
Property Based Coordination

Mahdi Zargayouna1,2, Julien Saunier Trassy2, Flavien Balbo1,2

1 Inrets - Gretia, National Institute of Transportation Research and their Security.
2, av. du Général Malleret-Joinville,

F-94114 Arcueil cedex.
2 Lamsade, Paris Dauphine University.
Place Maréchal de Lattre de Tassigny,

75775 Paris Cedex 16, France.
{zargayou,balbo,saunier}@lamsade.dauphine.fr

Abstract. For a multiagent system (MAS), coordination is the assumption that
agents are able to adapt their behavior according to those of the other agents. The
principle of Property Based Coordination (PBC) is to represent each entity com-
posing the MAS by its observable properties, and to organize their perception
by the agents. The main result is to enable the agents to have contextual behav-
iors. In this paper, we instantiate the PBC principle by a model, called EASI
-Environment as Active Support of Interaction-, which is inspired from the Sym-
bolic Data Analysis theory. It enables to build up an interaction as a connection
point between the needs of the initiator, those of the receptor(s) and a given con-
text. We demonstrate that thanks to PBC, EASI is expressive enough to instantiate
other solutions to the connection problem. Our proposition has been used in the
traveler information domain to develop an Agent Information Server dynamically
parameterized by its users.

1 Introduction

One of the basic problems for the designer of a multiagent system (MAS) is the connec-
tion problem [4]. In [10], the authors define the connection problem as “finding the other
agents that have the information or the capabilities that you need”. In order to solve this
problem for the Internet, they use middle-agents. The authors define a middle-agent as
an entity that is neither a requester nor a provider of a service but which participates in
the interaction between the requester and the provider: a requester has preferences and a
provider has capabilities. This interaction model, with in the one hand the capability of
a provider and on the other the preferences of a requester, is called “Capability-Based-
Coordination” (CBC). Other solutions are proposed to solve the connection problem
when some organizational rules are present and when the connection problem depends
on these rules. The AGR (Agent, Group, Role) model [5] proposes agents that are de-
fined as an active communicating entity that plays roles (abstract representation of the
agent’s functionalities) within a group. However, when the connection problem embeds
other ambient criteria, which we call a context, a new interaction relation has to be de-
fined. Ambient criteria concern conditions that correspond neither to the initiator nor to
the receptor of the interaction. Indeed, when the interaction is not a binary but a multi-
partite relation, being guarded by contextual conditions, a special model is to be built,
considering a collective status of the MAS.



The aggregation of the individual status of the agents inside the MAS into a col-
lective one is one of the motivations for the emergence of the multiagent environment
as an explicit entity. Several directions are followed in modeling multiagent environ-
ments. Some researches focus essentially on the dynamics of the environment [6, 11],
and others focus on the modeling of new interaction patterns thanks to the presence of
the environment as an explicit entity. For instance, the stigmergy allows agents to leave
traces in the environment, which can be used by others to guide their actions. New kinds
of interaction recently appeared, like the overhearing and the mutual awareness [7–9,
12]. They envision new types of interaction that enable agents, that are not necessarily
protagonists of the interaction (neither emitter nor receptor of a message), to participate
in the interaction. These are propositions that investigate alternatives to the traditional
messages’ broadcast to every agent present in the system.

Our approach generalizes the modeling of interactions inside the environment. We
propose a description of the environment based on the principle of observability, in-
stantiating this way the principle of Property Based Coordination (PBC). We define
the PBC as a coordination principle for multiagent systems in which: (i) Every entity
composing the system, including the agents, exhibits observable properties, (ii) Agents
use the observable properties to manage the interactions, perceptions and actions inside
the system. Each entity in the environment is then described uniformly by a set of ob-
servable properties. Agents being in the center of the MAS modeling, they manage the
interactions by specifying the conditions (the context) of the interaction. The CBC and
the AGR model are sub-cases of the PBC: the agents exhibit respectively their capabil-
ities and preferences (CBC) and their groups and role (AGR) as observable properties;
and of course the dyadic interaction is also a sub-case (identifiers are the observable
properties in this case). In order to describe a detailed proposition, we propose a model,
that we called EASI (Environment as an Active Support of Interaction). It supports the
PBC principle and its formulation is widely inspired from the Symbolic Data Analysis
(SDA) paradigm [1]. This model proposes to share the interactions inside the environ-
ment and enables the expression of different patterns of interaction. We believe it is the
most straightforward way to instantiate the PBC principle.

