
Informational middleware based on mutual awareness

Flavien Balbo1,2, Mahdi Zargayouna1,2, Julien Saunier1

1Lamsade
Université Paris-Dauphine

Place du Maréchal de Lattre de Tassigny,
Paris Cedex 16

{balbo, zargayou, saunier}@lamsade.dauphine.fr

2 Inrets / Gretia
2, Avenue du Général Malleret-Joinville, F-94114

Arcueil
{balbo, zargayou}@inrets.fr

Abstract

This paper proposes a middleware based on the

multi-agent paradigm. Our proposition enables agents to
locate and to interact easily with heterogeneous services
and information providers. Interaction within the
middleware is based on the mutual awareness concept,
which makes it possible to define the middleware as an
information sharing place making easy a capability-
based coordination. A real application from the
transportation domain illustrates the use of this
middleware.

1. Introduction

Designing distributed applications requires effective

information processing and service management. In a
Multi-Agent System (MAS), a process is considered
efficient if the agents can locate and interact easily with
the service or information providers. Our proposal based
on mutual awareness interaction, takes advantage of two
paradigms, middle-agent (preference/ability matching)
and mobile agents (reducing communication cost) in
order to solve the problems dealing with a dynamic
informational context

The remainder of the paper is structured as follows:
section 2 presents the mutual awareness paradigm;
section 3 shows in detail the components of our
architecture; section 4 draws general conclusions.

2. Why mutual awareness?

Dugdale [5] has proved that, in a dynamic

informational context like regulation, a large part of the
interactions derive from the concept of mutual awareness.
In the context of regulation, information is accessible, and
agents pay attention to that which is relevant to their
current activity, depending on the agent's criteria.
Therefore, assimilating preference and capability like
with middle-agent [4] is not sufficient when the problem
is not the location of the information but the content
itself. The receiver can gain efficiency by choosing itself
its sources and criteria. In addition, with a middle-agent,
dynamic information rapidly increases the number of

message exchanges in order to maintain a valid
representation of the world for the agents [2].

Mobility could be a solution, as its main objectives
are to limit message cost, to facilitate access to local
information and agents, and to distribute computation
cost. But against these advantages there are three
downsides: (1) server/agent compatibility, (2) server
security, (3) multiple sources processing. (1) and (2) are
the reasons why this paradigm is limited to dedicated
applications [11]. Finally, mobility does not solve the
problem of multiple sources processing (3), as the cost of
migration is high and the identification of relevant
sources still needs some form of broker. Therefore, even
if we keep the idea of reducing the costs by permitting the
agent to use locally the server information, the problems
induced by mobility in open systems have led us to look
for another feature that could provide a solution to the
initial question of global information sharing.

LIME [15] permits tuple-space sharing among
distributed platforms, and Javaspaces1 makes possible to
share objects put and retrieval spaces between distributed
agents. Even if these two technologies are close to our
interaction needs, LIME doesn't ensure the consistency of
the tuple-space. It is a sort of distributed blackboard,
which means that the agents have to read the blackboard
explicitly instead of receiving their messages, because the
templates cannot be composed, it is not possible for
agents to have a combined interest for several sources
simultaneously. We also think dynamic messaging is
better in a high interactional context, with another useful
principle, which is mutual awareness.

Some work is related to the concept of mutual
awareness, particularly “overhearing”. The purpose of
overhearing is to allow agents to intercept messages
they're not intended to receive.

Overhearing has been used in real dynamic
environments to simulate indirect communication [12] as
well as to improve the knowledge consistency of teams
[7] or to monitor a MAS [6]. These three systems validate
the usefulness of overhearing, but their implementation
through broadcast functionally penalizes the system.

In order to limit the communication cost, channelled
multicast [3] proposes a focused broadcast, by means of
dedicated channels of communication where agents

1 http://java.sun.com/developer/products/jini/

subscribe and/or emit. Nevertheless, two limits can be
underlined: (1) the complexity of the system increases
proportionally to the number of channels; (2) the sender
still has to assume the emission of the messages to every
agent. However, we observe that proposing a solution for
overhearing has also led to an improvement for the
sender: it can choose to emit a message through a
channel, which is the visible expression of the interests of
the agents, instead of using addresses or capability (via
middle-agents).

