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Abstract

In this article, we present a complete automated system for spotting a particular

slice in a complete 3D Computed Tomography exam (CT scan). Our approach

does not require any assumptions on which part of the patient’s body is cov-

ered by the scan. It relies on an original machine learning regression approach.

Our models are learned using the transfer learning trick by exploiting deep ar-

chitectures that have been pre-trained on imageNet database, and therefore it

requires very little annotation for its training. The whole pipeline consists of

three steps : i) conversion of the CT scans into Maximum Intensity Projection

(MIP) images, ii) prediction from a Convolutional Neural Network (CNN) ap-

plied in a sliding window fashion over the MIP image, and iii) robust analysis

of the prediction sequence to predict the height of the desired slice within the

whole CT scan. Our approach is applied to the detection of the third lumbar

vertebra (L3) slice that has been found to be representative to the whole body

composition. Our system is evaluated on a database collected in our clinical

center, containing 642 CT scans from different patients. We obtained an aver-

age localization error of 1.91 ± 2.69 slices (less than 5 mm) in an average time

of less than 2.5 seconds/CT scan, allowing integration of the proposed system

into daily clinical routines.
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1. Introduction

In recent years, there has been an increasing interest in the analysis of

body composition for estimating patient outcomes in many pathologies. For

instance, sarcopenia (loss of muscle), visceral and subcutaneous obesity are

known prognostic factors in cancers [MBM+13, YDM+15], cardiovascular dis-

eases [AWM+14] and surgical procedures [PVT+11, KOF+13]. Body composi-

tion can also be used to improve individual nutritional care and chemotherapy

dose calculation [GLC+13, LKTM+14]. It is usually assessed by CT and Mag-

netic Resonance Imaging (MRI). Moreover, It has been shown that the compo-

sition of the third lumbar vertebra (L3) slice is a good estimator of the whole

body measurements [MBH+98, SPW+04]. To assess the patient’s body com-

position, radiologists usually have to manually find the corresponding L3 slice

in the whole CT exam (spotting step, see Figure 1), and then to segment the

fat and muscle on a dedicated software platform (segmentation step). These

two operations take more than 5 minutes for an experienced radiologist and are

prone to errors. Therefore, there is a need for automating these two tasks.

The segmentation step has been extensively addressed in the literature among

the medical imaging community [PXP00, MT96]. Dedicated approaches for L3

slice have been been proposed such as atlas based methods [CCB+09] or deep

learning [LHC+15]. On the other hand, to the best of our knowledge, the

automatic spotting of a specific slice within the whole CT scan has not been

investigated in the literature. The spotting task is particularly challenging since

it has to handle:

• The intrinsic variability in the patient’s anatomy (genders, ages, mor-

phologies or medical states).

2



• The various acquisition/reconstruction protocols (low/high X-rays dose,

slice thickness, reconstruction filtering, enhanced/non enhanced contrast

agent).

• The arbitrary field-of-view scans, displaying various anatomical regions.

• The strong similarities between the L3 slice and other slices, due to the

repetitive nature of vertebrae (Fig.2).

L3 slice

Figure 1: Finding the L3 slice within a whole CT scan.

In the literature, spotting tasks are often achieved using ad hoc approaches

such as registration which are not suitable for high variability problems [GZH14,

CWJ+15]. In particular, a 3D registration on a whole CT scan would require a

large amount of computation at decision time [SEM16]. Here, we suggest a more

generic strategy based on machine learning in order to handle high variability

context, while maintaining a fast decision process.

In this work, spotting a slice within a CT scan is tackled as a regression prob-

lem, where we try to estimate the slice position height. An efficient processing

flow is proposed, including a Convolutional Neural Network (CNN) learned us-

ing transfer learning. Our approach tackles the classical issues faced in medical

image analysis: the data representation issue is addressed using Maximum In-
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Figure 2: Two slices from the same patient: a L3 (up) and a non L3 (L2) (down). The similar

shapes of both vertebrae prevent from taking a robust decision given a single slice.

tensity Projection (MIP); the variability of the shapes in CT scans is handled

using a CNN; and the lack of annotated data is circumvented using transfer

learning.