A model that integrates the other interaction patterns is important because it pro-
vides a general framework, that has to be expressive enough, to enable designers to ex-
press different configurations, different application scenarios, within the same model.
Tuplespaces systems, with Linda [3, 2] as a first implementation, resembles to our
proposition. They provide a shared collection of data (tuples), and a set of operations
(read, write, take) on the collection to manipulate the data. However, the agents need to
know beforehand, the location of a tuplespace to interact in. In addition, the expressiv-
ity of the querying process does not permit to match different facts e.g. to condition the
perception of a tuple to the presence of an other tuple, whereas in EASI, agents are able
to express such a condition.

The remainder of this paper is organized as follows: section 2 presents the EASI
model. Section 3 details interactions features that our model enables to express. Section
4 shows the use of our model for a traveler Information System. We finally draw general
conclusions and perspectives in section 5.



2 Environment as Active Support of Interaction

2.1 Introduction

EASI is a model that instantiates the PBC principle, it proposes an environment model
that enables to share the interactions. The problem, when all the interactions are in
common, is to enable the agents to find those they are interested in. The formulation
of the model is inspired from the Symbolic Data Analysis (SDA) theory [1]. SDA is
aimed at discovering hidden knowledge within large data sets, modeling both quali-
tative and quantitative data, which are clustered via the so-called symbolic objects. A
symbolic object is a symbolic representation of a subset of entities materialized by a set
of conditions that these entities have to satisfy. In our work, the entities composing the
environment are agents (active entities) and objects. Both are described via observable
descriptions. The reification of the active behavior of agents is their exclusive possibil-
ity to select their interlocutors by defining autonomously the symbolic objects (filters
in the model). Depending on the considered MAS, other classifications for the entities
are possible; for instance messages, traces, events, services etc. But our classification is
the most general that remains consistent with the multiagent paradigm. Indeed, the only
finalistic entities (i.e. pursuing an objective) in the MAS are the agents, whereas every
entity that is deterministic is considered as an object. Besides, the possibility to manage
the properties’ privacy i.e. to hide or to exhibit them, enables to model messages (e.g.
exhibiting the header and hiding the body of the message), basic services (exhibiting
the ‘invokable’ operations of the service) etc.

2.2 EASI: basic definitions

Definition 1 (Environment) E = 〈Ω, D,P, F 〉 where :

– Ω is the set of entities, it contains the set of agents (A) and the set of objects (O).
Ω = A ∪O.

– P = {Pi|i ∈ I}, P is the set of observable properties.
Pi : Ω → di ∪ {null, unknown}. Pi is an application which, for an entity, gives
the value for the corresponding property.

– D =
∏

i∈I

di with di the description domain of Pi.

– F is the set of filters. A filter is a set of conditions defining the interaction context
inside the environment.

The basic component of our model is an entity. Each entity is described by symbolic
variables (observable properties); I contains the indices ranging over P . If an entity
does not have a value for a given Pi (this property does not exist for this entity, e.g. the
property radius for a triangle), then its value is null; if the property exists but does not
have a value (hidden by the corresponding entity), its value is unknown. Since agents
are autonomous, each agent is responsible for the update of its own properties, the
latter could be an information about the agent’s position in the environment, an activity
indicator etc. Each di (description domain of Pi) can be quantitative, qualitative as well
as a finite data set. A property Pi of an agent a can thus have a value di, a can hide it



(Pi(a) = unknown) or it can be undefined for the corresponding agent (Pi(a) = null).
The case where an agent hides a given property is temporary and could dynamically be
changed during the execution, but the information about the non-definition of Pi is
structural and clearly clusters the set A of agents in several categories.