Tummolini [14] defines the concept of Behavioral
Implicit Communication (BIC), within the framework of
cooperative systems for task realization, as the set of
every interaction that can be observed in an implicit way.
However, the properties that are required to fulfill BICs,
make this framework hardly useable. It needs very
cooperative agents, that is why it is hard to model and
implement in an heterogeneous and open system. Platon’s
model of overhearing [9] is the most generic to our
knowledge, as it considers overhearing independently of
the domain of the application. Nevertheless, their
proposition has not already been implemented.

3. The middleware modeling

Mutual awareness is based on the sharing of

interactions. To be efficient, this principle implies that
agents share a common communication media. In the
reactive agent community, the environment is already
used as a common media of interaction. The EASI model
[1] enables cognitive agents to use the environment to
exchange messages and, more precisely, it enables an
agent to send messages to an other agent that is located by
the environment and it enables agents to perceive every
exchanged message. In our work, we consider that
environment contains descriptions of messages and
agents. The interactional problem is to make possible for
agents to use these descriptions to locate messages
according to the environment state, that implies the
matching between those properties and the needs of the
agents.

We therefore propose to represent every component
of the environment (e.g. the external properties of the
environment itself as well as the agents and messages) as
entities. Every entity has its visible properties, accessible
via the environment, and the ability to put filters in the
environment. These filters are logical expressions on
properties, and determine, when a message is added to the
environment, whether the agent is interested in it, in
which case it will receive it, or not. In our EASI model,
we have added this notation to formalize the knowledge
about the description of interaction components
(messages and agents). Because it enables to represent the
agents, it makes possible for agents to create their own
interactional context as a set of filters. Each agent
description is updated by the agent itself, modifying
dynamically the value of its visible properties. A message

put in the environment will be perceived by every agent
that has a filter that is matched in the current
informational context.

3.1. The application domain

A Traveler Information System (TIS) should provide
two types of information: (1) information before the trip
starts, that is to say the global offer over all transportation
modes for a given request; (2) information during the
user’s trip, notifying him about events that could occur on
his route. The transportation operators are proposing
convenient responses to these needs including passive
information - such as variable messages boards - and/or
interactive information such as web servers or Personal
Assistants. However, the information provided by the
operators usually only concerns their own transportation
mode(s). However, operator information makes the
mutual management of different sources difficult, and
requires the user to be adaptable.

The organization proposed by FIPA [8] is efficient for
obtaining pre-trip information. But for a daily travel the
problem is not to identify the information sources but to
manage its update. In a real-time configuration, the
request/response pattern becomes expensive in a very
dynamic context like daily information in an urban area.

In order to test our proposal, we used existing
information sources as a web service2 (called Planning)
that creates a trip as an answer to a request and an
information system (called Traffic) [14] that gives
information about the traffic. We also have defined a
specific application (called Alternative) that gives the
nearest alternative station rather than the one which has
been received as a request parameter. To each traveler an
agent (called MPTA) is associated.

3.2 The middleware architecture

The mutual awareness model proposed by EASI

makes it possible to put together all the information. Each
agent perceives only that information which, according to
its filters, concerns its interests. This Agent Information
Server (AIS) architecture does not duplicate information
from the provider but organizes its use in a defined
context. Our server is a common place where requesters
and providers exchange information through a common
environment.

There are two types of provider behavior according to
the dynamicity of their information. For static
information, a provider waits for users’ requests (like
Planning). In this case, the server is used by requesters in
order to identify (with the use of the public properties) the
provider and to interact with it in a normalized way. For
dynamic information, a provider (like Traffic) puts
updated information into the environment. In this case,

2chotto.free.fr/tatami/Metro

the server is used by requesters to identify which
information has some interest for them from among all
data available in the environment. New information is put
in the environment once and is received by all interested
users.

The multi-agent system upon which our architecture
is based is made up of three types of agent. The first,
Interface agent, is the link between an existing
information server and our own. This agent is used by the
others to interact with the external server in a normalized
way (static information) and/or to gather relevant
information for the MAS and to put it in the environment
(dynamic information). Using an Interface agent within
our multi-agent system makes it possible to keep a
homogeneous system with heterogeneous components.
Agents do not have to know the external server to interact
with it; they only need to know which kind of service it
provides. This implies that the server may be changed and
that the technical means used to interact (http, ftp, SOAP,
etc.) is hidden from the users’ agents. In TIS Planning
and Traffic are connected to the AIS via Interface agents
(respectively PlanningAgent and TrafficAgent). The first
interact via http and the second via ftp.