The article is organized as follows: section 2 presents the related work and

the general framework for applying machine learning for L3 detection in a CT

scan. The third section presents the proposed approach and describes each stage

of the whole processing flow. The fourth section describes the experiments and

the obtained results.
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2. Related Work

Machine learning approaches provide generic and flexible systems, provided

enough annotated data is available. From a machine learning perspective, the

localization of the L3 slice given a whole CT scan can either be considered as a

slice-classification problem, a sequence labeling problem or a regression problem.

Let us now consider these three options.

The classification paradigm consists of deciding for each slice of the whole CT

scan whether the L3 vertebra is present or not. However, the repetitive

nature of individual vertebra induces a similarity between the L3 slice and

its neighbors, which prevents to efficiently classify an isolated slice without

any context (see Fig. 2). This explains why even experienced radiologists

need to browse the CT scan to infer the relative position and precisely

identify the L3 slice. To the best of our knowledge, the classification

paradigm has not been used in the literature to detect the L3 slice within

a whole CT scan.

The sequence labeling paradigm consists of estimating the label (L1, L2, etc.)

of every slice of a complete CT scan, then, choose the one that is more

likely to correspond to the L3. The advantage of this approach is that

the decision is globally taken on the whole CT scan by analyzing the

dependencies between the slices. This kind of approach has been recently

investigated for labeling the vertebrae of complete spine images [GACD11,

GVC09, MWK+13, GDE+13, KLP11, GFC+12, HCLN09, ML13, OA11].

The dependencies are modeled using graphical models, such as Hidden

Markov Models (HMMs) [GFC+12] or Markov Random Fields (MRFs)

[KLP11]. A full review of the spine labelization methods can be found

in [MHSB13]. The major drawback of sequence labeling approaches is

that they require a fully annotated learning database where every slice of

the CT scan is labeled, which is very time consuming. Such a dataset is
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proposed by [GZH14], but this dataset cannot be easily exploited for our

problem since i) the data are cropped images of the whole spine, and ii) it

contains only 224 CT scan.

The regression problem consists of directly estimating the L3 slice number given

the whole CT scan, in a spotting fashion. Like the previous paradigm, it

has the advantage of performing a global decision by taking into account

the dependencies within the entire exam. Another major advantage of a

spotting approach is that it does not require a full labeling of the exams.

Indeed, the only annotation needed for learning such a model is the L3

position within the whole exam. For radiologists, this annotation is more

lightweight than a full annotation and may lead to creating large datasets

easily.

In this work, we retain the third paradigm and propose a machine learning

approach for spotting the L3 slice in heterogeneous arbitrary field-of-view CT

scans. To the best of our knowledge, this is the first time that slice spotting is

addressed as a machine learning regression problem.

Usually, traditional machine learning methods exploit generic hand-designed

features which are fed to a learning model with the assumption that they are

suitable for describing the image. To achieve high accuracy, usually one ends up

combining many types of features which require extensive computation, more

time and large memory size. Ideally, it would be better if the model is capable

of learning on its own task-dependent features.

Deep neural networks (DNN) are a specific category of models in machine

learning which are capable of learning on their own hierarchical features based

on the raw image. Convolutional neural networks (CNN) are a particular type

of DNN which gained a large reputation in computer vision due to their high

performance for many tasks on natural scene images [STE13, ESTA14, RHGS15,

KSH12].
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In the last years, the use of machine learning, in general, and using CNN,

in particular, has grown in various medical domains such as cancer diagno-

sis [RYL+14, UBHK14], segmentation [HJ13, HDW+15, Lai15] or histological

[MMB+08] and drusen identification [CC06]. In all these works, the authors are

faced with a common issue which is the lack of annotated data. Although ex-

tremely powerful, CNN architectures require a huge amount of data to avoid the

“learning by heart” phenomenon, also known as overfitting in machine learning.

The classical techniques to limit these issues are dropout, data augmentation

or the use of regularization. All these technical tricks are exploited in [Lai15],

but the lack of data is still a limitation to train such large models. Recently, a

more efficient way has been proposed to circumvent the lack of annotated data

in vision. This method consists of exploiting models that have been pre-trained

on a huge amount of annotated data on another task and is known as “transfer

learning”.

In this work, we explore the idea of using a CNN model for the localization

of the L3 slice using transfer learning. A full description of our approach is

presented in section 3.

