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ABSTRACT

With the recent advances in the field of computer vision, Con-
volutional Neural Networks (CNNs) are widely used in organ
segmentation of computed tomography (CT) images. Based
on the Dense V-net model, this paper proposes a simplified
version with postprocessing methods to help reduce the frag-
ments in organ segmentation results. Comparing with the
baseline method that uses a sharpmask model with condi-
tional random field (SM+CRF), our model improves the Dice
ratio of Esophagus, Heart, Trachea, and Aorta by 10%, 4%,
7%, and 6%, respectively.

Index Terms— Convolutional Neural Networks, CT Seg-
mentation, Dense V-net

1. INTRODUCTION

Organ segmentation of CT images is of great importance
in medical diagnosis. The identification and localization of
organs are the daily work of the radiologist. Since CT im-
ages are complex and three-dimensional(3D), distinguishing
organs manually is a difficult and tedious task. Therefore,
segmentation using deep learning methods automatically
have received a great deal of attention in medical imaging re-
search. In the field of 3D medical image segmentation, there
are two main methods. The first is to segment each slice inde-
pendently, e.g., using the U-net model [1]]. The other is to use
the 3D convolution to aggregate inter-slice information and to
segment all slices of the CT image at once, e.g., V-net [2] is
one of the 3D convolutional network models for this purpose.
Gibson et al. [3] integrated the two-dimensional segmenta-
tion model of Dense net [4] into V-net and proposed a Dense
V-net architecture for multiple organ segmentation. Overall,
single slice segmentation methods cannot utilize inter-layer
dependencies for better results but are computationally more
efficient. All slice 3D segmentation can aggregate all layers
for better accuracy but is more expensive to compute.

In this paper, we present our multi-organ segmentation so-
lution used in the SegTHOR challenge hosted at the ISBI’19
conference. Observing that the training data is relatively
small and easy to overfit deep convolutional neural nets, we
simplify the Dense V-net model to achieve better results with

the testing data. Our postprocessing method further reduces
fragments in the prediction mask. The overall improvement
over the SM+CRF baseline model [5] is between 4 to 10
percent over different organs.

2. OUR MODEL
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Fig. 1. Simplified Dense V-net model

The structure of our proposed model is shown in Fig. [I]
Comparing with the original Dense V-net model, there are two
main differences. First, the input size is different. The input
size of the original model is 1443. The number of partial data
slices in our data is less than 144, so we set the input size to
1283. Second, the spatial prior block is discarded.

The encoder block of the segmentation network generates
three sets of feature maps of different sizes. The decoder
block upsamples the smaller feature maps so the output mask
is of the same size as the input image. The output layer gen-
erates the segmentation mask with the probability vector of
different segmentation classes at each pixel.

3. IMPLEMENTATION

This section discusses various optimization techniques to re-
duce the Dice loss and to minimize the Hausdorff distance.

3.1. Data preprocessing

Preprocessing is part of our fully automated organ segmenta-
tion method. By analyzing the training data provided, we find
the following issues.



First, the dataset is small and is quite easy to overfit our
deep neural networks. Second, for a single CT slice, the pro-
portion of pixels of various organs is quite different. Fig.
shows the imbalance of different organs at different slices.
Last, considering the relative position of the machine and the
person while scanning, the CT images can be scaled and ro-
tated. Based on these observations, we apply the following
techniques.
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Fig. 2. Background and organ volume proportion in training
data.

3.1.1. Patch sampling

We ensure that each class is sampled with the same probabil-
ity. According to the slice range of the test dataset, the sample
block size is set to 1282,

3.1.2. Data augmentation

During the training stage, we randomly rotate pictures (within
-10°—10°) and randomly scale pictures (-10 %—10 % range).
We implement the data augmentation on the Niftynet frame-
work [[6]. The data augmentation method used in the training
stage will not affect the structure of the Dense V-net.

3.2. Postprocessing

By comparing the prediction result with the ground truth la-
bel, we find the following issues.

In the training data organs are all connected, but organs
are not connected in the predicted results. Some areas of the
CT image are not smooth, Fig[3] There are multiple organ
inclusions in the same slice, which does not actually exist.
In the prediction result, the organ is connected but there are
background noise inside.

For the first question above, we experimented with the
following methods.

The CT image is sliced along three dimensions respec-
tively, then count the number of connected blocks of each
organ. For each dimension and each organ, the largest con-
nected block is retained, and the other parts are considered
background noise and therefore removed. Experiments show
that our method achieves obvious increase; see Algorithm E}
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Fig. 3. The 119th and 120th slices of patient 30 in the la-
beled data and prediction result. We can see that the heart
disappears at the 120th slice in the labeled data. The sudden
disappearing of an organ often leads to incorrect predictions.

FigH] shows the predict results with the removal of discon-
nected blocks. The CT image is sliced along the depth direc-
tion, for each layer, 52 average filtering is used, which seri-
ously affects the segmentation results of small sample organs
like Esophagus and Trachea, and has little effect on multi-
sample organs as Heart and Aorta. The enlargement of the
organs for each class within each layer has little effect on the
segmentation.