The second type of agent is the Domain agent.
Contrary to Interface agents which are not interested in
using information coming from the environment (they are
only information providers), Domain agents may be
requesters and/or providers of information. In TIS,
Alternative and MPTA are Domain agent. The first
interact via a SOAP connection and the second via http.
These two agent categories are not located on the server.
Using them in our proposal solves the problem of
provider identification and standardizes interaction with
heterogeneous information providers. Nevertheless the
communication cost (via a SOAP connection) remains
high because each interaction is carried out with a
message exchange between distant agents.

To solve this problem our multi-agent system has a
third category of agent, Local agent (LA), which is
located on the server. Thus, a part of the processing may
be done on the server, reducing the communication cost
(as with mobile agents). Each distant agent (Interface and
Domain agent) has a representative (Local agent) on the
server. The role of this entity is to manage interaction for
the distant agent, by creating/deleting filters according to
the needs of the distant agent. For each perceived
message, it decides what to do with it. Alternative is to
deal with it or to forward it to the distant agent. In that
way, the exchanged messages are limited to those that are
essential for distant agents. The role of the Local agent
implies a hybrid architecture, since this agent is the link
between the informational environment (it can put and
perceive messages) and the application environment (it
can send and receive messages).

Figure 1: Example of messages routing

Chronologically (Figure 1), the traveler connects to the

server (via his MPTA) and a LA (called PTA)
representing him is created. After specifying his departure
and destination points, he is asked to wait until his request
is processed. His PTA creates a message with this
information and deposits it in the environment. In this
case, the message is “addressed” to the LA which has a
planning capability (1). When the planning LA receives
the message, it forwards it to the PlanningAgent. Then,
the PlanningAgent requests the Planning for a plan,
which it sends back in a message containing an xml trip
plan (3); This is transformed – by the LA – into a
message obeying the environment syntax, addressed to
the user’s PTA (4). Note here that the presence of the
Interface agent between the LA agent and the planning
system has multiple advantages. First, the fact that this
agent is physically distant and interacts with the server by
asynchronous SOAP messages means that the server
doesn’t have to worry about the synchronization of the
http protocol. Second, the same Interface agent can have
more than one LA agent representing it in different
middleware servers, covering different transportation
networks. This way, the user connects in exactly the same
way to different networks, and the presence of different
services is transparent to him.

When the user’s PTA receives the xml plan it first
sends it to its MPTA to inform the user, then it parses it
and generates a filter for every plan segment (a plan
segment is a part of a trip, provided by only one transport
mode). This way, the PTA of a user restricts its reception
conditions just to the information concerning its own trip.

If TrafficAgent sends a warning concerning a part of
the user’s trip (5), the message is intercepted by its PTA
(6). The PTA puts in the environment a message
“addressed” to the agent which has the alternative
capabilities (7-8-9-10), Note that the alternative service
has a filter enabling it to receive all the information
relative to disturbances, so it doesn’t send another station

concerned by a traffic problem. Once the alternative
station is received, the PTA sends an addressed message
to the planning LA asking for a plan with the alternative
station as a departure point (1-2). When receiving the new
plan (3-4), if the gain with the alternative trip is higher
than the current delay, the PTA proposes it to the human
user and asks him if he wants to avoid the disrupted
station. In this case, and if the new plan is validated by
the user, the old filters are replaced by the new ones
concerning the new plan; only the events concerning this
new plan will henceforth be received.

Thus, using the EASI model in our application it was
possible, for the interaction of an agent (representing a
user), to be dynamically parameterized by its context,
through the updating of its filters. The use of existing
classical web services is also totally transparent to him;
interaction with any kind of service is homogenized by
the environment interaction protocol. Using AIS also
enabled us to build a complex service based on different
sources that had not been pre-defined to offer such a
service.