3. Proposed approach

Using a CNN for solving the L3 detection task formulated as a regression

problem (see fig. 1) is not straightforward, and requires the alleviation of some

constraints which are inherent to the medical domain and to the data that is

being processed (i) Training a CNN on 3D data such as CT scans requires very

large computing and memory resources that can even exceed the memory limit

of most accelerator cards, while such cards are essential for learning a CNN in a

reasonable time; (ii) Training a CNN requires fixed size inputs, while the size of

the CT scans can vary from one exam to another because of an arbitrary field

of view; (iii) Training a CNN requires a large amount of labeled data.
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In this paper, we propose to overcome these limitations by using the ap-

proach depicted in figure 3. In this approach, the CT scan is first converted into

another representation using Maximum Intensity Projection (MIP), in order to

reduce the dimension of the input from 3D to 2D, without loss of important

information. Then, the MIP image is processed in a sliding window fashion to

be fed to a CNN with a fixed-size input. This CNN is trained with Transfer

Learning (TL-CNN) to solve the requirement of a large amount of labeled exam-

ples. Once the trained TL-CNN has computed its prediction for each position

of a sliding window, the resulting prediction sequence is processed in order to

estimate the final L3 position in the full CT scan. The following subsections

detail the three important contributions of the proposed system.

Projection

CT Scan MIP

TL-CNN

Sliding window

Decision

L3 slice

MIP transformation1 CNN prediction2
Post processing

(Correlation)
3

Figure 3: System overview describing the three important stage of our approach : MIP

transformation, TL-CNN prediction, and post processing.

3.1. MIP transformation

Ideally, one can use the raw 3D scan image to feed the CNN. If N is the

number of slices of the arbitrary field of view CT scan, the input size is 5122×N .

For example, a CT-scan with 1000 slices represents 262M inputs. However,

the input size of CNN models strongly impacts their number of parameters.

Therefore it would require a very large number of training samples to efficiently
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learn the CNN. Thus, in the case of few training samples, using the 3D scan

directly as an input is not efficient. We believe that the patient’s skeleton carries

enough visual information in order to detect the L3.

For these reasons, we propose to use a different data representation which

focuses on the patient’s skeleton and dramatically reduces the size of the input

space. This representation is based on a frontal Maximum Intensity Projection

(MIP) [WMLK89, WM91, Wal92]. The idea is to project a line from a frontal

view of the CT scan and retain the maximum intensity over all the voxels

that fall into that line. We experimented using different views such as frontal

and lateral views, as well as their combination but they did not work well as

compared to the frontal view alone.

Since the slice thickness can vary within the same scan and the voxels are

not squared, the projection often generates a distorted MIP. Visually, this gives

an unrealistic image where the skeleton is shrunk or enlarged. The cause of

this distortion is that, often, the resulting pixel from the projection does not

correspond to one voxel. Often, one voxel can be represented by more than one

pixel. In order to obtain an equal correspondence (i.e. one pixel corresponds

to one voxel), we resize (normalize) the 2D MIP image using an estimated

ratio r and average slice thickness s where r represents the number of pixels

corresponding to one voxel (slice).

Fig.4 shows an example of a normalized frontal MIP image. The MIP trans-

formation reduces the input size from 5122 ×N to 512×N .
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Figure 4: Examples of normalized frontal MIP images with the L3 slice position.

3.2. Learning the TL-CNN

Convolutional neural networks (CNN) are particular architecture of neural

networks. Their main building block is a convolution layer that performs a

non-linear filtering operation. This convolution can be viewed as a feature

extractor applied identically over a plane. The values of the convolution kernel

constitute the layer parameters. Several convolution layers can be stacked to

extract hierarchical features, where each layer builds a set of features from

the previous layer. After the convolutional layers, fully connected layers can be

stacked to perform the adequate task such as the classification or the regression.

In the learning phase, both parameters of convolutional layers and fully

connected layers are optimized according to a loss function. The optimization

of these huge number of parameters is generally performed using stochastic

gradient descent method. This process requires a very large number of training

samples.

