82.14 76.28
UNVote [84.76 81.60 80.75 86.49 61.17

- AS733 97.17 94.88 90.86 86.66 97.21
o Enron 91.58 91.84 91.26 83.73 79.35
Colab 90.69 90.20 89.99 77.68 77.02
Bitcoin-OTC |89.04 92.23 92.65 81.29 52.18
Bitcoin-Alpha|76.19 81.10 65.91 70.72 57.43
CanParl [90.56 73.02 53.03 90.65 51.37
USLegis  |90.74 83.94 73.33 90.25 73.46
Trade 92.12 93.07 90.76 92.70 82.42
UCI-Message |84.85 66.91 85.22 81.04 55.06
UNVote |86.96 83.93 74.43 87.89 97.30

" AS733 97.37 94.57 98.03 86.94 82.15
Enron 92.45 91.28 89.29 84.49 71.53

Colab 90.86 91.39 89.44 76.89 70.34
Bitcoin-OTC [89.99 60.32 87.55 79.99 50.08
Bitcoin-Alpha|73.51 54.78 81.70 67.00 51.33

Table 2: Average precision of DTDG models on multiple datasets using all
temporal information 7, vs using no dynamic information 7.

last snapshot alone (i.e 7 = 1) yields high predictive performance across all models.
For the UNVote dataset, most models also achieve better predictions without
using dynamic information. This is particularly notable with the non-parametric
EdgeBank baseline, where predicting the same links as in the previous time
step almost reaches perfect results. This can be explained by the nature of the
dataset. The UN Vote dataset documents roll-call votes conducted in the United
Nations General Assembly. Whenever two nations cast a "yes" vote for an item, a
link is established between them. Often, the policies of two countries are aligned
within a short time frame, so looking at the relationships from 70 years ago is not
particularly helpful. For the Trade dataset, we observe a similar phenomenon
for all models. The Trade dataset covers trade in food and agriculture products
between 181 nations over more than 30 years, with links reflecting the cumulative
sum of normalized import or export values. Short-term trading patterns are more
relevant, making older data less useful for predictions.

In contrast, for the Bitcoin-OTC and Bitcoin-Alpha datasets, users’ rep-
utations must be tracked over time to avoid fraudulent transactions, making
long-term interactions crucial. In the UCI-Message dataset, although the dura-
tion is only 196 days, social interactions and message exchanges evolve rapidly,
necessitating a broader temporal context to capture meaningful patterns and
trends.
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However, the table 2 also shows that performance does not solely depend on the
datasets but also on the model’s ability to capture long-term dynamic information.
For example, with EGCN, we observe that performance with a receptive field of
71 is almost always better. This leads us to the next subsection and the need to
analyze the different models in more depth.

4.4 Analysis of the models’ ability to capture dynamic information.

This subsection addresses the question 3: What is each model’s capacity to capture
dynamic information? To do so, we propose two analyses.

CanParl USLegis Trade UCI-Message UNVote
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Fig. 4: Average precision (AP) scores of various DTDG models across multiple
datasets, shown as a function of the temporal receptive field 7. A value of 74,
represents the use of all temporal information.

a.) Performance of models in link prediction with varying temporal
receptive fields 7 (fig. 4) The figure fig. 4 presents the average precision
scores of various DTDG models across multiple datasets as a function of the
temporal receptive field 7. For most datasets, the performance of the EGCIN
model remains relatively better with smaller value of 7, with a noticeable drop
for larger temporal receptive field in some cases, such as Trade and UNVote. This
suggests that EGCN is not able to capture long-term dynamic information. The
DySAT model shows more variability across datasets, but performs better with
larger temporal receptive field. For USLegis and UNVote, performance improves
a lot with larger temporal windows, indicating the ability of capturing dynamic
information.
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GCLSTM generally benefits from larger temporal receptive field, especially
in the UCI-Message dataset, in section 4.3 we underline the importance of long
temporal context in this dataset. STGCN is relatively stable as the temporal
receptive field increases. Except UNVote and Trade for the reason that we explain
in section 4.3, EdgeBank is better when it consider all temporal information.