5. Conclusion and perspectives.

The basic principles behind our informational

middleware (AIS) described in this paper (capability-
based coordination with middle-agents and reduction of
communication costs with mobile agents) are principles
generally acknowledged to be of interests in the multi-
agent community. The operationalisation of these
principles for a dynamic informational context imposes to
take into account the update of information and/or of the
agents’ interest. Our proposition to use mutual awareness
to create a communication space where representative of
distant agents interact limits the communication cost.

A real application of a Transportation Information
System illustrates our proposition. This specialized
middleware integrates several information servers and
enables normalized interaction with them.

We have several directions for future works. We plan
to investigate the consequences of the admission or the
exit of agents on services management and to propose a
management process for taxonomy of available services.

6. References

[1] F. Balbo, “A model of environment, active support of the
communication”, in American Association of Artificial
Intelligence Conference, AAAI-99, Workshop on Reasoning in
Context for AI Applications, AAAI Press, 1999.
[2] F. Balbo, “A new interaction model for agent based
simulation”. In European Simulation Multiconference, 2004.
[3] P. Busetta, A. Donà and M. Nori, “Channeled Multicast for
group communications”, in “Proceedings of AAMAS”, pp.
1280-1287, 2002.
[4] K. Decker, K. Sycara, Williamson M., “Middle-Agent for the
Internet”, in Fifteenth IJCAI, Morgane Kaufmann, 1997, pp
578-583.

[5] J. Dugdale, J. Pavard and B. Soubie, “A Pragmatic
Development of a Computer Simulation of an emergency Call
Center”, in Frontiers in Artificial Intelligence and Applications,
IOS Press' 2000.
[6] G. Kaminka, C. Pynadath and M. Tambe, “Monitoring teams
by overhearing: A multi-agent plan-recognition approach”, in
Journal of Artificial Intelligence Research, vol.17, p.83-135,
2002.
[7] F. Legras, C. Tessier, “Lotto: Group formation by
overhearing in large teams”, in proceedings of AAMAS,
Melbourne Australia, Springer Verlag, pp 425-432, 2003.
[8] D. OSullivan, J. Nùnez-Suàrez, H. brochoud, P.Cros, C.
Moore and C. Byrne,”Experiences in the use of the FIPA agent
technologies for the development of a Personal Travel
Application”, in proceeding of Agents, Barcelone, 2000.
[9] E. Platon, N. Sabouret and S. Honiden, “T-compound: An
Agent-Specific Design Pattern and its environment”, in
Proceeding of the 3rd international workshop on Agent Oriented
Methodologies at OOPSLA, pp. 63-74,2004.
[10] K. Rothermel, F. Hohl and N. Radouniklis, “Mobile Agent
Systems: What is missing?”, in H.König, K. Geihs and T. Preuß
(eds.) Distributed Applications and Interoperable Systems
(DAIS'97), Chapman & Hall, pp. 111-124, 1997.
[11] S. Fünfrocken, F. Mattern: “Mobile Agents as an
Architectural Concept for Internet-based Distributed
Applications - The WASP Project Approach”. In: Steimetz
(Hg.) Proc. KiVS'99, Springer-Verlag, pp. 32-43, 1999
[12] D. Traum, J. Rickel, “Embodied agents for multi-party
dialogue in immersive virtual worlds”, Proceedings of the first
international joint conference on Autonomous agents and
multiagent systems: part 2, pp. 766 – 773, 2002.
[13] L. Tummolini, C. Castelfranchi, A. Ricci, M. Viroli and A.
Omicini, “"Exhibitionists" and "voyeurs" do it better: A shared
environment approach for flexible coordination with tacit
messages” in Proceedings of Workshop E4MAS 2004, Springer
Verlag, 2004. pp 215- 231, 2004.
[14] G. Scemama, O. Carles, “CLAIRE-SITI, Public and Road
Transport Network Management Control: A Unified Approach»,
IEE Road Transport Information and Control Conference,
Londres, 2004.
[15] G.P. Picco, M.L. Buschini, “Exploiting Transiently
Shared Tuple Spaces for Location Transparent Code Mobility”,
in Proceedings of the 5th International Conference on
Coordination Models and Languages, York (UK), F. Arbab and
C. Talcott, eds., Springer, LNCS vol. 2315, pp. 258-273., 2002