10



Recently, there has been a growing interest in the exploration of transfer

learning methods to overcome the lack of training data. Transfer learning con-

sists in adapting models, trained for different task, to the task in hand (tar-

get). It has been applied with success for various applications such as character

recognition [Jia15, CMS12], signature identification [HSO16] or medical imag-

ing [BDWG15, SRG+16]. All these contributions exploit CNN architectures

which have been pre-trained on computer vision problems, where huge labeled

datasets exist. In this framework, the weights of the convolutional layers are

initialized with the weights of a pre-trained CNN on another dataset, and then

fine-tuned to fit the target application. The fine-tuning starts by transferring

only the weights of the convolutional layers from a pre-trained network to the

target network. Then, randomly initialized fully connected layers are stacked

over the pre-trained convolutional layers and the optimization process is per-

formed on the whole network. This transfer learning framework carried out for

our application is illustrated by Figure 5 .

A well-known difficulty when using the transfer learning paradigm is to fit

the data to the input size of the pre-trained architecture. Since the size of the

normalized MIP images varies from one patient to another, two solutions can

be considered. The first one consists of resizing the whole scan to a given fixed

size. This solution is straightforward but it dramatically impacts the image

quality and the output precision. The second solution consists in decomposing

the input MIP into a set of fixed-size windows with a sampling strategy. In

this paper, we adopt the second approach which enables to preserve the initial

quality of the image data.
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Figure 5: System overview. Layers Ci are Convolutionnal layers, while FCi denote Full

Connected layers. Convolution parameters of previously learnt ImageNet classifier are used

as initial values of corresponding L3 regressor layers to overcome the lack of CT examples.
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When sampling windows from the MIP image, two sets of window images

can be produced. The first one is made of windows containing the L3, and the

other one is made of windows without the L3. This raises the question whether

the windows without L3 should be present or not in the CNN learning dataset.

As we propose a regression approach, adding the non-L3 images in the learning

dataset would imply that the CNN learns (and outputs in the decision stage)

the offset of the L3 with respect to the current window. Obviously, this offset

can be very difficult to learn, particularly if the current window is far from the

L3 position. Thus, we have decided to include only the windows containing the

L3 in the learning dataset.

Thus, for building the training dataset, we sample all the possible windows

of height H such that the L3 position is in the support [−a,+a] where 0 denotes

the center of the window. This leads to 2a+ 1 possible windows from each MIP

image to be included in the training set. All windows from all MIP are then

shuffled: it is highly improbable that two neighboring windows from the same

MIP will appear next to each other in the optimization procedure.

3.3. Decision process using a sliding window over the MIP images

A sliding window procedure is applied at the decision phase on the entire

MIP image, leading to a sequence of relative L3 position predictions. Such a

sequence is illustrated in the left of figure 6.

In this sequence, one can observe two distinct behaviors depending on the

presence of the L3 in the corresponding window: i) If the L3 is not in the

window, the CNN tends to output random values since it has been trained

only on images containing L3. This behavior is illustrated in Figure 6 at the

beginning and (less clearly) at the end of the sequence. ii) If the L3 is within

the window, the CNN is expected to predict (correctly) the relative L3 position

within the window. Since the L3 position is fixed in the MIP and the window

slides line by line on the region of interest, the true relative L3 position should

decrease one by one. In consequence, the CNN output should evolve linearly

along the sequence of windows, leading to a noisy straight line with a slope of
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−1. The noise may come from local imprecision or error on an individual slide.

This behavior can be observed in figure 6 between offset 500 and 600, and it is

highlighted with a theoretical green line.
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Figure 6: [left]: CNN output sequence obtained for H = 400 and a = 50 on a test CT scan.

The sequence contains the typical straight line of slope −1 centered on the L3 (the theoretical

line is plotted in green), surrounded by random values. [right]: correlation between the CNN

output sequence and the theoretical slope. We retain the maximum of correlation as an

estimation of the L3 position.

Therefore, at decision stage, the L3 position can be estimated through the

localization of the middle of this particular straight segment. This estimation

can easily be achieved by searching the maximum of a simple correlation between
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the sequence and the expected slope. This procedure, illustrated at the bottom

of Fig. 6, easily filters out boundary windows which do not contain the L3, and

shows robustness by averaging several predictions of the CNN.