Definition 2 (Agent Category) AC ∈ A is an Agent Category ⇐⇒ ∀ai ∈ AC , ∀Pj ∈
P, if Pj(ai) 6= null =⇒ @ak ∈ AC |Pj(ak) = null

Reduced to this definition, agent categories define a Galois-lattice (cf. Fig.1), with g
and h are the Galois correspondences.
g : P(A) → P(P ), g(AC) 7→ {Pj ∈ P |∀ai ∈ AC , Pj(ai) 6= null}
h : P(P ) → P(A), h(PC) 7→ {ai ∈ A|∀Pj ∈ PC , Pj(ai) 6= null}
The top of the lattice represents the agents (may be virtual) which exhibit only null
values and the bottom represents the (virtual) agents which exhibit no null values. The
designer could define a new top by defining a minimal property (typically an identifier).

Definition 3 (Minimal property of an agent) Pj ∈ P is a minimal property ⇐⇒
∀ai ∈ A, Pj(ai) 6= null

The same categorization can be applied to the objects O, and provides then a typology
of objects present in the system. This information (together with D, the description
domains) can be exhibited as a meta-information in the environment, which could be
used by the newly coming agents in order to know the interaction possibilities inside
the MAS.

In SDA, a symbolic object puts together (in the same ‘class’) entities according to
their description. In order to model an interaction, more than one kind of entities (agents
and objects) have to be gathered. A filter f is then defined as a conjunction of symbolic
objects (which is a symbolic object too). A filter connects the description of an agent to
the context that it perceives; a context is a state of the environment at a given moment

Fig. 1. Agent Categories Galois-lattice



e.g. the presence of a certain agent in the vicinity of a given node. Thus, the definition
of a filter is:

Definition 4 (Filter) f : A×O × P(Ω) → {true, false}
f(a, o, C) = ∧i∈Ia [Pi(a)RiVi] ∧i∈Io [Pi(o)RiVi] ∧i∈IC

(∧c∈C [Pi(c)RiVi])
f(a, o, C) =⇒ perceive(a, o)

Ia ⊂ I (respectively Io and IC) contains the indices ranging over P that are used in
f as selection criteria for the agent (respectively the object and the context). R and V
are respectively the binary operators and the values of the descriptions that define the
conditions to be held by a, o and C. A filter is the intention definition of the relation be-
tween a particular entity a and other entities c in C according to its own description and
those of each c, it conditions the perception of a certain o by a. For instance, consider the
following filter: f(a, o, {a2}) = [Pidentifier(a) = Pidentifier(a1)]∧ [Powner−id(o) =
Pidentifier(a2)] ∧ [Pstate(a2) = “busy”]. The first condition indicates that this filter
concerns the perception a given agent a1; a1 perceives the objects for which the prop-
erty owner − id is defined and is equal to the identifier of a given agent a2 iff the
latter is busy. The observable properties of a special agent, the exchange of a message
between two defined agents, the presence of a particular object or the combination of
these instances can be used to define a particular context. A filter is the conjunction of at
least two conditions, the first being related to the receptor and the second being related
to o (in this case, there is no special context). This definition implies that the same o
can be perceived according to different contexts, or on the contrary that, with the same
context, several o can be perceived.

The whole system can have laws that cannot be broken e.g. a light signal cannot
pass through an opaque object or an opaque fluid; the control by the environment is
possible inside our model in a straightforward way [9]. In fact, the environment can put
new filters itself and it manages the whole filters’ scheduling; since its filters express
the possibilities of interactions, they are executed before those of the agents. In order
to express the environment’s filters, we introduce the notion of negative filters. They
are defined in the same way as filters, except that f(a, o, C) =⇒ ¬perceive(a, o).
Instead of enabling perception, the negative filters prevent it. As the environment may
manage both filters and negative filters, it is possible to control standard behaviors, by
enforcing and/or forbidding certain message transmissions or certain objects perception
e.g. radius of perception in situated agents. The negative filters block any further filter
that would concern the same a and o. Detailing these features is the purpose of the next
section: we show how EASI can be used to supervise protocol executions and how it
embeds the classical interaction patterns.