b.) Correlation between the number of snapshots and the AP score in
dynamic link prediction (table 3) To evaluate the models’ ability to capture
long-term information, we calculated the correlation between the difference in
performance at 7o, and 77 and the number of snapshots. This correlation analysis
in table 3 reveals that models such as DySAT and STGCN exhibit a positive
correlation with the total number of snapshots, demonstrating their ability to
capture long-term temporal information. Conversely, EGCN and GCLSTM
show negative correlations, indicating a reduced capacity to leverage long-term
dynamic information effectively.

Model ‘Correlation with total number of snapshots
DySAT 0.85
EGCN -0.19
GCLSTM -0.43
STGCN 0.62
EdgeBank 0.09

Table 3: Correlation between the number of snapshot and the difference in model
performances (7o, — 71).

4.5 Discussion and future research direction

These results highlight the necessity of analyzing the real capacity of dynamic
graph learning models to capture temporal information. It is also essential to
carefully select datasets to determine if a dynamic model is truly needed for
future predictions. We demonstrated that several standard DTDGNNs models
in the dynamic community are not consistently better at capturing temporal
information compared to predicting solely from the previous snapshot (table 2).
We also observed a lack of robustness concerning the size of the temporal receptive
field (fig. 4) and the inability of some models to handle dynamic information over
long data sequences (table 3). Additionally, we found that a judicious choice of
an optimal temporal context can significantly improve the performance of certain
models (fig. 3). We encourage the dynamic graph learning community to assess
the true dynamic capability of models by integrating the proposed evaluations.
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5 Conclusion

In this work, we formalize the concept of the temporal receptive field and conduct
an in-depth evaluation of it in the task of link prediction on DTDGs. We revealed
the capacity of each model to capture dynamic information and pinpointed the
datasets that require a long temporal context. Our analyses showed that having
a very large temporal receptive field is surprisingly not synonymous with better
predictions, and sometimes, not considering past information leads to better
results.

Disclosure of Interests. All authors disclosed no relevant relationships.
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A Additional results

This table 4 presents additional results, showing the comparison of Average
Precision (AP) scores for various Dynamic Temporal Graph Neural Networks
(DTGNNs) across multiple datasets. The results compare using all available
temporal information 7., versus an optimal temporal receptive field 7*. The
average gains in AP scores for each model are also indicated.

7| Datasets |EGCN [18] DySat [24] GCLSTM [3] STGCN [34] EdgeBank [21]

CanParl  [89.70 79.44 70.47 90.64 54.48
USLegis  |90.02 88.36 84.42 90.95 57.75
Trade 91.95 92.78 90.15 92.62 65.94
UCI-Message |54.33 77.04 87.22 82.14 76.28
UNVote [84.76 81.60 80.75 86.49 61.17
. AS733 97.17 94.88 90.86 86.66 97.21
e Enron 91.58 91.84 91.26 83.73 79.35
Colab 90.69 90.20 89.99 77.68 77.02
Bitcoin-OTC |89.04 92.23 92.65 81.29 52.18
Bitcoin-Alpha|76.19 81.10 65.91 70.72 57.43
CanParl  [90.56 (1) 83.63 (10) 72.06 (6)  90.65 (1)  54.93 (3)
USLegis  [90.74 (5) 90.38 (9) 86.26 (2)  90.95(3)  73.46 (1)
Trade  [92.12 (6) 93.13(2) 91.02(9) 9272 (6)  82.42 (1)
UCI-Message [84.85 (1) 80.03 (9) 87.22 (c0)  82.15 (2) 76.28 (o0)
UNVote |86.96 (4) 88.71 (4) 84.57 (4)  90.42 (2)  97.30 (1)
.| AS7T33 |o7.37(1) 9507 (2) 98.03 (1)  8T.06(6)  97.21 ()
Enron  [92.45 (1) 91.84 (c0) 92.35 (5)  84.49 (1)  79.35 (7)
Colab  [91.01 (4) 91.39 (1) 90.19 (2)  78.25(7)  77.02 (7)
Bitcoin-OTC [89.99 (1)  92.23 (c0) 92.65 (c0)  81.29 (00)  52.18 (c0)
Bitcoin-Alpha|79.25 (2) 81.10 (co) 81.70 (1)  70.75 (2)  58.67 (8)