4. Experimental protocol

4.1. CT exams database description

In order to validate the proposed approach, a database named L3CT1 has

been collected1. The main part of the dataset is composed of 642 CT exams from

different patients. All patients were included in this study after being informed

of the possible use of their images in a retrospective research. The institutional

ethical board of the Rouen Henri Becquerel Center approved this study 2. The

CT exams show a high heterogeneity of patients in terms of anatomy, sex, cancer

pathologies, position and properties of the reconstructed CT images: 4 scanner

models (PET/CT modalities) and 2 manufacturer, acquisition protocols (low

dose acquisition (100 to 120 kV) and modulated mAs along the body) axial

field of view (FOV) (400 to 500 mm), reconstruction algorithms (Filtered Back

Projection (FBP) or iterative reconstruction) and slice thickness (2 to 5 mm).

On each CT scan, the L3 slice was located by an expert radiologist on a

dedicated software [LKTM+14], providing the annotation for the position of

the L3 through its distance in (mm) from the first slice in the scan (top).

Moreover, 43 supplementary CT scans have been annotated by the same

radiologist and 3 other experts, in order to evaluate the variability of annotations

among experts.

To be as reproducible and precise as possible, detailed guidelines were given

to all radiologists for annotation.

1This dataset is available on demand, please contact the corresponding author
2IRB Number 1604B.
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From all the scans, frontal MIP images have been computed using the process

described in 3.1. This results in a set of 642 images of constant width (512 pixels)

and variable height, varying from 659 to 1862 pixels. Fig 4 shows some examples

of frontal MIP images extracted from three patients of the L3CT1 database.

4.2. Datasets preparation

The first step consists in splitting the dataset into 5 folds, in order to allow

a cross-validation procedure. The split is applied at the patient level, in order

to prevent that a given CT-scan provides windows in different sets (learning,

validation, test), what should lead to biased results. Moreover, due to variable

slice thickness in the dataset, we make sure when dividing the dataset to obtain

stratified folds. Thus, we end up with the same number of samples from each

slice thickness in each set.

Once the MIP images folds have been generated, learning, validation and

test windows are sampled as explained in section 3.3, where the value of a

has been experimentally set to a = 50 using a cross validation procedure. For

the validation set, in order to speed up the training, we take only 300 random

windows from different patients.

4.3. Neural networks models

In order to conduct our experiments, two types of convolutional neural net-

works have been compared:

• Homemade CNN (CNN4): We have designed and trained a CNN from

scratch, with specific architecture of four convolutional layers followed by

a fully connected output layer. In each convolution layer, a horizontal

max-pooling is performed. We found in practice that vertical max-pooling

distorts the target position. The number of kernels that we used in the

four convolution layers are [10, 3, 3, 5], with respective sizes [5, 7, 9, 3]. The

hyper-parameters of our CNN were tuned on the validation set [Ben12].

We refer to our model as CNN4.
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• Pre-trained CNNs: In our study, we have collected a set of pre-trained

convolutional neural networks over ImageNet dataset [DDS+09]: Alexnet

[KSH12], VGG16 [SZ14], VGG19[SZ14], Googlenet (Inception V1) [SLJ+14]3.

The models are created using the library Keras [Cho15]. For each model,

we keep only the convolutional layers which are considered as shared per-

ception layers that may be used for different tasks. On top of that, we

add one fully connected layer to be specialized in our specific task (i.e. L3

detection). Our experiments have shown that adding more fully connected

layers does not improve the results.

The input of pre-trained models is supposed to be an RGB image (i.e. a

3D matrix), while in the other hand, our sampled windows are 2D matrix.

In order to match the required input, we duplicate the 2D matrix in each

color channel. Then, each channel is normalized using its mean from the

ImageNet Dataset.

We use L2 regularization for training all the models with value of λ = 10−3,

except for Googlenet where we used the original regularization values.