3 Protocol and control

As we argue that the PBC principle embeds the other patterns of interaction, we demon-
strate how to express them in a unified way via the EASI model. In this section, we
introduce an example of the use of EASI, and we give the different possibilities a de-
signer has thanks to the environment model. We consider a multiagent application in
the domain of electronic auctions. There are seller agents and customer agents. Every



agent has two minimal properties: its “identifier” (Pidentifier) and its “group” (Pgroup).
In addition, the customer agents have a third property, “interest” (Pinterest), which al-
lows them to express what kind of item interests them, and the seller agents have a
property “speciality” (Pspeciality), which shows the kinds of goods they sell. The ne-
gotiation over the goods is fulfilled via a Contract-Net Protocol (CNP [4]) (cf. Fig. 2).
The customer agent calls for proposals (cfp) for a good, and the seller may reject the

:Initiator :Participant
m1

alternative

alternative

alternative

cfp

propose

failure

refuse

inform−done:inform

inform−result:inform

[t..t+10u]

o−1reject−proposal

accept−proposal 1

o

n

m

sd FIPA Contract Net Protocol

request−payment

send−payment

:Seller :Customer

{0..7d}

sd Request Payment

Fig. 2. FIPA Contract-Net Protocol (left) and Payment protocol (right)

cfp call, or make a proposition with a particular price. The buyer chooses one (or none)
of the sellers and sends the confirmation or rejection messages to the corresponding
agents. The messages are FIPA-ACL compliant, i.e. they exhibit as observable proper-
ties the parameters defined in FIPA-ACL 3: Pperformative, Pconversation−id, Psender

etc. Finally, the sender sends the goods and requests the payment via a second proto-
col. In this MAS, we enable dyadic interaction via a first filter: every addressee of a
message should receive it via fDyadic(a,m) = [Pidentifier(a) = Preceiver(m)]. De-
pending on the policy of the MAS, the first message may be sent to every agent by
broadcast, or to selected agents by multicast. The broadcast can be realized for every
cfp message with the following filter: fBrodacast cfp(a, m,C) = [Pidentifier(a) 6=
null]∧ [Pperformative(m) = “call−for−proposal”]. A multicast is achieved thanks
to fMulticast(a,m) = [Pidentifier(a) ∈ Preceiver(m)], considering that the property
Preceiver of the message is composed of several addresses.