| Avggain | +340  +1.80  +3.24 +0.58 +1.92

Table 4: Comparison of Average recision (AP) scores for various DTGNNs across
multiple datasets, using all available temporal information 7., versus an optimal
temporal receptive field 7*. For 7*, we indicate in parentheses, the optimal value.

B Datasets

Here, we describe the datasets used in our experiments. These descriptions are
sourced from the Stanford SNAP database [13] as well as from the dynamic link
prediction evaluation paper [21].

— CanParl: Can. Parl. is a network that tracks how Canadian Members of
Parliament (MPs) interacted between 2006 and 2019. Each dot represents
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an MP, and a line connects them if they both said "yes" to a bill. The line’s
thickness shows how often one MP supported another with "yes" votes in a
year.

UsLegis: USLegis is a Senate co-sponsorship network that records how
lawmakers in the US Senate interact socially. The strength of each connection
indicates how many times two senators have jointly supported a bill during a
specific congressional session

Bitcoin-OTC: This is who-trusts-whom network of people who trade using
Bitcoin on a platform called Bitcoin OTC. Since Bitcoin users are anonymous,
there is a need to maintain a record of users’ reputation to prevent transactions
with fraudulent and risky users. Members of Bitcoin OTC rate other members
in a scale of -10 (total distrust) to +10 (total trust) in steps of 1. This is the
first explicit weighted signed directed network available for research [13].
Bitcoin-Alpha: This is who-trusts-whom network of people who trade
using Bitcoin on a platform called Bitcoin Alpha. Since Bitcoin users are
anonymous, there is a need to maintain a record of users’ reputation to
prevent transactions with fraudulent and risky users. Members of Bitcoin
Alpha rate other members in a scale of -10 (total distrust) to +10 (total
trust) in steps of 1. This is the first explicit weighted signed directed network
available for research [13].

Trade: UNTrade covers the trade in food and agriculture products between
181 nations over a span of more than 30 years. The weight assigned to each
link within this dataset reflects the cumulative sum of normalized import or
export values for agricultural goods exchanged between two specific countries.
UNVote: UNVote documents roll-call votes conducted in the United Nations
General Assembly. Whenever two nations cast a "yes" vote for an item, the
link’s weight connecting them is incremented by one.

Contact: Contact dataset provides insights into the evolving physical prox-
imity among approximately 700 university students over the course of a
month. Each student is uniquely identified, and links between them indicate
their close proximity. The weight assigned to each link reveals the degree of
physical proximity between the students

Enron: Enron consists of emails exchanged among 184 Enron employees.
Nodes represent employees, and edges indicate email interactions between
them. The dataset includes 10 snapshots and does not provide node or
edge-specific information

Colab: Colab represents an academic cooperation network, capturing the
collaborative efforts of 315 researchers from 2000 to 2009. In this network,
each node corresponds to an author, and an edge signifies a co-authorship
relationship.

UCI-Message: This dataset is comprised of private messages sent on an
online social network at the University of California, Irvine. Users could
search the network for others and then initiate conversation based on profile
information. An edge (u, v, t) means that user u sent a private message to
user v at time t. The dataset here is derived from the one hosted by Tore
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Opsahl, but we have parsed it so that it can be loaded directly into SNAP as
a temporal network [13].
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