5. Results

5.1. Data view: Frontal Vs. Lateral

The use of the MIP representation allows us to access to different views of

the CT scan, such as the frontal and lateral views (other views with different

angles are possible). In order to choose the best view, we re-train a VGG16

model with one fully connected layer using different input views. We recall

that the input of the VGG16 is an image with 3 plans. We experimented three

configurations. In the first and second cases, we repeat the frontal and lateral

views, respectively, in the three input channels. In the last case, we mixed

3The weights of Googlenet were obtained from: https://gist.github.com/

joelouismarino/a2ede9ab3928f999575423b9887abd14, and the weights of the rest of

the models were obtained from https://github.com/heuritech/convnets-keras
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the frontal and the lateral view. The motivation behind the combination of

the views is that each view will provide an additional information (hopefully

complementary) that will help the model to decide. The sampling margin of

the windows is done over the range [−50,+50]. Tab.1 shows that using frontal

view alone is more suitable. One possible explanation of this results is that the

frontal view contains more structural context (ribs, pelvis) which helps to locate

the L3 slice, in the opposite of the lateral view. Combining lateral and frontal

views gave better results than lateral alone but worse than frontal alone. One

may think that lateral view adds noise to the frontal view.

View VGG16

Error mc (slices)

Frontal 1.71 ± 1.59

Lateral 4.29 ± 14.90

Frontal Lateral Frontal 1.89 ± 2.05

Table 1: Test error (mean ± standard deviation) over the test set of fold 0, expressed in slices,

using VGG16 model with frontal and lateral views.

5.2. Detection performance

All the models described in section 4.3 have been evaluated in a cross vali-

dation procedure on the L3CT1 dataset by computing the prediction error. The

prediction error for one CT scan is computed as the absolute difference between

the prediction ypred and the target y: e = |y − ypred|. The error is expressed in

slices. We report the mean and the standard deviation of the test error (µe, σe),

respectively in the form µe ± σe, over the entire test set. Obtained results are

reported in Tab.2.

For the sake of comparison, we used Random Forest Regression (RF) [Bre01,

Ho95] as a regressor instead of our CNN. As in most pattern recognition prob-

lems, we need to extract input features to train our Random Forest Regression.

Local Binary Patterns (LBP) features have shown to be very efficient in many

computer vision tasks [OPM02], especially in medical imaging [NLB10]. There-

fore, we have retained this feature descriptor. To extract the LBP features we
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RF500 CNN4 Alexnet VGG16 VGG19 Googlenet

fold 0 7.31± 6.52 2.85± 2.37 2.21± 2.11 2.06± 4.39 1.89± 1.77 1.81± 1.74

fold 1 11.07± 11.42 3.12± 2.90 2.44± 2.41 1.78± 2.09 1.96± 2.10 3.84± 12.86

fold 2 13.10± 13.90 3.12± 3.20 2.47± 2.38 1.54± 1.54 1.65± 1.73 2.62± 2.52

fold 3 12.03± 14.34 2.98± 2.38 2.42± 2.23 1.96± 1.62 1.76± 1.75 2.22± 1.79

fold 4 8.99± 7.83 1.87± 1.58 2.69± 2.41 1.74± 1.96 1.90± 1.83 2.20± 2.20

Average 10.50± 10.80 2.78± 2.48 2.45± 2.42 1.82± 2.32 1.83± 1.83 2.54± 4.22

Table 2: Error expressed in slice over all the folds using different models: RF500, CNN4

(Homemade model), and Alexnet/VGG16/VGG19/GoogleNet (Pre-trained models).

used a number of neighbors of 8 and a radius of 3 which creates an input fea-

ture vector with dimension of 28 = 256. From each sampled window, we extract

LBP features. We investigated different number of trees: 10, 100 and 500. The

obtained results showed that random forests do not perform well over this task.

We report in Tab.2 the results using 500 (RF500) trees which are in the same

order of performance compared the other cases (i.e. 10 and 100 trees).

From Tab.2, one can see that pre-trained models perform better than our

homemade CNN4 with an improvement of about 35%. In particular, VGG16

showed the best results by an average error of 1.82 ± 2.32 followed by VGG19

with 1.83 ± 1.83. This result confirms the strong benefit of transfer learning

between two different tasks. Moreover, it shows that the convolutional layers

can be shared as a perception tool between different tasks with slight adaptation.

On the other hand, this illustrates the capability for modeling such task using

the pre-trained models.

5.3. Processing time issues

One must mention that the price we paid in order to reach the performance

mentioned above is to increase the complexity of the model. In Table 3, we

present the number of parameters of each model and the average required time

for the prediction of the L3 slice. We observe that VGG16 contains approxi-

mately 264 times more parameters than CNN4. Beside the required memory
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for such models, the real paid cost is the evaluation time during the test phase.