3 Foundation for Intelligent Physical Agents, Version J http://www.fipa.org/specs/fipa00061/



We may also integrate other models for particular messages. For example, the AGR
(Agent, Group, Role) model proposes agents that are situated in groups and play roles
[5] inside each group. If these two pieces of information appear as observable proper-
ties, it is possible to manage the interaction in the same way as the Madkit 4, which is
the platform dedicated to this model. For instance, the sending of a message to the
group of sellers is achieved thanks to fMulticast Group(a,m) = [Pidentifier(a) 6=
null] ∧ [Pgroup = “seller”]. In the same way, it is possible to restrict broadcast
to a role. If the initiator sends a message to the agents having a specific role in a
group (a restricted broadcast) then the filter is: fRG(a,m, a1) = [Pidentifier(a1) =
Psender(m)] ∧ [Pgroup(a1) ∈ Pgroup(a)] ∧ [Prole(a1) ∈ Prole(a)]. This filter restricts
the reception to messages which emitter belongs to one of the groups to which the re-
ceptor a belongs and who plays one of the roles that the receptor a plays.
Finally, we may explore ad hoc interactions, notably by taking advantage of the ob-
servability of the property “speciality”. The buyer may send its message to the only
sellers that sell a particular kind of goods. This may be achieved either at each mes-
sage by putting the corresponding filter: fAd Hoc(a,m) = [Pspeciality(a) = spec] ∧
[Pconversation−id = id] with spec the speciality and id the particular id of the call
for proposal it sends. Another way to achieve this is to enable a property “speciality”
in the cfp messages; which is then managed by a generic filter each time this field is
filled: fAd Hoc Gen(a,m) = [Pspeciality(a) = Pspeciality(m)] ∧ [Pperformative(m) =
“call− for − proposal”]. The remainder of the messages (proposals etc.) are sent via
the dyadic filter, i.e. a classical dyadic interaction. However, the agents may overhear
some messages that are not addressed to them, in order to monitor the MAS for exam-
ple, or to improve their perception of their environment. Let the monitoring agent(s)
exhibit Pgroup(a) = “monitor”. A non-discriminating monitoring filter would be:
fMonitor(a,m) = [Psender(m) 6= null] ∧ [Pgroup(a) = “monitor”]. If the agent
wants to overhear only one agent a1, it modifies the first clause with [Psender(m) =
Pidentifier(a1)]; if it wants to overhear only acceptation messages it adds a clause
[Pperformative(m) = “accept”]. Other examples of focused overhearing are for a
seller to receive the offers of the other sellers in order to be more competitive; or
a buyer may want to receive offers it has not issued a cfp for. For the first situa-
tion, the filter is: fawareness 1(a,m, {a2}) = [Pidentifier(a) = Pidentifier(a1)] ∧
[Pperformative(m) = “propose”] ∧ [Psender(m) = Pidentifier(a2)] ∧ [Pgroup(a2) =
“seller”] ∧ [Pspeciality(a2) = “discs”]: a1 overhears all the “propose” messages is-
sued by “discs” sellers. The filter that corresponds to the second situation is:
fawareness 2(a,m) = [Pidentifier(a) = Pidentifier(a1)] ∧ [Pperformative(m) =
“propose”] ∧ [Pspeciality = “books”]: a1 overhears every book proposal message.
These examples describe how EASI enables the agents to achieve interactional aware-
ness thanks to their filters and to specialize their perception.
When the negotiation is over, the seller asks the payment of the good(s) to the client
(cf. Fig. 2). This protocol must not be overheard, as it may contain secured information.
This is achieved by the two following negative filters, which secure the protocol by
forbidding the reception of the messages with the performatives request-payment and
send-payment by other agents than those specified as “receiver” parameter:

4 http://www.madkit.org



fOH Ban 1(a, m,C) =⇒ ¬perceive(a,m) with fOH Ban 1(a,m, C) =
(Pidentifier(a) 6= Preceiver(m)) ∧ (Pperformative(m) = “request− payment”) and
fOH Ban 2(a, m,C) =⇒ ¬perceive(a,m) with fOH Ban 2(a,m, C) =
(Pidentifier(a) 6= Preceiver(m)) ∧ (Pperformative(m) = “send − payment”). As
the filter is managed by the environment, even the monitoring filters cannot overrule
the perception ban. Note that the filter fDyadic automatically manages the messages for
the intended receiver.

EASI enables the environment to support the MAS protocol management. In ad-
dition, thanks to the PBC principle, it enables the use, in the same MAS, of different
interaction patterns such as AGR, multicast and indirect interactions. The designer em-
ploying EASI may choose for every situation the best solution, which can be dynamic
during runtime, and equally use different means to adjust the protocol endorsement to
the needs of the system.

4 Application: Agent Information Server

We apply the EASI model to an information server embedding agents representing both
human users and transportation web services. The server informs users about transporta-
tion networks’ status online. Every user has a specific goal during his connection to the
server. The transportation web services exhibit their domain of expertise as observable
properties. Transportation services providers can provide informations as a response
to a request, or asynchronously by sending periodic notifications about disturbances,
accidents, special events etc.