3.3. DicePlusXEnt loss function

The loss functions commonly used in segmentation are Cross-
Entropy loss and Dice loss. The Cross-Entropy loss exam-
ines each pixel separately, and compares the prediction results
with one-hot encoded target vector. It does not consider the
imbalance of different segmentation classes, and can lead to
poor prediction results with the minority classes. Imbalanced
classes are very common in medical image segmentation. The
Dice loss is essentially a measurement of the overlap between
the predicted mask and the ground truth mask, calculated as
follows [[7]] :
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where K is the set of segmentation classes, [ is the entire
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Algorithm 1 Axis-based denoise method
Input: The result from model, 7,;
Output: Remove noise block prediction result, Q,,,;
1: for all axis; of T}, do
2:  for all slice; of the axis; do
3 for all category;, of T, do
4: Sets slice[—1] and slice[mazx + 1] to —1;
5 if The current slice contain the category; and the
previous slice does not contain category; then

6: The current slice index is added to blockIn;

7: end if

8: if The current slice contain the category; and the

next layer does not contain categoryy, then

9: The current slice index is added to blockOut;
10: end if
11: end for
12:  end for

13:  The blockIn corresponds to the blockOut element one
by one, each set of them represents a continuous block,
the data difference represents the contiguous block
length, the contiguous block of the maximum length
is reserved, and the other continuous blocks in @,,, are
set as the background class;

14: end for

15: return @,,;

image, and u¥, v¥ are the predicted and ground truth value

of class k at pixel i, respectively. Dice loss is more suitable
for sample’s extremely imbalance situation, but in our expe-
rience, using the Dice loss alone will adversely affect back
propagation, making training extremely unstable.

We use DicePlusXEnt loss [§]], which is the sum of the
Cross-Entropy loss and the Dice loss, as follows:

ltotal = ldice + lCE (2)

This loss function will improve the sample imbalance to a
certain extent and improve the stability of network training.

Due to the imbalance of the samples, we set the weight of
the Cross-Entropy loss in DicePlusXEnt: w(Background)=1,
w(Heart)=2, w(Trachea)=3, w(Aorta)=4, w(Esophagus)
=5.

4. EXPERIMENTS

Our experiment is conducted on the SegTHOR dataset [3].
Niftynet is used in our model training, which is implemented
by Tensorflow. Based on the preprocessed data, the Dense
V-net network is trained and then fine-tuned with different
parameter configurations.

The activation function used in the network is Leaky
ReLU. The batch size is four. We use the Adam optimizer
with an initial learning rate of 0.01. If the loss value does

Fig. 4. From top to bottom, main view and the left view of
the true label, the predicted result, the 3D denoise. The small
fragments are significantly reduced.

Algorithm 2 Training model
Input: The training data, X and label, Y';The fusion model
numbers, N;The learning rate list, L;
Output: Segmentation result, R;
1: for all n; in range(N) do
2: foralll; € Ldo
3 while loss does decrease in 500 iterations do
4: Forward and backward;
5: end while
6
7

end for
Save the model with the lowest validation set loss dur-
ing this iteration;
8: end for
9: Fusion saved models, get R,,;;
10: R < Axis-based denoise(R,;);
11: return R;




Table 1. Performance of different methods

‘ Dice ‘ Hausdorff

Methods ‘ Esophagus Heart Trachea Aorta ‘ Esophagus Heart Trachea Aorta
Dense V-net (resize sampling) 0.588862  0.906035 0.772924 0.780659 | 1.531403  0.598427 1.783999 0.997311
Dense V-net (balanced sampling) 0.746470  0.937633 0.875301 0.914082 | 1.153503  0.221647 1.726525 0.402991
Dense V-net (balanced sampling and average filter) 0.490914  0.914966 0.589199 0.840300 | 3.246483  0.292705 2.417643 1.066558
Dense V-net (balanced sampling and organ enlargement) | 0.486919  0.913697 0.575745 0.841042 | 4.128935 0.817668 5.587061 1.581914
7 Dense V-net fusion 0.763881  0.940254 0.883234 0.915550 | 0.771958  0.188203 0.597479 0.308775
7 Dense V-net fusion (1D denoise) 0.763973  0.940255 0.885504 0.915673 | 0.766507  0.188183 0.330171 0.295968
7 Dense V-net fusion (3D denoise) 0.765423  0.940225 0.885614 0.915954 | 0.661974  0.188183 0.325847 0.258024
7 Dense V-net fusion (3D denoise and weighted loss) 0.773450  0.941403 0.892730 0.923325 | 0.640093  0.182138 0.307711 0.235788

* This Dense V-net is simplified Dense V-net.

not decrease after 500 iterations, then the learning rate de-
creases by ten-fold, up to 0.0001. When the learning rate is
0.0001 and after 500 iterations if the loss does not change,
the learning rate is reset to 0.1. This process is repeated seven
times, and the model with the lowest validation loss during
the training process is selected for comparison. In addition,
we pick the parameters of the minimum loss of the validation
set in each training cycle, seven models in total, and fuse the
results together for comparison [9]]; see Algorithm[2] Table/[T]
shows the results with different settings.

Overall, the fusion results are much better than the single-
model prediction. Denoise in postprocessing further improves
the accuracy. Heart and Aorta have much better segmentation
results than Esophagus and Trachea.

5. CONCLUSION

Based on the analysis of the training data, we simplified
Dense V-net to perform multi-organ segmentation effectively.
We use a variety of optimization techniques such as multi-
scale prediction, data augmentation, and data postprocessing
to improve the stability and performance of the model. Com-
paring to the baseline model of SM+CRF [5]], the Dice rate
of organ segmentation is improved up to 10%. After our
optimization, there is still room for improvement for small
organs, and delineation algorithms could help to refine organ
boundaries.
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