Computed on a GPU (Tesla K40), VGG16 requires an average of 13.28 seconds

per CT scan while our CNN4 only needs 4.46 second per CT scan.

Number of parameters Average forward pass time (seconds/CT scan)

CNN4 55,806 04.46

Alexnet 2,343,297 06.37

VGG16 14,739,777 13.28

VGG19 20,049,473 16.02

Googlenet 6,112,051 17.75

Table 3: Number of parameters for different models and average forward pass time per CT

scan.

An important factor which affects the evaluation time in these experiments

is the number of windows processed by the CNN for a given CT scan. Thus, it

is possible to dramatically reduce the computation time by shifting the window

by a bigger value than 1 pixel. An experimental evaluation of this strategy

with VGG16 has shown that a good compromise between processing time and

performance could be obtained for a shift value up to 6 pixels without affect-

ing the localization precision. This sub-sampling reduces the evaluation time

from 13.28 seconds/CT scan to 2.36 seconds/CT scan and moved the average

localization error from 1.82± 2.32 slices to 1.91± 2.69 slices, respectively. This

shows the robustness of the proposed correlation post-processing.

5.4. Comparison with radiologists

In order to further assess the performance of the proposed approach, an extra

set of 43 CT scans was used for test. This particular dataset was annotated by

the same radiologist who annotated L3CT1 dataset and also by three other

experts. Each annotation was performed at two different times, in order to

evaluate the intra-annotator variability. We refer to both annotations by the

same expert by Review 1 and Review 2.

Obtained results are illustrated in Tab.4. It compares the error made by

CNN models with those made by the radiologists, using the radiologist who an-

notated the L3CT1 dataset as reference. These results corroborate the results
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provided in Table 2 since VGG16 is better than CNN4 with an improvement

of about 35% in average for both reviews. The results also demonstrate that

radiologists are in average more precise than automatic models with an improve-

ment of about 50%. However, they also show that there exists some variabilities

among radiologist annotations and even an intra-annotator variability. This lat-

ter is visible in Tab. 4 since computed errors for automatic systems vary between

both reviews while the automatic system gives the same output, showing that

reference values have changed. This illustrates the difficulty of the task of pre-

cisely locating the L3 slice and the interest of CNN which does not change its

prediction.

Errors (slices) / operator CNN4 VGG16 Ragiologist #1 Radiologist #2 Radiologist #3

Review1 2.37± 2.30 1.70± 1.65 0.81± 0.97 0.72± 1.51 0.51± 0.62

Review2 2.53± 2.27 1.58± 1.83 0.77± 0.68 0.95± 1.61 0.86± 1.30

Table 4: Comparison of the performance of both the automatic systems and radiologists. The

L3 annotations given by the reference radiologist vary between the two reviews.

6. Conclusion

In this paper, we proposed a new and generic pipeline for spotting a partic-

ular slice in a CT scan. In our work, we applied our approach to the L3 slice,

but it can easily be generalized to other slices, provided a labeled dataset is

available.

First, the CT scan is converted into a frontal Maximum Intensity Projection

(MIP) image. Afterwards, this representation is processed in a sliding window

fashion to be fed to a CNN which is trained using Transfer Learning. In the test

phase, all the predictions concerning the position of the L3 within the sliding

windows are merged into a robust post-processing stage to take the final decision

about the position of the L3 slice in the full CT scan.

Obtained results show that the approach is efficient to precisely detect the

target slice. Using a fine-tuned VGG16 network coupled with an adequate

decision strategy, the average error is under 2 slices where experienced radi-
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ologists can provide annotations that differ of about 1 slice. The computing

time is within an acceptable range for clinical applications, and can be further

reduced by (i) increasing the shift value (ii) adapting the network architecture

by pre-training smaller networks over ImageNet, for example, which has not

been studied in this work (iii) and prun the final trained CNN by dropping the

less important filters. Recently, prunning CNNs has seen a lot of attention in

order to deploy large CNNs on devices with less computation resource. We are

currently working on this idea to speedup more the computation.

This contribution confirms the interest of using machine learning and more

particularly deep learning in medical problems. One of the main reasons deep

learning is not popular in medical domain is the lack of training data. Pre-

training the networks over other large dataset will strongly alleviate this problem

and encourage the use of such efficient models.
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