4.1 Technical details

We implemented a web server, the environment is a rule-based engine wrapped inside
the server, it handles rules (filters) and facts (both agents and objects) [12]. The only en-
tities’ attributes taken into account by the engine are observable properties. Every web
service has a representative inside the server responsible of the convey of messages from
the server to the physical port of the web service and inversely. Messages’ exchange
between the server and the web services are SOAP messages 5 and asynchronous com-
munication is fulfilled through the JAXM api 6 for web services supporting SOAP, and a
FTP server otherwise, used this way as a mailbox. This communication heterogeneity is
of course transparent for the agents inside the environment i.e. they interact exactly the
same way within the MAS environment whatever the transport protocol used is. Every
user is physically mobile and connects via a MPTA (Mobile Personal Transport Assis-
tant) to the server, and has during his session a representative agent inside the server, it
is his interlocutor during his connection.

4.2 Execution

The problem in this kind of application domains concerns the information flows that are
dynamic and asynchronous. Every information source is a hypothetic source of relevant

5 Simple Object Access Protocol http://www.w3.org/TR/SOAP
6 Java Api for XML Messaging, http://java.sun.com/webservices/jaxm/



information, thus an agent cannot know a priori which information it is interested in, it
depends on its runtime changing context. Its context depends on a crossing of different
information. Also, all the human users are not the same, their preferences are not homo-
geneous and their profiles have to be taken into account in their interaction with the sys-
tem. Let us describe an example of use of the server. There is an abstraction of the trans-
portation network inside the server, composed of stops. They are objects as described in
the model. Every stop is described by a line number Pline to which it belongs and a po-
sition number Pnumber reflecting its position in the line. A user (its representative, say
u) is described by its actual position in the network (a couple (myline, mynumber)),
and by properties expressing its transportation modes’ preferences (mode), the desired
extra-transportation services (coffee-shops, parkings etc.). Basically, u has a path to
follow during its trip i.e. a list of triples (line, numbersource, numberdestination)+,
each triple represents a continuous trip, without change. u creates a filter f restricting
its interaction to messages dealing with events occurring on its road. For instance, let
path(u) = [(2, 4, 10), (4, 5, 14)] reflecting that u has to change at the stop number 10,
walk to stop number 5 of the line 4 and continue on the line 4 until the stop number
14. The corresponding filters are: f1(u,m) = [Pid(u) = myid] ∧ [Psubject(m) =
“alert”] ∧ [Pline(m) = 2] ∧ [mynumber ≤ Pnumber(m)] ∧ [Pnumber(m) ≤ 10] and
f2(u, m) = [Pid(u) = myid] ∧ [Psubject(m) = “alert”] ∧ [Pline(m) = 4] ∧ [5 ≤
Pnumber(m)] ∧ [Pnumber(m) ≤ 14]. u is interested by the only alerts concerning its
own path expressed in f1 and f2. It is then notified about every alert event occurring
in these segments of network. Since mynumber is updated in every move, the con-
cerned segment is reduced gradually until mynumber = 10, then u retracts f1 and f2

becomes: f2(u,m) = [Pid(u) = myid] ∧ [Psubject(m) = “alert”] ∧ [Pline(m) =
4] ∧ [mynumber ≤ Pnumber(m)] ∧ [Pnumber(m) ≤ 14] until the trip ends.

A private transportation operator, say p, has a representative in the server. It has the
following filter: fp

awareness(a,m, a1) = [Pid(a) = myid]∧ [Psubject(m) = “alert”]∧
[Pline(m) = Pmyline(a1)] ∧ [Pmynumber(a1) ≤ Pnumber(m)]. The message that is
caught by u is also caught by p, it knows that u has a disturbance on its road and can
propose him an alternative transportation mode. p identifies this way a context in which
its target market is involved, it identifies the subset of alert messages that are actually
received by travelers and it uses this information to send addressed propositions to its
possible customers. The described process is an application of the PBC model and it
avoids the periodic requests for new relevant information, handles automatically ad hoc
events occurring in the network and enables the agents to react following their runtime
changing contexts.

