Google Scholar, dblp
(preprint versions available on arXiv, HAL or ResearchGate)
-
F. Gonzalez, F-X Demoulin, S. Bernard, « Towards Long-Term Predictions of Turbulence using Neural Operators » accepted to the 14th International ERCOFTAC Symposium on Engineering Turbulence Modelling and Measurements, sept. 2023.
- F. Gonzalez, F-X Demoulin, S. Bernard, « Promoting Numerical Stability on Neural Surrogate Models of Turbulent Flows » accepted to the 18th European Turbulence Conference, sept. 2023.
- T. Mayet, S. Bernard, C. Chatelain, and R. Herault, « Domain Translation via Latent Space Mapping » accepted to the International Joint Conference on Neural Network, jun. 2023. preprint: arXiv:2212.03361. (pdf)
- H. Cao, S. Bernard, R. Sabourin, and L. Heutte, « A Novel Random Forest Dissimilarity Measure for Multi-View Learning » in International Conference on Pattern Recognition (ICPR), 2021. (pdf)
- S. Bernard, H. Cao, R. Sabourin, and L. Heutte, « Random forest for dissimilarity-based multi-view learning » in Handbook of Pattern Recognition and Computer Vision (HPRCV), 6th edition, World Scientific, p. 119-138, 2020. (pdf)
- H. Cao, S. Bernard, R. Sabourin, and L. Heutte, « Random forest dissimilarity based multi-view learning for radiomics applications » Pattern Recognition (PR), vol. 88, p. 185–197, 2019. (pdf)
- H. Cao, S. Bernard, L. Heutte, and R. Sabourin, « Dynamic voting in multi-view learning for radiomics applications » in Joint IAPR International Workshop on Structural, Syntactic, and Statistical Pattern Recognition (S+SSPR), p. 32–41, 2018. (pdf)
- H. Cao, S. Bernard, L. Heutte, and R. Sabourin, « Improve the performance of transfer learning without fine-tuning using dissimilarity-based multi-view learning for breast cancer histology images » in International Conference Image Analysis and Recognition (ICIAR), p. 779–787, 2018. (pdf)
- H. Cao, S. Bernard, L. Heutte, and R. Sabourin, « Pondération dynamique en apprentissage multi-vues pour des applications radiomics » in Conférence sur l’Apprentissage automatique (CAp), 2018. (pdf)
- H. Cao, S. Bernard, L. Heutte, and R. Sabourin, « Dissimilarity-based representation for radiomics applications » in International Conference on Pattern Recognition and Artificial Intelligence (ICPRAI), 2018. (pdf)
- S. Bernard, C. Chatelain, S. Adam, and R. Sabourin, « The multiclass roc front method for cost-sensitive classification » Pattern Recognition (PR), vol. 52, p. 46–60, 2016. (pdf)
- C. Dubos, S. Bernard, S. Adam, and R. Sabourin, « ROC-based cost-sensitive classification with a reject option » in International Conference on Pattern Recognition (ICPR), p. 3320–3325, 2016. (pdf)
- S. Bernard, C. Chatelain, S. Adam, and R. Sabourin, « Apprentissage multiclasse en environnement incertain » in 21ème rencontre de la Société Francophone de Classification (SFC), 2014. (pdf)
- C. Désir, S. Bernard, C. Petitjean, and L. Heutte, « One class random forests » Pattern Recognition (PR), vol. 46, iss. 12, p. 3490–3506, 2013. (pdf)
- S. Bernard, S. Adam, and L. Heutte, « Dynamic random forests » Pattern Recognition Letters (PRL), vol. 33, iss. 12, p. 1580–1586, 2012. (pdf)
- E. Vintrou, M. Soumaré, S. Bernard, A. Bégué, C. Baron, and D. Lo Seen, « Mapping fragmented agricultural systems in the sudano-sahelian environments of africa using random forest and ensemble metrics of coarse resolution modis imagery » Photogrammetric Engineering & Remote Sensing (PE&RS), vol. 78, iss. 8, p. 839–848, 2012.
- C. Désir, S. Bernard, C. Petitjean, and L. Heutte, « A new random forest method for one-class classification » in Joint IAPR International Workshop on Structural, Syntactic, and Statistical Pattern Recognition (S+SSPR), p. 282–290, 2012.
- C. Désir, S. Bernard, C. Petitjean, and L. Heutte, « A random forest based approach for one class classification in medical imaging » in 3rd MICCAI International Workshop on Machine Learning in Medical Imaging (MLMI), p. 250–257, 2012.
- S. Bernard, L. Heutte, and S. Adam, « A study of strength and correlation in random forests » in International Conference on Intelligent Computing (ICIC), p. 186–191, 2010. (pdf)
- S. Bernard, « Forêts aléatoires: de l’analyse des mécanismes de fonctionnement à la construction dynamique » PhD Thesis, 2009. (pdf)
- S. Bernard, L. Heutte, and S. Adam, « On the selection of decision trees in random forests » in International Joint Conference on Neural Networks (IJCNN), p. 302–307, 2009. (pdf)
- S. Bernard, L. Heutte, and S. Adam, « Influence of hyperparameters on random forest accuracy » in International Workshop on Multiple Classifier Systems (MCS), p. 171–180, 2009. (pdf)
- S. Bernard, L. Heutte, and S. Adam, « Towards a better understanding of random forests through the study of strength and correlation » in International Conference on Intelligent Computing (ICIC), p. 536–545, 2009.
- S. Bernard, L. Heutte, and S. Adam, « Une étude sur la paramétrisation des forêts aléatoires » in Conférence sur l’Apprentissage Automatique (CAp), p. 81–92, 2009.
- S. Bernard, L. Heutte, and S. Adam, « Forest-rk: a new random forest induction method » in International Conference on Intelligent Computing (ICIC), p. 430–437, 2008.
- S. Bernard, L. Heutte, and S. Adam, « Etude de l’influence des paramètres sur les performances des forêts aléatoires » in Colloque International Francophone sur l’Ecrit et le Document (CIFED), p. 207–208, 2008.
- L. Heutte, S. Bernard, S. Adam, and É. Oliveira « De la selection d’arbres de décision dans les forêts aléatoires » in Colloque International Francophone sur l’Ecrit et le Document (CIFED), p. 163-168, 2008.
- S. Bernard, S. Adam, and L. Heutte, « Using random forests for handwritten digit recognition » in International Conference on Document Analysis and Recognition (ICDAR), p. 1043–1047, 2007. (pdf)