5 Conclusion and Perspectives

We propose a generic coordination principle: the Property Based Coordination. Based
on the notion of observability, it generalizes existing cooperation schemas as the Capa-
bility Based Cooperation, Agent Group Role, Overhearing, Mutual Awareness etc. We
also presented the EASI model, a straightforward way to instantiate PBC. It enables
the use of the environment as a sharing place where the agents manage their interaction
according to their context. Entities composing the environment are agents and objects.



The latter embeds the non-agent entities. With the observable properties, the entities
composing the environment can be clustered into agent categories, messages typology
etc. which can be available as meta-information in the system. The environment is re-
sponsible of the aggregation of the filters to determine who perceives what (e.g. by a
rule-based engine) and can restrict the interaction possibilities thanks to filters. In fu-
ture works, we propose to investigate a formal model of actions in a system based on
PBC and its dynamics. Applications from the transportation domain are implemented,
in which we experiment new heuristics to solve the scheduling and routing problems,
these heuristics are discovered thanks to the retained model of the environment.

References

1. H.-H. Bock and E. Diday. Analysis of Symbolic Data. Exploratory Methods for Extracting
Statistical Information from Complex Data. Springer-Verlag, Heidelberg, second edition,
2000. 425 pages.

2. N. Carriero and D. Gelernter. How to Write Parallel Programs: A First Course. MIT press,
Massachusetts, first edition, 1990. 250 pages.

3. N. Carriero, D. Gelernter, and J. Leichter. Distributed data structures in linda. In Proceed-
ings of the 13th ACM symposium on Principles of programming languages, pages 236–242,
Florida, USA, 1986.

4. R. Davis and R. G. Smith. Negotiation as a metaphor for distributed problem solving. Arti-
ficial Intelligence, 20:63–109, 1983.

5. J. Ferber, O. Gutknecht, C. Jonker, J. Muller, and J. Treur. Organization models and be-
havioural requirements specification for multi-agent systems. In Proceedings of the Fourth
International Conference on Multi-Agent Systems (ICMAS’00), pages 387–388, Boston,
USA, 2000. IEEE.

6. J. Ferber and J. P. Müller. Influences and reaction: a model of situated multiagent systems.
In Proceedings of the second International Conference on Multi-Agent Systems (ICMAS’96),
pages 72–79, Kyoto, Japan, 1996. AAAI Press.

7. E. Platon, N. Sabouret, and S. Honiden. Overhearing and direct interactions: Point of view
of an active environment, a preliminary study. In D. Weyns, H. Parunak, and F. Michel,
editors, Environments For Multiagents Systems I, volume 3374 of Lecture Notes in Artificial
Intelligence, pages 121–138. Springer Verlag, 2005.

8. A. Ricci, M. Viroli, and A. Omicini. Programming mas with artifacts. In R. H. Bordini,
M. Dastani, J. Dix, and A. E. Seghrouchni, editors, Programming Multi-Agent Systems III,
volume 3862 of Lecture Notes in Computer Science, pages 206–221. Springer Verlag, 2006.

9. J. Saunier, F. Balbo, and F. Badeig. Environment as active support of interaction. In Proceed-
ing of the third workshop on Environment for Multiagent Systems (E4MAS’06), Hakodate,
Japan, 2006. to appear.

10. K. Sycara, K. Decker, and M. Williamson. Middle-agents for the internet. In Proceedings of
the 15th Joint Conference on Artificial Intelligence (IJCAI’97), pages 578–583, 1997.

11. D. Weyns and T. Holvoet. A colored petri net for regional synchronization in situated multi-
agent systems. In Proceedings of First International Workshop on Petri Nets and Coordina-
tion, Bologna, Italy, 2004. PNC.

12. M. Zargayouna, F. Balbo, and J. Saunier. Agent information server: a middleware for traveler
information. In O. Dikenelli, M.-P. Gleizes, and A. Ricci, editors, Engineering Societies in
the Agents World VI, volume 3963 of Lecture Notes in Artificial Intelligence. Springer Verlag,
2006.


